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EXACT MEAN INTEGRATED SQUARED ERROR1 

BYJ. S. MARRONAND M. P. WAND 

University of ~ 6 r t . hCarolina and Rice University 
An exact and easily computable expression for the mean integrated 

squared error (MISE) for the kernel estimator of a general normal mixture 
density, is given for Gaussian kernels of arbitrmy order. This provides a 
powerful new way of understanding density estimation which complements 
the usual tools of simulation and asymptotic analysis. The family of normal 
mixture densities is very flexible and the formulae derived allow simple 
exact analysis for a wide variety of density shapes. A number of applica- 
tions of this method giving important new insights into kernel density 
estimation are presented. Among these is the discovery that the usual 
asymptotic approximations to the MISE can be quite inaccurate, especially 
when the underlying density contains substantial fine structure and also 
strong evidence that the practical importance of higher order kernels is 
surprisingly small for moderate sample sizes. 

1. Introduction. Substantial research has been devoted to kernel density 
estimation. This is because it provides a simple, yet appealing, context in 
which to study problems and issues that arise in all types of nonparametric 
curve estimation. This includes regression, spectral density and hazard estima- 
tion, and also a variety of other estimators, including histograms, splines and 
orthogonal series. 

Three important and useful tools for understanding the behavior of non- 
parametric curve estimators are asymptotic analysis, simulation and numerical 
calculation of error criteria. 

Each of these methods provides many useful insights into the complicated 
structure present in the study of curve estimation. However, each has its 
limitations as well. 

The strength of asymptotic analysis is that it frequently allows simultane- 
ous study of many different specific examples, through general results applying 
to entire classes of settings. The weakness of asymptotics is that they only 
describe behavior in the limit. This is still very useful in many situations 
because the asymptotics describe the actual situation quite well. However, it is 
less useful when the asymptotics have not yet kicked in (that is, in studying 
situations where the asymptotically dominant effect has not taken over yet). 
Perhaps the biggest drawback to asymptotics is that it is very difficult to 
determine in a given situation which of these possibilities is occurring. 
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The strength of simulation is that one can clearly understand any setting, 
most especially those where asymptotics are clearly not appropriate (e.g., small 
samples). Furthermore, the only level of approximation, the Monte Carlo 
variability, can be made as small as,desired, and also can usually be precisely 
understood. Despite these import&t strengths, the weakness of simulation 
should also be recognized. This is that the lessons are limited to only the set of 
examples that can be studied (versus the wide classes that can often be 
analyzed via asymptotic methods). These limits are of practical importance, 
because very substantial effort is required, in terms of both programming and 
also CPU time, to do even a moderate scale simulation study. 

Numerical calculation of error criteria does something to overcome the time 
problems entailed in simulation. In short, at least in simple cases, one can look 
at a much broader base of examples with the same amount of research effort. 
However, numerical methods have the weakness that in complicated problems, 
they, too, can involve very substantial effort on the part of both the researcher 
and his equipment, which again limits the number of examples that can be 
considered. Furthermore, understanding the errors involved in this type of 
approximation is often much trickier than in simulation. 

In this paper a variation of the numerical approximation technique is 
presented, which we believe is worth separate consideration in its own right. 
The main idea is exact calculation of error criteria for special classes of 
examples, which make the calculation tractable, but at  the same time repre- 
sent a broad base of examples. In our opinion, such classes will turn out to be 
rather generally available, especially in curve estimation. The strength of this 
approach to problems is that many more examples can be considered than 
when the same effort is devoted to simulation (most especially large samples 
require no additional CPU time) or to complicated numerical work. An addi-
tional payoff is that there are no errors to be concerned with, no negligible 
term as found in asymptotics, no Monte Carlo variability as in simulation, no 
numerical error as in that type of approximation. Of course, it still needs to be 
kept in mind that this method has the weakness of being limited only to 
studying individual examples. 

Most of the paper involves application of this idea to studying simple kernel 
density estimation. The points made above are borne out by the fact that the 
paper studies many more different aspects of this topic than do most other 
papers. Furthermore, we see many other areas where one can gain much 
through analysis by this method, including important variations on the simple 
density estimation considered here such as the multivariate case and deriva- 
tives. Also, there is much to be gained from the study of related curve 
estimation problems, including regression estimation. 

Fryer (1976) and Deheuvels (1977) first showed that the mean integrated 
squared error (MISE) could be calculated exactly when both the underlying 
density and the kernel function are Gaussian. This is because the MISE can be 
written in terms of convolutions, which are simply evaluated in the Gaussian 
case. 

In Section 2 of this paper, this idea is extended in two directions. First, we 
note that the simple convolution property still holds when the underlying 
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density is a normal mixture. Second, we allow the kernel to be of arbitrary 
order. This is accomplished by use of the Gaussian-based kernels of Wand and 
Schucany (1990), which retain the convolution property. 

Exact MISE calculations for the Fourier integral density estimator were 
performed by Davis (1981) and Hart (1984). Also, see Gasser, Miiller and 
Mammitzsch (1985) for a different but related type of exact calculation in 
nonparametric regression. 

In Section 3, examples are given which show that the class of normal 
mixture densities is a very broad one, allowing easy study of many different 
types of problems that arise in density estimation. These same specific exam- 
ples are also of interest because they provide an interesting test set for 
simulation study of data-based window width selection. Simple evaluation of 
the performance of these methods provides an additional application of our 
exact MISE formulae. 

The error inherent to the usual asymptotic analysis of the MISE is studied 
in Section 4. An especially surprising aspect of this for us is that the MISE can 
have local minima. The closely related problem of how the MISE optimal 
window width relates to its usual asymptotic minimizer is studied in Section 5. 
It is seen in these sections that many of the key ideas often still hold up, but 
some of them may require prohibitively large sample sizes before the asymp- 
totic effects provide a reasonable description of the actual situation. 

The practical effectiveness of higher order kernels is investigated in Section 
6. While these are known to be always superior in the limit (if enough 
smoothness is assumed on the underlying density), they are not used much in 
practice, because they lose some of the intuitive appeal of the nonnegative 
kernels. It is seen that sample sizes in the hundreds are needed for higher 
order kernels to be worthwhile for very simple densities, and far more, even 
into the millions are required for densities with more complicated structure. 
Proofs of our results are in Section 7. 

The approach taken throughout this paper concerns estimation of the entire 
curve, which is what we feel is most relevant for density estimation. However, 
the basic ideas are easily adaptable to estimating a density at a point, through 
calculation of the pointwise mean squared error. An extension which does not 
appear to be simple is to the case of other norms, such as L,or L,. For these 
we know of no analogs of our methods, because we do not know how to express 
them simply in terms of convolutions. 

2. Exact MISE for normalmixture densities. Let XI, . . . ,X, be a set 
of independent R-valued random variables each having density f .  For a given 
window width h,  the kernel estimator of f(x) is given by 

1 "  

f,(x; h )  = -C K,(x -Xi), 


n i = 1  

where Kh(u) = h-lK(u/h) and K is a symmetric function satisfying JK = 1 
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and 

where this defines pj(K). The integer p is called the order of the kernel. Note 
that the symmetry of K implies that p is an even integer. The integer p/2 
will be denoted throughout by r. 

The MISE of f,(. ;h ) is given by 

however, simple manipulation leads to 

Fryer (1976) and Deheuvels (1977) observed that if f is normal and K is the 
Gaussian (standard normal) kernel, then closed form expressions are available 
for these convolutions and their integrals and exact MISE calculations are 
possible. However, this result applies to only one special case of the density 
estimation problem, so its use is rather limited. In this work we exploit the 
tractability of the normal density much further by taking f to be a general 
normal mixture density and K to be a pth-order Gaussian-based kernel, both 
of which we now define. First, let 4 denote the standard normal density and 
put 4,(x) = a-'+(x/a). Let (w,, . . . ,w,) be a vector with positive entries 
summing to unity and set 

where - m  < p, < m and a, > 0 for 1 = 1,..., k. We will say that f has a 
normal k-mixture density with parameters {(w,, p,, a;): 1 = 1,. . . ,k). The 
Gaussian-based kernel of order p = 2r  studied here is 

and can be viewed as the natural extension of the Gaussian second-order 
kernel to higher-order kernels [Wand and Schucany (1990)l. The second 
representation of G2,is used extensively in our calculations and follows from 
the first via the recurrence formula for Hermite polynomials. 

In what follows, the notation for derivatives of scaled versions of 4 will be 
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For a given value of r the constant G;(r) is defined by 

We then have: 

THEOREM Let f be the normal mixture density defined by (2.3) and K2.1. 
be the (2r)th-order Gaussian-based kernel defined by (2.4). Then 

r - 1  r - 1  ( -
MISE(h) = - 2"+">!S'! %(h ;  s + s', 2) 

nh s = o  s 1 = 0  

where 

and all,,= (a; + a; + qh2)1/2. 

The proof of this result is given in Section 7. 

3. Examples of normalmixture densities. One way of seeing that the 
class of normal mixture densities is a very broad one comes from the fact that 
any density can be approximated arbitrarily closely in various senses by a 
normal mixture. This idea is made visually clear in Figure 1. These fifteen 
densities have been carefully chosen because they typify many different types 
of challenges to curve estimators. The first five represent different types of 
problems that can arise for unimodal densities. The rest of the densities are 
multimodal. Densities number 6 to 9 are mildly multimodal and one might 
hope to be able to estimate them fairly well with a data set of moderate size. 
The remaining densities are strongly multimodal and will be very hard to 
recover in full with a moderate sample size, but still are well worth studying, 
because the issue of just how much of them can be recovered is an important 
one. We believe these densities effectively model many real data situations. 

The Gaussian density, #1, occupies a special place in curve estimation, 
because it is close to being the easiest possible density to estimate, in a sense 
discovered by Terrell and Scott (1985). The skewed unimodal density, #2, is 
not far from the Gaussian in shape, being only mildly skewed and was chosen 
to resemble the extreme value density in appearance. 

The next three densities are much farther from the Gaussian. The strongly 
skewed density, #3, departs in the direction of skewness and was chosen to 
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X1 GaussianDensity #Z Skewed Unlmodal Denstty 

X3 Strongly Skewed Denstty #4 Kuftotlc Unitnodal Density 

X5 Ounier Density #6 Bimodal Dendty 

-3 -2 .1 0 1 2 

#7 Separated Bimodal Density 

3 -3 .2 .1 0 1 2 

XB Asymmetric Bimodal Denslly 

3 

-3 .2 0 2.1 1 

FIG.1. Normal mixture densities. 

3 
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XB Trimodai Densny X I 0  Claw Densly 

X I 1  DouMeClawDendty X12 Asymmetric Claw Denslty 

I X I 4  ~ m t h  DensttyX13 Asym Db. Claw DensHy ~ o m b  

X15 DiscreteComb Denslty 

FIG.1. Continued. 
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resemble to lognormal. The kurtotic unimodal density, #4, is a departure in 
the direction of heavy kurtosis. This also provides a reasonable approximation 
to a density with a couple of discontinuities, because of the very sharp rises 
where the peak meets the two shoulders. The outlier density, #5, has a shape 
similar to the Gaussian (although'it appears different because of the scale 
chosen), except that 10% of the observations are multiplied by 10, that is, are 
strong outliers. 

The bimodal densities, #6, #7 and #8 and the trimodal density, #9, 
represent important but simple departures from the unimodal. The claw 
density, #lo, is of special interest because this is where the surprising result 
of local minima in the MISE occurs. The double claw density, #11, is essen- 
tially the same as #6, except that approximately 2% of the probability mass 
appears in the spikes. Hence for small sample sizes, there is essentially no 
practical difference between these, although the asymptotic approximations 
are far different. Also of interest here is to study the point at which there are 
enough data that the spikes are of practical importance. 

The asymmetric claw and double claw densities, #12 and #13, are modifi- 
cations of #10 and #11, respectively. The smooth and discrete comb densities, 
#14 and #15, are enhancements of the basic idea of #7. Both of these are 
shown here because they have much different Fourier transform properties, 
since #I5 has two strong periodic components, while #14 has essentially no 
periodic tendencies. Also for any given sample size, some of the peaks in #14 
can be well recovered, some only marginally recovered and others not recov- 
ered at all. On the other hand, this happens in a more blockwise fashion for 
#15. 

The values for the parameters are given in Table 1. For ease in plotting, 
these have been chosen so that 

min(p, - 3ul) = -3  and max(p, + 3u,) = 3. 
1 1 

4. Comparison of MISE and its asymptotic representation. While 
the form of MISE is given at (2.2) may seem simple, as compared to being an 
n + 1-fold integral as one might at first expect (and we do indeed seem to have 
for the L,  or L, norms), it is still sufficiently complicated that important 
features of the estimation problem are not plainly visible. For example, as 
demonstrated by Figures 2.4 and 2.5 in Silverman (1986), the window width h 
is crucial to the performance of the estimator, as the resulting curve estimate 
is too wiggly when h is too small and too smooth for h large. A simple 
asymptotic analysis of MISE makes easy understanding of issues such as this 
available. For f having a continuous p th  derivative, the asymptotic mean 
integrated squared error (AMISE) is given by 

Assuming h = h(n) + 0 and nh + w as n + w, it is true that MISE(h) = 

AMISE(h) + o(n-lh-' + h2p) [see Silverman (1986), pages 38-39]. The value 
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TABLE1 

Parameters for 15 example normal mixture densities 


Density 	 W , N ( ~ , , U ~ )  + w ~ N ( ~ ~ , u E )+ 

#1 Gaussian N ( 0 , l )  


#2 Skewed unimodal ~ N ( o ,1) + $N(& + Q N ( ~ ,(:)2) 


#3  Strongly skewed 

#4 Kurtotic unimodal $N(O, 1) + iN(O, 


#5 Outlier &N(O, 1) + &N(O,( & ) 2 )  


#6 Bimodal $N(- 1,( y )+ $ N o ,( $ ) 2 )  


#7 Separated bimodal $N( - "q2)2 + ;N(;, ( ; ) 2 ) 
2 ,  

#8 Skewed bimodal $N(o, 1) + i N ( $ ,(i)2) 
#9 Trimodal &N( - g ,  (g>2>+ &N(g,  ( p )  + &N(O, 

#10 Claw 

#11 Double claw %N(- 1, ($I2) + g N ( 1 ,(:)2) 

# 12 Asymmetric claw 

#13 	Asymmetric double 

claw 


5 


#14 Smooth comb 	 C ( 2 5 - ' / 6 3 ) ~ ( { 6 5- 96($)')/21, ($)2/221)  
l=O 

2 	 10 

#15 Discrete comb 	 C 5 ~ ( ( 1 2 1- 15)/7,( $ ) 2 )  + C & ~ ( 2 1 / 7 ,  
1=0 1=8 

of h which minimizes AMISE(h) is 

which is an approximation to hMIsE,the minimizer of MISE(h). The corre- 
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sponding minimum AMISE is 
1 / (2p +1)

2 p  + 1 2PP%( K )  I{ f (p)12( I K ~ ) ~ ~
inf AMISE(h)
h > o  (p ! )2n2p= (T)[ 

For comparison between MISE(h) and AMISE(h) and their respective 
minimizers in the case of normal mixture densities and Gaussian-based ker- 
nels, we will need: 

THEOREM For f as in  Theorem 2.1, we have for s 0 ,1 , . . . ,4.1. = 

where all,= (a: + Also for K as in  Theorem 2.1, 

( - 1 ) ~ + ' ( 2 r ) !
p p ( K )  = / x 2 ' ~ ( x )dx = and = &l(r ) .

2'r ! 

The required formulae involving AMISE follow from this. 

COROLLARY Let f and K be as i n  Theorem 2.1. Define 4.1. 
1 k k 

where all,is as i n  Theorem 4.1. For the kernel estimator (2.1), we have 

AMISE(h)  = n- lh- l&l(r)  + h4'd2(r) ,  

and 

4 r  + 1 4r&l(r)&2(r)4r 
1/(4r+ 1) 

inf AMISE(h)  = -
h > o  ( 4 r  ) {  n4. 

The proof of Theorem 4.1 is not given, because it follows very easily from 
Corollaries 4.1 of 5.2 of Aldershof, Marron, Park and Wand (1991). 

We define the integrated variance, the integrated squared bias and their 
corresponding asymptotic forms by 

I V ( h )  = / ~ a r { f , ( x ;h ) }d x ,  A I V ( h )  = n - ' h - ' / K 2 ,  

and 

A I S B ( h )  = h 2 p { p p ( ~ ) / p ! ) 2 / {f ")}'.  
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The asymptotic representation AMISE(h) is particularly attractive because 
it enables easy understanding of the trade-off involved in choice of h. In 
particular, for h too small, recall f,( ;h)  is then too wiggly, which is quanti- 
fied by the term AIV(h) being large [the fact that AIV(h) is inversely propor- 
tional to the number of observations in a typical window has a definite 
intuitive appeal]. On the other hand, when h is too large, features of the 
underlying density are smoothed away by f,(. ;h), which is nicely quantified 
by the term AISB(h) [in particular note the curvature of f plays an important 
and intuitively sensible role]. 

Figures 2a and 2b show pictorially how MISE and AMISE depend on h for 
the Gaussian density, #1, when the sample size is n = 100, for the standard 
nonnegative Gaussian kernel, which has order p = 2. Figure 2a shows h on 
the ordinary scale, with Figure 2b showing the same thing, but with h on a 
log,, scale. We feel that the log,, scale is the more informative way to present 
such pictures (not intuitively surprising, since the window width is a scale 
factor and works in a multiplicative fashion), so this convention will be 
followed for the rest of this paper. Note that the log scale is not only more 
appropriate for making pictures of this type, but also provides a more efficient 
design when choosing equally space grids of window widths for simulation 
studies (because the ordinary scale will waste observations by putting essen- 
tially too few on the left side and too many on the right). 

The curves IV( h )  and AIV( h)  are very large for h small and, as expected, 
tend to 0 as h grows. Again as intuitively expected, the curves ISB(h) and 
AISB(h) increase in h, and tend to 0 as h -,0.Note that the IV(h) = AIV(h) 
approximation is quite good and uniform in the sense that the vertical 
distances between these stay fairly constant. On the other hand, the ISB(h) = 
AISB(h) approximation is comparatively worse and quite nonuniform in char- 
acter, as the curves come together for h small, but diverge widely for large h. 
We have made such plots for all fifteen densities (but do not show them here 
because the main ideas are the same) and this type of behavior is very typical, 
although the bias approximation can be far worse, as demonstrated in Figure 3 
below. 

Figure 2 also shows the curves MISE(h) and AMISE(h) which are the sums 
of the respective variance and squared bias components. Note that the approxi- 
mation of these curves is good for small h, but poor for large h. 

Figure 3 shows the same setup as Figure 2b, but the underlying density is 
now the double claw, #11. Note that as in Figure 2, the IV(h) = AIV(h) 
approximation is quite good, but the ISB( h ) = AISB( h ) approximation is 
terrible. The reason the bias approximation is so poor is that AISB(h) is 
proportional to /( f ")2, which is very large because of the spikes apparent in 
the true f . However, while these spikes have an enormous effect on AISB( h 1, 
they are not really present in any practical sense, because as indicated in Table 
1, the probability mass of these seven spikes represents approximately 2% of 
the total probability mass, which corresponds to about two observations in this 
case. Indeed the actual MISE(h) is very nearly the same as for the bimodal 
density, #6; see Figure 4 below. 
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FIG.2. Comparisons of MISE(h) and AMISE(h) for the Gaussian density, #1, Gaussian kernel, 
plotted on the ordinary h scale (part a) and the log,,(h) scale (part b). Solid curves are 
MISE(h), IV(h) ,  ISB(h) and dotted curves are AMISE(h), AIV(h),  AISB(h). The minimizers of 
MISE(h) and AMISE(h) are hMISE and hAMISE, respectively. 
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FIG. 3. MISE(h) and AMISE(h) for the double claw density, #11, n = 100,Gaussian kernel. 
Solid curves are MISE(h), IV(h), ISB(h) and dotted curves are AMISE(h), AIV(h), AISB(h). 

Another interesting feature is that while AMISE(h) + rn as h + rn (recall it 
is proportional to h4), MISE(h) seems to level off. This is in fact always the 
case, but it usually requires a large vertical scale to see this (for example, it is 
not visible using the much different scales in Figure 2). Indeed, it is straight- 
forward to show that lim,,, MISE(h) = jf2, which is not so surprising 
because for large h, f,(.; h)  tends to the function which is identically 0. 

These considerations motivate the question of how well AMISE(h) approxi- 
mates MISE(h) if one includes higher order terms in the Taylor expansion 
represented by AISB(h). In particular, assuming f is sufficiently smooth and 
that the kernel is second order, define for j = 1,2,. .. , the j term improve- 
ment of AMISE by 

Figure 4 shows how well the first few of these approximate MISE(h) for the 
bimodal density, #6, and n = 100, using the Gaussian kernel. Note that this 
type of approximation gains very little for h large. This may not be too 
surprising, because the real gains for this type of expansion occur in the limit 
as h + 0. On the other hand, the Taylor series is convergent pointwise in h, 
but Figure 4 shows that this convergence is highly nonuniform. This is 
perhaps the worst case we have seen in this study of asymptotic results being 
very far from accurately indicating what is actually happening. We conclude 
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FIG.4.  MISE(h) and several orders of AMISE(h) approximation for the bimodal density, #6, 
n = 100, Gaussian kernel. The number of terms is that used in the Taylor approximation of 
ISB(h) by AISB(h), that is, the numberj in AMISE(h). 

that very careful interpretation (and even healthy skepticism) is clearly indi- 
cated for arguments based on approximation of ISB(h) by higher order terms 
in this sense. Note that in all of these pictures, MISE(h) < AMISE(h). This is 
also true for all of the other pictures we have made, and is in fact true in 
general, at  least for nonnegative kernels (we speculate that it is true in 
general, but do not have a proof). 

4.2.THEOREM For f "  continuous and square-integrable and K nonnega-
tive, 

MISE(h) <AMISE(h) fo ra l lh>O.  

One consequence of Theorem 4.2 is that the AMISE assessment of the 
density estimation problem always appears harder than it actually is. Our 
pictures lead us to conjecture that there may be an analogous theorem 
available to the effect that hmIsE < hMIsE, but we have not found a simple 
proof. 

5. The minimizer of MISE. In this section the minimizers hMIsE and 
hmIsE of MISE(h) and AMISE(h) are discussed. Details of calculations are 
postponed to the end of the section. 

In view of the fact that MISE(h) so intuitively quantifies the trade-off 
between undersmoothing and oversmoothing, we were quite surprised to 
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FIG. 5 .  MISE(h) and AMISE(h) for the claw density, #lo, n = 53, Gaussian kernel, solid curve 
is MISE(h), dotted curve is AMISE(h). Small plots show density estimates for five simulated data 
sets, using as window widths the left and right minimizers, respectively. 

discover that hMIsE is not always uniquely defined. This comes about because 
MISE(h) can have local minima, as shown in Figure 5, which shows AMISE(F,) 
and MISE(h) for the claw density, #lo, for n = 53, and the Gaussian kernel. 
The reason that the unusual value n = 53 was chosen here is that for n = 54, 
the right side of the MISE(h) curve in the figure stays essentially the same 
[recall ISB(h) is independent of nl, but the left side moves downward [since 
IV(h) is proportional to n- 'I, so the overall minimizer h MISE suddenly moves 
all the way over to the left minimum. An interpretation of this phenomena is 
that for samples of size n 1 53, a larger window width which completely 
ignores the fingers in the claw density is more appropriate in the sense of 
MISE(h), while for n 2 54, a good MISE window width will be a much smaller 
one which attempts to estimate well the fingers. This interpretation is verified 
by the small plots in Figure 5 which show density estimates at these window 
widths and sample sizes for five simulated data sets. 

Another interesting viewpoint on the behavior of hMIsE comes from study- 
ing it as a function of n. Figure 6 shows plots of loglo(hMIsE) and loglo(hmIs,) 
as functions of log,,(n) for the Gaussian kernel and the bimodal, #6, and the 
double claw, #11, densities. The log-log scale is very informative, because 
optimal window widths are usually thought of in terms of powers of n. Note 
that hmIsE is in fact exactly a linear function of n on this scale and the lines 
are parallel both having slope -1/5 [but far different intercepts, because of 
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the different values of j( f"l21.For #6, hmIsE begins to provide a decent 
approximation to hMISE for sample sizes between 100 and 1000. This shape 
and behavior were quite typical for all the densities #1-#9. However, for the 
remaining densities, it takes much ly-ger sample sizes for this approximation 
to be acceptable. For example, in the case of #11, n needs to be closer to one 
million for good approximation. As remarked above, since the spikes in #11 
represent only about 2%of the probability mass, for small sample sizes these 
densities are practically the same. This shows up nicely in the way the two 
hmIsE curves are the same up until about n = 1000. It is only for larger 
sample sizes that the effect of the peaks is enough, that is pays in the MISE 
sense to use a smaller window width for #11.The corresponding curves for the 
densities #lo-#15 exhibited a variety of interesting features related to those 
shown here for #11, however there are too many to show here. One feature 
which is quite different is for density #lo, where there is a discontinuity in the 
hMIsE curve between n = 53 and n = 54 for the reasons given at the begin- 
ning of this section. 

Figure 6 shows how the best window width behaves as a function of n, but 
an even more interesting question is how well one does using this window 
width. This is addressed in Figure 7, which shows, in the same setup 
loglo{infh> ,MISE( h)) and loglo{infh > ,AMISE(h)) versus loglo(n). Again the 
AMISE curves are linear, both having slope -4/5, but with much different 
intercepts. As expected, the AMISE( h)  - MISE( h)  approximation gets visibly 

FIG.6.  loglO(hYISE) (dotted lines) as a function of (solid and dashed curves) and loglO(hAMISE) 
log,,(n) for the bimodal density, #6 (solid) and the double claw density, #11 (dashed), Gaussian 
kernel. 



J .  S. MARRON AND M. P .  WAND 

FIG.7. loglo{infh> ,MISE(h)] (solid and dashed curves) and loglo{infh >, AIMSE(h)) (dotted 
lines) as a function of logIo(n) for the bimodal density, #6 (solid) and the double claw density, 
# 11 (dashed), Gaussian kernel. 

better for larger n. Again for smaller n, the two MISE curves are practically 
the same, although they are now visibly separate for sample sizes substantially 
less than 100. The reason that this separation occurs much earlier than in 
Figure 6 seems to be that the true MISE tends to be influenced strongly by the 
largest deviation between f,( ;h) and f .  

The minimizer, hmISE, of AMISE(h) is found from straightforward calcu- 
lus and is given in Corollary 4.1. The minimizer, h,,,,, of MISE(h) is not so 
simple, being only implicitly defined, and as shown in Figure 5 is not necessar- 
ily unique. We have developed an effective numerical algorithm for finding 
this, details are available from the authors. It is a modified Newton's method, 
which requires formulae for the derivatives. These are given in the next 
theorem. 

THEOREM Let f and K be as in Theorem 2.1. For the kernel estimator 5.1. 
(2.11, we have 
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where 

and all,,(a: + a: + qh2)1/2 is as in Theorem 2.1. In addition, = 

d r - 1  r -1  ( - l)s+s' 
-MISE(h) = - %"(h; s + s', 2) 
dh2 nh3 S = O  s l=o ~ S + S ' ~ ! ~ ' !  

where 

The proof of Theorem 5.1 involves straightforward differentiation of the 
MISE( h ) expression in Theorem 2.1. 

6. Effect of higher order kernels. A very important application of our 
exact MISE ideas is to the problem of understanding when higher order 
kernels are actually more effective. For a sufficiently smooth underlying 
density, their faster rate of convergence means that higher order kernels will 
always be more effective for large enough sample sizes, but this says nothing 
about the crucial issues of: 

1. How large an n is needed? 
2. What happens before the asymptotics take effect? 

These are especially important in practice because there is a definite price to be 
paid, in terms of plausibility and also interpretability, by higher order kernels. 
This is because they take on negative values and thus miss out on much of the 
beautiful and simple intuition available for nonnegative kernels. 

Figure 8 is an analog of Figure 2b, for density #6 and kernel orders p = 2, 
4, 6, 8, except that IV(h), ISB(h) and the asymptotic versions of everything 
are now removed to keep the plot from being too cluttered. Since the main 
point of higher order kernels is reduction of bias, it is not surprising that when 
the kernel order increases, the bias decreases for each h. As pointed out by 
HZirdle (1986), the higher order kernels do however pay a price in terms of 
incgeased variance. Both of these effects mean that h,,,, moves to the right 
for higher kernel order. Note that the magnitude of these effects decreases 
with increasing kernel order, that is, there is a law of diminishing returns, 
which reflects the fact that higher order corrections become increasingly fine. 
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FIG. 8. MISE(h) for the bimodal density, #6, n = 100, Gaussian based kernels of orders p = 2 ,  
4 ,  6 and 8. 

We have looked at AMISE(h) as well, but it does not seem worth including a 
plot because the essential ideas are much the same as in Figure 2b. Once 
again, IV( h ) is reasonably well-approximated by AIV( h ), but the approxima- 
tion of ISB(h) by AISB(h) is even worse for higher kernel orders and this time 
the effect does not decrease with higher kernel order. Similarly, the approxi- 
mation of hMIsE by hmIsE tends to get worse for higher order kernels. 

I t  is interesting that in this case, the heights of the minima of these curves 
are all about the same. This shows that for n = 100, there is no practical gain 
from higher order kernels, that is, there is not enough data to take effective 
advantage of the higher order bias improvement. The same picture for n = 

1000, on the other hand, does show marked improvement for the kernel of 
order p = 4, but little more for orders p = 6 and 8. 

A more powerful way of viewing this is to look at analogs of Figures 6 and 7. 
We do not show the higher order version of Figure 6 to save space, since the 
lessons are much the same as in that picture, although of course the asymp- 
totic window widths have a gentler slope (reflecting their slower rates of 
convergence). Another interesting feature is that for higher order kernels, it 
takes substantially large sample sizes to get the same degree of approximation 
of hMIsE by hmIsE. Another point we had not expected is that discontinuities 
inthe h ,,,, curve, caused by local minima in MISE(h) as in Figure 5, appear 
very frequently for higher kernel orders. It is the prevalence of these local 
minima that makes the modification of Newton's method discussed at the end 
of Section 5 so important. 
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Kernel Order = 2 

Kernel Order = 6 ............................... 


FIG.9 .  loglo{infh,, MISE( h ) )  and logl0{infh,, AMISE( h)l as a function of loglo(n) for the 
bimodal density, #6, and the double claw density, #11, and Gaussian-based kernel orders p = 2 
(solid),4 (dashed),6 (dotted). The AMISE's are represented by straight lines. The corresponding 
MISE's are curves that are always below, but asymptotic to, the AMISE's. All density #11 curves 
are above the corresponding density #6 curves. 

Figure 9 is an analog of Figure 7 for higher order kernels. Note that for 
density #6, the performance for all the kernels orders is about the same near 
n = 100, and the higher order kernels are at  least slightly better after that. 
However, we do not feel this effect is strong enough to overcome the lack of 
intuition inherent to higher order kernels until around n = 1000, and then 
only for order 4, with much less improvement in going from 4 to 6. In the 
other direction, it is not easy to see on this plot, but in fact for around n = 20, 
the higher order kernels give MISE(h) actually worse than that for the 
nonnegative one. Such behavior was typical for all of the densities #1 to #9, 
although the point where the higher order kernels become dominant increases 
with the complexity (this is only an intuitive notion reflecting a rough idea of 
distance from the Gaussian) of the density. The curves for hmIsE also seem to 
converge roughly at a single point, which is substantially larger than the 
trade-off point for the true hMIsE curves. This shows it is not really sufficient 
to study this trade-off by looking at only AMISE, but instead our exact MISE 
calculations are needed. Again, as expected from the discussion around Figures 
6 and 7, for small samples sizes, the curves for density #11 are very close to 
those for #6. However for larger sample sizes, they diverge to values that are 
far wbrse, because the spikes in #11 make it much harder to estimate. Note 
that which kernel order is best oscillates substantially with increasing n, and 
indeed the higher order kernels still have not become finally dominant even for 
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TABLE2 
Relative efficiency of kernel order 2 with respect to kernel order 4 

Density 100% 

MISE 

90% 

" 

Threshold 

75% 100% 

AMISE 

90% 75% 

n = 1,000,000. This behavior is typical for the difficult-to-estimate densities 
#lo-#15. Of course our formulae make it very easy to extend these pictures 
to larger n,  but this seems pointless in view of current computing limitations 
(on actually working with such large data sets, and in particular computing 
kernel estimates), so we have not done so. 

From looking at such pictures for all of our fifteen densities, we believe it is 
fair to say that in situations where the true density has features that make 
their presence felt, but cannot be well recovered, the higher order kernels have 
no advantage over the nonnegative kernel. This is seen in Figure 9, for 
samples sizes roughly between 10 and 100 for both densities #6 and #11, and 
for sample sizes roughly between 6,000 and 200,000 for density #11. On the 
other hand, when all features can be reasonably well recovered, the higher 
order kernel tends to be superior, although usually only marginally so. 

A way of quantifying this idea for the densities shown in Figure 1is given in 
Table 2. This is motivated by classical notions of efficiency. However as pointed 
out in Section 3.3.2 of Silverman (1986), it is tricky to do this directly in terms 
of MISE, because the usual efficiency interpretation of how much additional 
data is needed does not hold due to the n-4/5 dependence of MISE on n. 
Instead of using MISE5I4 as done there, we exploit the much deeper informa- 
tion available to us here by using an exact version. This is especially appropri- 
ate for those situations, as seen in Figures 7 and 9, where the slope of the 
MISE curve is less than its limiting value. Given two kernel orders p < p' and 
given a sample size n, define the relative efficiency of the kernel of order p 
with respect to the kernel order p', to be the proportion of the sample (for the 
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lower order kernel) that would be needed for the same performance when 
using the higher order kernel, that is, 

REp,d(n) = n t h ,  

where n' is chosen so that inf, ,,MISE(h; p ,  n)  = inf, > ,MISE(h; p', n'). For 
example, RE,,,,(n) = 1/2 means that the kernel of order p' requires only n/2 
observations to have the same MISE as the kernel of order p using n 
observations. For n large enough, RE,,,,(n) decreases in n. Instead of pre- 
senting graphs of these curves, we have chosen to summarize them by finding 
those values of n where the curves last cross below the efficiencies of loo%, 
90% and 75%. These values shows when the asymptotic advantage of higher 
order kernels have taken effect as quantified by these three ways. They are 
listed in Table 2 for p = 2 and p' = 4. Values i n  the table larger than 
1,000,000 are omitted because the only really important fact is that they are 
above this large value. 

Our personal choice is to call the higher order kernel dominant (that is, 
increased efficiency overcomes better intuitive properties) when the efficiency 
of the lower order kernel falls below 75%. One reason for this is that a study of 
plots of RE,,,,(n) versus log,,(n) shows that in those regions where the 
kernels are not comparable, the efficiencies tend to oscillate roughly between 
80% and 125%. 

Analogs of Table 2 in the cases of p = 2, p' = 6 and p = 4, p' = 6 are 
available from the authors. One main lesson from these tables is that p' = 6 
usually dominates p = 2 for smaller n than is required for p' = 4 to dominate 
p = 2. These tables also show that much larger values of n are needed for 
p' = 6 to dominate p = 4 than for p' = 4 to dominate p = 2. 

Note that these thresholds for the efficiencies are much worse when mea- 
sured in terms of AMISE. The reason for this is that the straight lines tend to 
cross later than the corresponding curves in Figure 9. An important conse- 
quence is that it is not enough to study this kernel choice problem through 
AMISE, but instead our exact MISE calculations are required. 

Our personal conclusion from this is that we cannot recommend the use of 
higher order kernels in practice. The situations in which they are sufficiently 
dominant require sample sizes much larger than those that many people work 
with. For those who do work with such large samples, the higher order kernel 
is only going to be much better in cases where the underlying density does not 
have much in the way of interesting features. 

7. Proofs. 

PROOFOF THEOREM Our proof makes use of the following two results 2.1. 
from Aldershof, Marron, Park and Wand (1991). For a ,  a' > 0 and r, r' = 
0,1,2,..., 
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where 6 = and(a2+ u ' ~ ) ' / ~  

(7 .2 )  4:2r)(o)  = ( -1) r2-(2r+')/2T-l/2(2r) 1) - lU- ( '+ l ) .  

It is easily shown that 

v m { f n ( x ;  h ) )  = n- 'Vm{Kh(x  -Xi)) = n - ' ( ( ~ :* f ) ( ~ )- ( K h  * f 1 2 ( ~ ) ) '  
However, for K = G2,,  

which uses the second representation of G 2 ,  given by (2.4),along with (7.1) 
and (7.2).Appealing again to (7.1)(here and in all following arguments), 

Thus, 
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and so 

Next observe that 

The first term on the right-hand side of (7.5) is given by (7.3). The second term 
is 

and the third term is 

k k 

(7.7) j f  = C C ~ ~ w p + ( ~ f + $ ) l / 2 ( ~ 1- ~11)= 4 ( h ;  070). 
1 = 1 1 ' = 1  

Noting that 

and combining (7.31, (7.4), (7.5), (7.6) and (7.7), we obtain the required result. 

PROOFOF THEOREM4.2. Since 

it is enough to show that 

ISB( h )  r AISB( h )  . 
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For this, use Taylor's theorem with integral remainder to obtain 

X ( h 2 / ~ 1 u ' 2 ~ ( u ' ) ( ' l- t'12f " ( x  - hu't') dt' du' dx) 

x / f " ( x- hut) f " ( x  - hu't') dx dt dt' du du' 

1 / 2  

x ( / f " ( x  - hut12d x / f M ( x- hu'ttI2dx) dt dt' du du' 

where we have used the Cauchy-Schwarz inequality and / ; ( I  - t )2= 1/2. 
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