The package morse
is devoted to the analysis of data from standard toxicity tests. It provides a simple workflow to explore/visualize a dataset, and compute estimations of risk assessment indicators. This document illustrates a typical use of morse
on survival and reproduction data, which can be followed step-by-step to analyze new datasets.
The following example shows all the steps to perform survival analysis on standard toxicity test data and to produce estimated values of the \(LC_x\). We will use a dataset of the library named cadmium2
, which contains both survival and reproduction data from a chronic laboratory toxicity test. In this experiment, snails were exposed to six concentrations of a metal contaminant (cadmium) during 56 days.
The data from a survival toxicity test should be gathered in a data.frame
with a specific layout. This is documented in the paragraph on survData
in the reference manual, and you can also inspect one of the datasets provided in the package (e.g., cadmium2
). First, we load the dataset and use the function survDataCheck
to check that it has the expected layout:
data(cadmium2)
survDataCheck(cadmium2)
## No message
The output ## No message
just informs that the dataset is well-formed.
survData
objectThe class survData
corresponds to survival data and is the basic layout used for the subsequent operations. Note that if the call to survDataCheck
reports no error (i.e., ## No message
), it is guaranteed that survData
will not fail.
dat <- survData(cadmium2)
head(dat)
## # A tibble: 6 x 6
## conc time Nsurv Nrepro replicate Ninit
## <dbl> <int> <int> <int> <dbl> <int>
## 1 0 0 5 0 1 5
## 2 0 3 5 262 1 5
## 3 0 7 5 343 1 5
## 4 0 10 5 459 1 5
## 5 0 14 5 328 1 5
## 6 0 17 5 742 1 5
The function plot
can be used to plot the number of surviving individuals as a function of time for all concentrations and replicates.
plot(dat, pool.replicate = FALSE)
Two graphical styles are available, "generic"
for standard R
plots or "ggplot"
to call package ggplot2
(default). If argument pool.replicate
is TRUE
, datapoints at a given time-point and a given concentration are pooled and only the mean number of survivors is plotted. To observe the full dataset, we set this option to FALSE
.
By fixing the concentration at a (tested) value, we can visualize one subplot in particular:
plot(dat, concentration = 124, addlegend = TRUE,
pool.replicate = FALSE, style ="generic")
We can also plot the survival rate, at a given time-point, as a function of concentration, with binomial confidence intervals around the data. This is achieved by using function plotDoseResponse
and by fixing the option target.time
(default is the end of the experiment).
plotDoseResponse(dat, target.time = 21, addlegend = TRUE)
Function summary
provides some descriptive statistics on the experimental design.
summary(dat)
##
## Number of replicates per time and concentration:
## time
## conc 0 3 7 10 14 17 21 24 28 31 35 38 42 45 49 52 56
## 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
## 53 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
## 78 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
## 124 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
## 232 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
## 284 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
##
## Number of survivors (sum of replicates) per time and concentration:
## 0 3 7 10 14 17 21 24 28 31 35 38 42 45 49 52 56
## 0 30 30 30 30 29 29 29 29 29 28 28 28 28 28 28 28 28
## 53 30 30 29 29 29 29 29 29 29 29 28 28 28 28 28 28 28
## 78 30 30 30 30 30 30 29 29 29 29 29 29 29 29 29 27 27
## 124 30 30 30 30 30 29 28 28 27 26 25 23 21 18 11 11 9
## 232 30 30 30 22 18 18 17 14 13 12 8 4 3 1 0 0 0
## 284 30 30 15 7 4 4 4 2 2 1 1 1 1 1 1 0 0
Now we are ready to fit a probabilistic model to the survival data, in order to describe the relationship between the concentration in chemical compound and survival rate at the target time. Our model assumes this latter is a log-logistic function of the former, from which the package delivers estimates of the parameters. Once we have estimated the parameters, we can then calculate the \(LC_x\) values for any \(x\). All this work is performed by the survFitTT
function, which requires a survData
object as input and the levels of \(LC_x\) we want:
fit <- survFitTT(dat,
target.time = 21,
lcx = c(10, 20, 30, 40, 50))
The returned value is an object of class survFitTT
providing the estimated parameters as a posterior1 distribution, which quantifies the uncertainty on their true value. For the parameters of the models, as well as for the \(LC_x\) values, we report the median (as the point estimated value) and the 2.5 % and 97.5 % quantiles of the posterior (as a measure of uncertainty, a.k.a. credible intervals). They can be obtained by using the summary
method:
summary(fit)
## Summary:
##
## The loglogisticbinom_3 model with a binomial stochastic part was used !
##
## Priors on parameters (quantiles):
##
## 50% 2.5% 97.5%
## b 1.000e+00 1.259e-02 7.943e+01
## d 5.000e-01 2.500e-02 9.750e-01
## e 1.227e+02 5.390e+01 2.793e+02
##
## Posteriors of the parameters (quantiles):
##
## 50% 2.5% 97.5%
## b 8.580e+00 4.023e+00 1.625e+01
## d 9.570e-01 9.099e-01 9.862e-01
## e 2.364e+02 2.098e+02 2.533e+02
##
## Posteriors of the LCx (quantiles):
##
## 50% 2.5% 97.5%
## LC10 1.831e+02 1.267e+02 2.139e+02
## LC20 2.012e+02 1.538e+02 2.261e+02
## LC30 2.142e+02 1.747e+02 2.350e+02
## LC40 2.255e+02 1.928e+02 2.436e+02
## LC50 2.364e+02 2.098e+02 2.533e+02
If the inference went well, it is expected that the difference between quantiles in the posterior will be reduced compared to the prior, meaning that the data were helpful to reduce the uncertainty on the true value of the parameters. This simple check can be performed using the summary function.
The fit can also be plotted:
plot(fit, log.scale = TRUE, adddata = TRUE, addlegend = TRUE)
This representation shows the estimated relationship between concentration of chemical compound and survival rate (orange curve). It is computed by choosing for each parameter the median value of its posterior. To assess the uncertainty on this estimation, we compute many such curves by sampling the parameters in the posterior distribution. This gives rise to the grey band, showing for any given concentration an interval (called credible interval) containing the survival rate 95% of the time in the posterior distribution. The experimental data points are represented in black and correspond to the observed survival rate when pooling all replicates. The black error bars correspond to a 95% confidence interval, which is another, more straightforward way to bound the most probable value of the survival rate for a tested concentration. In favorable situations, we expect that the credible interval around the estimated curve and the confidence interval around the experimental data largely overlap.
A similar plot is obtained with the style "generic"
:
plot(fit, log.scale = TRUE, style = "generic", adddata = TRUE, addlegend = TRUE)
Note that survFitTT
will warn you if the estimated \(LC_{x}\) lie outside the range of tested concentrations, as in the following example:
data("cadmium1")
doubtful_fit <- survFitTT(survData(cadmium1),
target.time = 21,
lcx = c(10, 20, 30, 40, 50))
## Warning: The LC50 estimation (model parameter e) lies outside the range of
## tested concentrations and may be unreliable as the prior distribution on
## this parameter is defined from this range !
plot(doubtful_fit, log.scale = TRUE, style = "ggplot", adddata = TRUE,
addlegend = TRUE)
In this example, the experimental design does not include sufficiently high concentrations, and we are missing measurements that would have a major influence on the final estimation. For this reason this result should be considered unreliable.
The fit can be further validated using so-called posterior predictive checks: the idea is to plot the observed values against the corresponding estimated predictions, along with their 95% credible interval. If the fit is correct, we expect to see 95% of the data inside the intervals.
ppc(fit)
In this plot, each black dot represents an observation made at a given concentration, and the corresponding number of survivors at target time is given by the value on the x-axis. Using the concentration and the fitted model, we can produce the corresponding prediction of the expected number of survivors at that concentration. This prediction is given by the y-axis. Ideally observations and predictions should coincide, so we’d expect to see the black dots on the points of coordinate \(Y = X\). Our model provides a tolerable variation around the predited mean value as an interval where we expect 95% of the dots to be in average. The intervals are represented in green if they overlap with the line \(Y=X\), and in red otherwise.
The steps for a TK-TD data analysis are absolutely analogous to what we described for the analysis at target time. Here the goal is to estimate the relationship between chemical compound concentration, time and survival rate.
Here is a typical session to analyse concentration-dependent time-course data using the so-called “Stochastic Death” (SD) model:
# (1) load dataset
data(propiconazole)
# (2) check structure and integrity of the dataset
survDataCheck(propiconazole)
## No message
# (3) create a `survData` object
dat <- survData(propiconazole)
# (4) represent the number of survivors as a function of time
plot(dat, pool.replicate = FALSE)
# (5) check information on the experimental design
summary(dat)
##
## Number of replicates per time and concentration:
## time
## conc 0 1 2 3 4
## 0 1 1 1 1 1
## 8 2 2 2 2 2
## 12 2 2 2 2 2
## 14 2 2 2 2 2
## 18 2 2 2 2 2
## 24 2 2 2 2 2
## 29 2 2 2 2 2
## 36 2 2 2 2 2
##
## Number of survivors (sum of replicates) per time and concentration:
## 0 1 2 3 4
## 0 10 9 9 9 9
## 8 20 20 20 20 19
## 12 20 19 19 19 17
## 14 20 19 19 18 16
## 18 21 21 20 16 16
## 24 20 17 6 2 1
## 29 20 11 4 0 0
## 36 20 11 1 0 0
To fit the Stochastic Death model, we have to specify the model_type
as "SD"
:
# (6) fit the TK-TD model SD
fit_cstSD <- survFit(dat, quiet = TRUE, model_type = "SD")
Then, the summary
function provides parameters estimates as medians and 95% credible intervals.
# (7) summary of parameters estimates
summary(fit_cstSD)
## Summary:
##
## Priors of the parameters (quantiles) (select with '$Qpriors'):
##
## parameters median Q2.5 Q97.5
## kd 4.157e-02 2.771e-04 6.236e+00
## hb 1.317e-02 2.708e-04 6.403e-01
## z 1.697e+01 8.121e+00 3.546e+01
## kk 5.555e-03 1.016e-05 3.037e+00
##
## Posteriors of the parameters (quantiles) (select with '$Qposteriors'):
##
## parameters median Q2.5 Q97.5
## kd 2.214e+00 1.614e+00 3.565e+00
## hb 3.042e-02 1.454e-02 5.534e-02
## z 1.706e+01 1.561e+01 1.883e+01
## kk 1.247e-01 7.929e-02 1.906e-01
The plot
function provides a representation of the fitting for each replicates
plot(fit_cstSD)
Original data can be added by using the option adddata = TRUE
plot(fit_cstSD, adddata = TRUE)
A posterior predictive check is also possible using function ppc
:
ppc(fit_cstSD)
Compared to the target time analysis, TK-TD modelling allows to compute and plot the lethal concentration for any x percentage and at any time-point. The chosen time-point can be specified with time_LCx
, by default the maximal time-point in the dataset is used.
# LC50 at the maximum time-point:
LCx_cstSD <- LCx(fit_cstSD, X = 50)
plot(LCx_cstSD)
# LC50 at time = 2
LCx(fit_cstSD, X = 50, time_LCx = 2) %>% plot()
## Note the use of the pipe operator, `%>%`, which is a powerful tool for clearly expressing a sequence of multiple operations.
## For more information on pipes, see: http://r4ds.had.co.nz/pipes.html
Warning messages are returned when the range of concentrations is not appropriated for one or more LCx calculation(s).
# LC50 at time = 15
LCx(fit_cstSD, X = 50, time_LCx = 15) %>% plot()
## Warning in pointsLCx(df_dose, X_prop): No 95%inf for LC 50 in the range of
## concentrations under consideration: [ 0 ; 36 ]
## Warning: Removed 1 rows containing missing values (geom_point).
The Individual Tolerance (IT) model is a variant of TK-TD survival analysis. It can also be used with morse
as demonstrated hereafter. For the IT model, we have to specify the model_type
as "IT"
:
fit_cstIT <- survFit(dat, quiet = TRUE, model_type = "IT")
We can first get a summary of the estimated parameters:
summary(fit_cstIT)
## Summary:
##
## Priors of the parameters (quantiles) (select with '$Qpriors'):
##
## parameters median Q2.5 Q97.5
## kd 4.157e-02 2.771e-04 6.236e+00
## hb 1.317e-02 2.708e-04 6.403e-01
## alpha 1.697e+01 8.121e+00 3.546e+01
## beta 1.000e+00 1.259e-02 7.943e+01
##
## Posteriors of the parameters (quantiles) (select with '$Qposteriors'):
##
## parameters median Q2.5 Q97.5
## kd 7.358e-01 5.408e-01 9.565e-01
## hb 1.919e-02 4.672e-03 4.370e-02
## alpha 1.798e+01 1.532e+01 2.050e+01
## beta 6.858e+00 4.991e+00 9.268e+00
# OR
fit_cstIT$estim.par
## parameters median Q2.5 Q97.5
## 1 kd 0.73583144 0.540842905 0.95651945
## 2 hb 0.01918826 0.004672079 0.04369839
## 3 alpha 17.97678277 15.321918722 20.50171668
## 4 beta 6.85759549 4.991038961 9.26827860
plot(fit_cstIT, adddata= TRUE)
ppc(fit_cstIT)
# LC50 at the maximum time-point:
LCx_cstIT <- LCx(fit_cstIT, X = 50)
plot(LCx_cstIT)
# LC50 at time = 2
LCx(fit_cstIT, X = 50, time_LCx = 2) %>% plot()
# LC50 at time = 15
LCx(fit_cstIT, X = 50, time_LCx = 15) %>% plot()
Here is a typical session fitting an SD or an IT model for a dataset under time-variable exposure scenario.
# (1) load dataset
data("propiconazole_pulse_exposure")
# (2) check structure and integrity of the dataset
survDataCheck(propiconazole_pulse_exposure)
## No message
# (3) create a `survData` object
dat <- survData(propiconazole_pulse_exposure)
# (4) represent the number of survivor as a function of time
plot(dat)
# (5) check information on the experimental design
summary(dat)
##
## Occurence of 'replicate' for each 'time':
## time
## replicate 0 0.96 1 1.96 2 2.96 3 3.96 4 4.96 4.97 5 5.96 6 6.96 7 7.96
## varA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## varB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## varC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## varControl 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0
## time
## replicate 8 9 9.96 10
## varA 1 1 1 1
## varB 1 1 1 1
## varC 1 1 1 1
## varControl 1 1 0 1
##
## Number of survivors per 'time' and 'replicate':
## 0 0.96 1 1.96 2 2.96 3 3.96 4 4.96 4.97 5 5.96 6 6.96 7
## varA 70 NA 50 NA 49 NA 49 NA 45 NA NA 45 NA 45 NA 42
## varB 70 NA 57 NA 53 NA 52 NA 50 NA NA 46 NA 45 NA 44
## varC 70 NA 70 NA 69 NA 69 NA 68 NA NA 66 NA 65 NA 64
## varControl 60 NA 59 NA 58 NA 58 NA 57 NA NA 57 NA 56 NA 56
## 7.96 8 9 9.96 10
## varA NA 38 37 NA 36
## varB NA 40 38 NA 37
## varC NA 60 55 NA 54
## varControl NA 56 55 NA 54
##
## Concentrations per 'time' and 'replicate':
## 0 0.96 1 1.96 2 2.96 3 3.96 4 4.96 4.97 5
## varA 30.56 27.93 0.00 0.26 NA 0.21 27.69 26.49 0.00 0.18 0.18 NA
## varB 28.98 27.66 0.00 0.27 NA 0.26 0.26 0.26 0.26 0.25 0.25 NA
## varC 4.93 4.69 4.69 4.58 NA 4.58 4.58 4.54 4.54 4.58 4.71 NA
## varControl 0.00 NA 0.00 NA 0 NA 0.00 NA 0.00 NA NA 0
## 5.96 6 6.96 7 7.96 8 9 9.96 10
## varA 0.18 NA 0.14 0.14 0.18 0.18 0.00 0.00 0.00
## varB 0.03 NA 0.00 26.98 26.28 0.00 0.12 0.12 0.12
## varC 4.71 NA 4.60 4.60 4.59 4.59 4.46 4.51 4.51
## varControl NA 0 NA 0.00 NA 0.00 0.00 NA 0.00
# (6) fit the TK-TD model SD
fit_varSD <- survFit(dat, quiet = TRUE, model_type = "SD")
## Warning: The estimation of the dominant rate constant (model parameter kd) lies
## outside the range used to define its prior distribution which indicates that this
## rate is very high and difficult to estimate from this experiment !
## Warning: The estimation of Non Effect Concentration threshold (NEC)
## (model parameter z) lies outside the range of tested concentration
## and may be unreliable as the prior distribution on this parameter is
## defined from this range !
# (7) summary of the fit object
summary(fit_varSD)
## Summary:
##
## Priors of the parameters (quantiles) (select with '$Qpriors'):
##
## parameters median Q2.5 Q97.5
## kd 2.683e-02 1.119e-04 6.434e+00
## hb 8.499e-03 1.094e-04 6.606e-01
## z 9.154e-01 3.212e-02 2.608e+01
## kk 5.080e-02 4.342e-06 5.942e+02
##
## Posteriors of the parameters (quantiles) (select with '$Qposteriors'):
##
## parameters median Q2.5 Q97.5
## kd 3.823e+00 1.604e+00 3.219e+01
## hb 2.309e-02 1.613e-02 3.115e-02
## z 2.097e+01 1.820e+00 3.539e+01
## kk 7.935e-02 5.109e-03 7.046e-01
plot(fit_varSD)
ppc(fit_varSD)
# LC50 at time = 4
LCx_varSD <- LCx(fit_varSD, X = 50, time_LCx = 4, conc_range = c(0,100))
plot(LCx_varSD)
# LC50 at time = 30
LCx(fit_varSD, X = 50, time_LCx = 30, conc_range = c(0,100)) %>% plot()
## Warning in pointsLCx(df_dose, X_prop): No 95%inf for LC 50 in the range of
## concentrations under consideration: [ 0 ; 100 ]
## Warning: Removed 1 rows containing missing values (geom_point).
# fit a TK-TD model IT
fit_varIT <- survFit(dat, quiet = TRUE, model_type = "IT")
## Warning: The estimation of the dominant rate constant (model parameter kd) lies
## outside the range used to define its prior distribution which indicates that this
## rate is very high and difficult to estimate from this experiment !
## Warning: The estimation of log-logistic median (model parameter alpha)
## lies outside the range of tested concentration and may be unreliable as
## the prior distribution on this parameter is defined from this range !
# (7) summary of the fit object
summary(fit_varIT)
## Summary:
##
## Priors of the parameters (quantiles) (select with '$Qpriors'):
##
## parameters median Q2.5 Q97.5
## kd 2.683e-02 1.119e-04 6.434e+00
## hb 8.499e-03 1.094e-04 6.606e-01
## alpha 9.154e-01 3.212e-02 2.608e+01
## beta 1.000e+00 1.259e-02 7.943e+01
##
## Posteriors of the parameters (quantiles) (select with '$Qposteriors'):
##
## parameters median Q2.5 Q97.5
## kd 3.790e-01 5.562e-04 1.680e+01
## hb 2.413e-02 1.604e-02 3.296e-02
## alpha 1.733e+01 2.021e-01 3.773e+01
## beta 2.152e+00 4.776e-01 2.158e+01
plot(fit_varIT)
ppc(fit_varIT)
# LC50 at time = 4
LCx(fit_varIT, X = 50, time_LCx = 4, conc_range = c(0,200)) %>% plot()
# LC50 at time = 30
LCx(fit_varIT, X = 50, time_LCx = 30, conc_range = c(0,100)) %>% plot()
## Warning in pointsLCx(df_dose, X_prop): No median for LC 50 in the range of
## concentrations under consideration: [ 0 ; 100 ]
## Warning in pointsLCx(df_dose, X_prop): No 95%inf for LC 50 in the range of
## concentrations under consideration: [ 0 ; 100 ]
## Warning: Removed 2 rows containing missing values (geom_point).
The steps for reproduction data analysis are absolutely analogous to what we described for survival data. Here, the aim is to estimate the relationship between the chemical compound concentration and the reproduction rate per individual-day.
Here is a typical session:
# (1) load dataset
data(cadmium2)
# (2) check structure and integrity of the dataset
reproDataCheck(cadmium2)
## No message
# (3) create a `reproData` object
dat <- reproData(cadmium2)
# (4) represent the cumulated number of offspring as a function of time
plot(dat, concentration = 124, addlegend = TRUE, pool.replicate = FALSE)
# (5) represent the reproduction rate as a function of concentration
plotDoseResponse(dat, target.time = 28)
# (6) check information on the experimental design
summary(dat)
##
## Number of replicates per time and concentration:
## time
## conc 0 3 7 10 14 17 21 24 28
## 0 6 6 6 6 6 6 6 6 6
## 53 6 6 6 6 6 6 6 6 6
## 78 6 6 6 6 6 6 6 6 6
## 124 6 6 6 6 6 6 6 6 6
## 232 6 6 6 6 6 6 6 6 6
## 284 6 6 6 6 6 6 6 6 6
##
## Number of survivors (sum of replicates) per time and concentration:
## 0 3 7 10 14 17 21 24 28
## 0 30 30 30 30 29 29 29 29 29
## 53 30 30 29 29 29 29 29 29 29
## 78 30 30 30 30 30 30 29 29 29
## 124 30 30 30 30 30 29 28 28 27
## 232 30 30 30 22 18 18 17 14 13
## 284 30 30 15 7 4 4 4 2 2
##
## Number of offspring (sum of replicates) per time and concentration:
## 0 3 7 10 14 17 21 24 28
## 0 0 1659 1587 2082 1580 2400 2069 2316 1822
## 53 0 1221 1567 1710 1773 1859 1602 1995 1800
## 78 0 1066 2023 1752 1629 1715 1719 1278 1717
## 124 0 807 1917 1423 567 383 568 493 605
## 232 0 270 1153 252 30 0 37 28 46
## 284 0 146 275 18 1 0 0 0 0
# (7) fit a concentration-effect model at target-time
fit <- reproFitTT(dat, stoc.part = "bestfit",
target.time = 21,
ecx = c(10, 20, 30, 40, 50),
quiet = TRUE)
summary(fit)
## Summary:
##
## The loglogistic model with a Gamma Poisson stochastic part was used !
##
## Priors on parameters (quantiles):
##
## 50% 2.5% 97.5%
## b 1.000e+00 1.259e-02 7.943e+01
## d 1.830e+01 1.554e+01 2.107e+01
## e 1.488e+02 7.902e+01 2.804e+02
## omega 1.000e+00 1.585e-04 6.310e+03
##
## Posteriors of the parameters (quantiles):
##
## 50% 2.5% 97.5%
## b 3.830e+00 2.839e+00 5.630e+00
## d 1.779e+01 1.550e+01 2.017e+01
## e 1.366e+02 1.140e+02 1.714e+02
## omega 1.442e+00 8.287e-01 2.799e+00
##
## Posteriors of the ECx (quantiles):
##
## 50% 2.5% 97.5%
## EC10 7.681e+01 5.436e+01 1.139e+02
## EC20 9.503e+01 7.184e+01 1.323e+02
## EC30 1.094e+02 8.633e+01 1.463e+02
## EC40 1.228e+02 1.001e+02 1.585e+02
## EC50 1.366e+02 1.140e+02 1.714e+02
plot(fit, log.scale = TRUE, adddata = TRUE,
cicol = "orange",
addlegend = TRUE)
ppc(fit)
As in the survival analysis, we assume that the reproduction rate per individual-day is a log-logistic function of the concentration. More details and parameter signification can be found in the modelling vignette.
For reproduction analyses, we compare one model which neglects the inter-individual variability (named “Poisson”) and another one which takes it into account (named “gamma Poisson”). You can choose either one or the other with the option stoc.part
. Setting this option to "bestfit"
, you let reproFitTT
decides which models fits the data best. The corresponding choice can be seen by calling the summary
function:
summary(fit)
## Summary:
##
## The loglogistic model with a Gamma Poisson stochastic part was used !
##
## Priors on parameters (quantiles):
##
## 50% 2.5% 97.5%
## b 1.000e+00 1.259e-02 7.943e+01
## d 1.830e+01 1.554e+01 2.107e+01
## e 1.488e+02 7.902e+01 2.804e+02
## omega 1.000e+00 1.585e-04 6.310e+03
##
## Posteriors of the parameters (quantiles):
##
## 50% 2.5% 97.5%
## b 3.844e+00 2.812e+00 5.608e+00
## d 1.774e+01 1.551e+01 2.015e+01
## e 1.369e+02 1.139e+02 1.699e+02
## omega 1.431e+00 8.278e-01 2.783e+00
##
## Posteriors of the ECx (quantiles):
##
## 50% 2.5% 97.5%
## EC10 7.716e+01 5.390e+01 1.135e+02
## EC20 9.523e+01 7.158e+01 1.315e+02
## EC30 1.097e+02 8.612e+01 1.452e+02
## EC40 1.231e+02 9.979e+01 1.578e+02
## EC50 1.369e+02 1.139e+02 1.699e+02
When the gamma Poisson model is selected, the summary shows an additional parameter called omega
, which quantifies the inter-individual variability (the higher omega
the higher the variability).
In morse
, reproduction datasets are a special case of survival datasets: a reproduction dataset includes the same information as in a survival dataset plus the information on reproduction outputs. For that reason, the S3 class reproData
inherits from the class survData
, which means that any operation on a survData
object is legal on a reproData
object. In particular, in order to use the plot function related to the survival analysis on a reproData
object, we can use survData
as a conversion function first:
dat <- reproData(cadmium2)
plot(survData(dat))
In Bayesian inference, the parameters of a model are estimated from the data starting from a so-called prior, which is a probability distribution representing an initial guess on the true parameters, before seing the data. The posterior distribution represents the uncertainty on the parameters after seeing the data and combining them with the prior. To obtain a point estimate of the parameters, it is typical to compute the mean or median of the posterior. We can quantify the uncertainty by reporting the standard deviation or an inter-quantile distance from this posterior distribution.↩