
parallelDist

Alexander Eckert

parallelDist version 0.1.0 as of June 6, 2017

Abstract

This document highlights the performance gains for calculating distance matrices with the parallelDist package and
provides basic usage examples.

Contents
1 Introduction 1

2 Performance 1

3 Quick start 3
3.1 Using matrices as input parameter . 3
3.2 Using a list of matrices as input parameter . 3
3.3 Using objects of other R packages . 5

1 Introduction
The parallelDist package provides a fast parallelized alternative to R’s native dist function to calculate distance matrices
for continuous, binary, and multi-dimensional input matrices and offers a broad variety of distance functions from the stats,
proxy and dtw R packages. For ease of use, the parDist function extends the signature of the dist function and uses the
same parameter naming conventions as distance methods of existing R packages.

The package is mainly implemented in C++ and leverages the Rcpp [EF11] and RcppParallel [AFU+16] package to
parallelize the distance computations with the help of the TinyThread library. Furthermore, the Armadillo linear algebra
library [San10] is used via RcppArmadillo [ES14] for optimized matrix operations for distance calculations. The curiously
recurring template pattern (CRTP) technique is applied to avoid virtual functions, which improves the Dynamic Time
Warping calculations while keeping the implementation flexible enough to support different step patterns and normalization
methods.

2 Performance
The inital motivation for building this package was the need for a fast Dynamic Time Warping implementation which uses
multiple cores and supports multi-dimensional (time) series. DTW is an expensive distance measure, where the computation
of the DTW distance between two series of length N has a complexity of O (N 2). This motivates an efficient and parallelized
implementation in C++.

Figure 1 shows a performance comparison between the parDist function of parallelDist and the dist function in
conjunction with the dtw package.

The benchmark has been performed on a system with the following specifications:

• Intel(R) Xeon(R) E3-1230 v3 @ 3.30 GHz, 4 cores with hyper-threading

• 32 Gb RAM

1

http://www.rdocumentation.org/packages/stats/functions/dist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/stats/functions/dist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/stats/functions/dist

● ●
●

●

● ● ● ● ● ●
● ● ● ● ● ●0

5000

10000

15000

20000

25000

10 100 1000 10000 20000 30000

Number of series (length 10)

C
om

pu
ta

tio
n

tim
e

in
 s

method ● ● ●dtw parDist threads=1 parDist threads=8

Distance matrix computation time (dtw, parDist)

Figure 1: Distance matrix computation time for Dynamic Time Warping

2

As depicted in figure 1, parDist makes the calculation of large distance matrices with DTW up to 3 orders of magnitudes
faster.

The parDist function can be used as a replacement for the dist function of the stats package, since it supports all other
distance methods of the stats package and most of the distances of the proxy package. Figure 2 shows the performance
comparison of the parDist function with the distance methods of stats and the proxy package when calculating distance
matrices with 5000 series of length 10.

3 Quick start

3.1 Using matrices as input parameter
The function signature of parDist is based on dist. To calculate a distance matrix for 10 series of length 10, a matrix is
passed to the parDist function where each row corresponds to one series.

> sample.matrix <- matrix(c(1:100), ncol = 10)

Here the parDist function calculates the distance matrix using the euclidean distance and returns a dist object, like the
dist function.

> dist.euclidean <- parDist(sample.matrix, method = "euclidean")

The dist object can easily converted into a matrix, or can be used as an input for R’s clustering algorithms.

> as.matrix(dist.euclidean)

> hclust.model <- hclust(dist.euclidean, method="ward")

Some distance methods require additional arguments (see ?parDist). These additional arguments can be passed
directly to the parDist function.

> parDist(x = sample.matrix, method = "minkowski", p=2)

> parDist(x = sample.matrix, method = "dtw", norm.method="path.length")

A list of all available distance methods can be found in the parDist documentation.

> ?parDist

The number of threads to use can be set via the threads parameter.

> dist.euclidean <- parDist(sample.matrix, method = "euclidean", threads = 2)

3.2 Using a list of matrices as input parameter
parDist also supports the calculation of distances between multi-dimensional series. Instead of one single matrix a list of
matrices is used as input parameter. One matrix with M rows and N columns corresponds to a series with M dimensions
and length N.

In the example below, a list with 2 matrices is defined where each matrix corresponds to a series with 2 dimensions of
length 10.

> tmp.mat <- matrix(c(1:40), ncol = 10)

> sample.matrix.list <- list(tmp.mat[1:2,], tmp.mat[3:4,])

The sample matrix now can be used to calculate a distance matrix for the multi-dimensional DTW distance.

> parDist(x = sample.matrix.list, method = "dtw")

3

http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/stats/functions/dist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist

yule2
yule

whittaker
wave

tanimoto
stiles

soergel
simpson

simple matching
russel

podani
phi

ochiai
mozley

mountford
michael

maximum
manhattan

kullback
kulczynski2
kulczynski1

hellinger
hamman
geodesic
fJaccard

faith
fager

euclidean
divergence

dice
chord

canberra
bray

braun−blanquet
binary

bhjattacharyya

0 250 500 750

Computation time in s

D
is

ta
nc

e
m

et
ho

d

Method

dist

parDist

Distance matrix computation time (5000 series of length 10)

Excluded distances for better comparison: dtw, mahalanobis, minkowski

Figure 2: Distance matrix computation times

4

3.3 Using objects of other R packages
The parDist supports different kinds of step patterns for calculating DTW distance matrices (see ?parDist). For ease of
use, it is also possible to use the StepPattern objects of the dtw package as input parameters for parDist.

> library(dtw)

> print(symmetric2)

> parDist(x = sample.matrix, method = "dtw", step.pattern = symmetric2)

References
[AFU+16] JJ Allaire, Romain Francois, Kevin Ushey, Gregory Vandenbrouck, Marcus Geelnard, and Intel. RcppParallel:

Parallel Programming Tools for ’Rcpp’, 2016. R package version 4.3.20.

[EF11] Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011.

[ES14] Dirk Eddelbuettel and Conrad Sanderson. Rcpparmadillo: Accelerating r with high-performance c++ linear
algebra. Computational Statistics and Data Analysis, 71:1054–1063, March 2014.

[San10] Conrad Sanderson. Armadillo: An open source C++ algebra library for fast prototyping and computationally
intensive experiments. Technical report, NICTA, 2010.

5

http://www.rdocumentation.org/packages/parallelDist/functions/parDist
http://www.rdocumentation.org/packages/parallelDist/functions/parDist

	Introduction
	Performance
	Quick start
	Using matrices as input parameter
	Using a list of matrices as input parameter
	Using objects of other R packages

