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Introduction

This presentation focuses on unidimensional and multidimensional item
response theory (UIRT and MIRT, respectively) models that can be
estimated with the mirt (Chalmers, 2012) package. In general, I will go
over:

What IRT is, why it exists, and how it relates to other latent
variable methods such as factor analysis

Several types of IRT models and how these can be generalized to
more than one dimension

How to fit UIRT and MIRT models to psychological test data with
the mirt package

Useful model comparison techniques, computing latent trait scores
and item/person fit statistics, plotting item and test probability
curves and information functions, and

(time permitting) Explore some more advanced methods such as
multiple group analysis for detecting DIF, user defined prior
parameter distributions and starting values, linear parameter
constraints, Wald tests, etc.
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Classical Test Theory

Classical test theory was largely developed by Spearman, Thurstone,
Kuder, Guttman, and Cronbach, as well as a few others. In general to
determine the properties of a scale the following aspects were studied
(almost entirely by linear regression theory):

1) Estimating the global reliability of a test based on how homogeneous
the items are with each other (α, split-half), and using this to define
the global standard error of measurement

2) Use the total score of a test as an estimate of ability/‘True score’
(X = T + E ) and studying how each individual item relates to this
total score

3) Determining the number of linearly related latent factors are
manifested in a test (via factor analysis or structure equation
modeling), and try to reduce the number of factors down to 1
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Classical Test Theory Problems

Standard error applies to everyone in the population (10 ± 2, 5 ± 2)

To compare tests to each other forms must be parallel (equal item
difficulties, same number of items, etc.)

Individual scores are understood by comparing the person to the
group (make total into z or T -scores)

Mixed item formats are difficult to compare (multiple choice vs
true-false) and become ambiguous when combined for a total score

Factor analysis on binary items leads to “difficulty” artifact
dimensions

Change scores cannot be meaningfully compared when initial score
levels differ
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Item Response Theory

Item response theory (IRT) is a set of latent variable techniques
specifically designed to model the interaction between a subject’s
‘ability’ and item level stimuli (difficulty, guessing, etc.)

Focus is on the pattern of responses rather than on composite
variables and linear regression theory, and emphasises how responses
can be thought of in probabilistic terms

Much larger emphases on the error of measurement for each test
subject rather than a global index of reliability/measurement error

Widely used in educational and psychological research to study
latent variable constructs other than ability (e.g., depression,
personality, motivation)

Most common IRT models are still unidimensional, meaning they relate
the items to only one latent trait, although multidimensional IRT models
are becoming more popular
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Unidimensional IRT models (dichotomous)

Traditional IRT models were developed for modeling how a subject’s
‘ability’ (θ) was related to answering a test item correctly (0 = incorrect,
1 = correct) given item level proprieties.

P(x = 1; θ, a, d) =
1

1 + exp (−D(aθ + d))

This equation represents the 2 parameter logistic model (2PL). The D
parameter is a constant used to transform the overall metric to make the
model closer to traditional factor analysis, commonly taken to be 1.702.

Given some ability level, θ, the probability of correct endorsement is
related to the item easiness (d) and it’s slope/discrimination (a). It
may be easier to understand these relationships in the canonical
form: log(P) ≈ aθ + d

This model is tied very closely to factor analysis on tetrachoric
correlations, and has an analogous relationship to multiple factor
analysis when the number of factors is greater than one (i.e.,
multidimensional)
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Unidimensional plots (2PL)
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Figure: Item response curves when varying the slope and intercept parameters
in the 2PL model (not generated from mirt)
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Unidimensional IRT models (dichotomous, cont.)

Further generalization of the 2PL model are also possible to
accommodate for other psychological phenomenon such as guessing or
ceiling effects. For example,

P(x = 1; θ, a, d , γ, δ) = γ +
(δ − γ)

1 + exp (−1.702(aθ + d))

This is the (maybe not so popular, but still pretty cool) four parameter
logistic model, which when specific constraints are applied reduces to the
3PL, 2PL, 1PL, and Rasch model.

Given some ability level, θ, the probability of correct endorsement is
related to the item easiness (d), discrimination (a), probability of
randomly guessing (γ), and probability of randomly answering
incorrectly (δ).

For psychological questionnaires the lower and upper bounds often
have no rational and are taken to be 0 and 1, respectively (though in
clinical instruments they may be justified).
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Unidimensional plots (4PL)
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Figure: Item response curves when varying the lower and upper bound
parameters in the 4PL model (not generated from mirt)
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Unidimensional IRT models (polytomous)

Several different kinds of polytomous item response models exist for
ordinal, rating scale, generalized partial credit, and nominal models; all of
which extend to the multidimensional case (some of which require some
initially counterintuitive parameterizations). Likert scales, for example,
are often modeled by ordinal or rating scale models. The ordinal/graded
response model can be expressed as:

P(xk = k ; θ, φ) = P(x ≥ k) − P(x ≥ k + 1)

For the generalized partial credit model the dk values are treated as fixed
and ordered values from 0 : (k − 1).

P(x = k ; θ, ψ) =
exp(−1.702[akk(aθ) + dk ])∑k
j=1 exp(−1.702[akk(aθ) + dk ])
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Unidimensional plots (polytomous)
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Figure: Probability curves for ordinal (left), generalized partial credit (middle),
and nominal (right) response models
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Item and test information

Item and test information are very important concepts in IRT and form the
building blocks of more advanced applications such as computerized adaptive
testing (CAT). The information in a test depends on the items used as well as
the ability of the subject, and is inversely related to reliability. IRT advances
the concept of reliability by treating it as a function of the θ values

For example, easy items and tests tend to tell us very little about
individuals in the upper end of the θ distribution (θEinstein v.s. θHawking ) but
can tell us something about lower ability subjects (whether
θLarry < θCurly < θMoe).

Formally this information function (dependent on θ) is defined as:

I (θ) =
∑
k=1

(
(∂P/∂θ)2

P
− ∂2P/∂θ

)
Test information is simply the sum over each item information function
T (θ) =

∑
i=1 Ii (θ). CAT applications often stop when the information

reaches a pre-specified tolerance (since SE(θ) =
√

T (θ)−1). These ideas
also readily generalize to multiple latent traits
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Ability estimation

Three algorithms are typically used to obtain estimates of latent trait
values and their standard errors:

1) Maximum likelihood (ML) – Maximize likelihood vector w.r.t. θ
directly with iterative methods. Doesn’t allow for all/none patterns

2) Maximum a posteriori (MAP) – Given a prior (typically [multivariate]
normal) maximize the posterior distribution. Requires iterative
methods for each response pattern but works for all patterns

3) Expected a posteriori (EAP) – Similar to MAP but is not iterative and
often a consequence of the estimation process (mean estimate rather
than mode). Most often used method

4) Weighted Likelihood Estimation (WLE) – An iterative estimate of the
latent trait that weighs the scores based on how much information is
available from the test (often falls between ML and MAP)
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Multidimensional IRT models

Multidimensional IRT models replace the single θ and a values with
vectors θ and a, respectively. This is analogous to the transition from
zero-order regression to multiple regression (expect that the predictors
are latent and non-linear).

P(x = 1;θ, a, d , γ, δ) = γ +
(δ − γ)

1 + exp [−1.702(a′θ + d)]
.

This model has a very intimate relationship to nonlinear factor analysis
when γ = 0 and δ = 1, (since log(P) ≈ a′θ + d) and is often called a
‘compensatory’ model for the relationships between latent trait scores.

Similar relationships exists for the generalized partial credit, graded,
and nominal models, but other special types of models that don’t
follow these trends (e.g., partially compensatory,
polynomial/exponential related traits) are also possible.
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Multidimensional plots

Item 1 Trace

−4

−2

0

2

4

−4

−2

0

2

4

0.2

0.4

0.6

0.8

θ1

θ2

P(θ)

0.0

0.2

0.4

0.6

0.8

1.0

Item 6 Trace

−4

−2

0

2

4

−4

−2

0

2

4

0.2

0.4

0.6

0.8

θ1

θ2

P(θ)

0.0

0.2

0.4

0.6

0.8

1.0

Item 5 Trace

−4

−2

0

2

4

−4

−2

0

2

4

0.2

0.4

0.6

0.8

θ1

θ2

P(θ)

0.0

0.2

0.4

0.6

0.8

1.0

Item 4 Trace

−4

−2

0

2

4

−4

−2

0

2

4

0.2

0.4

0.6

0.8

θ1

θ2

P(θ)

0.0

0.2

0.4

0.6

0.8

1.0

Figure: Probability curves for multidimensional 2PL and ordinal (top),
generalized partial credit and nominal models (bottom)
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Model estimation

IRT item parameters are typically estimated by maximizing the observed
likelihood

L(Ψ; X) =
N∏
i=1

[∫ ∞
−∞

· · ·
∫ ∞
−∞

∫ ∞
−∞

L`(x;Ψ,θ)g(θ)dθ

]
.

Maximizing the above equation directly quickly becomes infeasible
due to the number of parameters estimated

Instead an EM algorithm is often employed to capitalize on a more
manageable complete-data likelihood (creating artificial tables of
number of participants with given response patterns)

Effectively this approach lessens the problem of maximizing all the
parameters at each iteration, but the integrals must still be evaluated
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Unfortunately . . .

Every new θ estimated requires a new integral to be evaluated in the
observed likelihood.

The difficult task is to evaluate the likelihood numerically, which
requires integration by quadrature (e.g., Gauss-Hermite) or
simulation methods

Quadrature techniques often become intractable as the dimensions
increase since the number of quadratures required increases
exponentially

Bayesian methods have been used to circumvent this integration
problem at the cost of longer estimation times and often high
computation demand
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Estimation (cont.)

An alternative approach is to capitalize on the complete-data likelihood
function directly

L(Ψ; X,θ) =
N∏
i=1

L`(xi ;Ψ,θi )g(θi ;µ,Σ).

What is required here is that we obtain ‘known’ values for θ and
maximize this function instead

The Metropolis-Hastings Robbins-Monro (MH-RM) algorithm works
well in this situation and is surprisingly fast and accurate

MH sampler to obtain θ values, treat values as ‘known’ and update
parameters using standard numerical optimization methods (e.g.,
Newton-Raphson), and use Robbins-Monro method help remove the
sampling error borne from the MH draws

mirt package tip

I recommend using the MH-RM over the EM when the number of
dimensions in the model becomes higher than 3–4
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mirt package

mirt package
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Why the mirt package?

1) Multidimensional IRT functions in R offered limited features, were
slow, and sometimes computationally demanding (e.g., ltm,
MCMCpack)

2) Wanted an open source version of TESTFACT and POLYFACT which
would easily integrate with useful R packages (e.g., plink,
GPArotation)

3) Also wanted to utilize the MH-RM algorithm (Cai, 2010) for higher
dimensional and confirmatory IRT models (analogous to confirmatory
factor analysis in SEM)

4) Wanted to fit more general item response models (e.g., nominal,
generalized partial credit, partially compensatory, polynomial related
traits, etc.)

5) Wanted multiple group estimation, which is important for testing the
bias in testing instruments. Existed in proprietary software (even then,
only in a select few) but couldn’t work for MIRT models

6) Finally, for modelling fixed and random predictor variables directly in
IRT models
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Functions

The mirt package consists of 5 estimation functions: mirt(), bfactor(),
confmirt(), multipleGroup(), and mixedmirt(). All of these function can
be used to model any mixture of dichotomous and polytomous items.

mirt() uses a fixed quadrature estimation method (Bock & Aitkin, 1981)
for obtaining ML parameter estimates with the EM algorithm. The syntax
used is similar to the standard factor analysis routines in R, but also allows
for confmirt.model() defined objects

bfactor() uses dimension reduction algorithm for confirmatory bi-factor
models described by Gibbons, Darell, Hedeker, et al. (2007). These have
the benefit of remaining computationally efficient regardless of the
number of specific factors

confmirt() uses the MH-RM algorithm for exploratory and confirmatory
IRT models, which may also include non-compensatory item types and
polynomial factor relationships

multipleGroup() uses the MH-RM or EM algorithm to perform multiple
group estimation useful for testing the invariance of parameters between
potentially heterogeneous groups

mixedmirt() uses the MH-RMalgorithm to estimate fixed or random
effect covariates at the item or person level (e.g., LLTM)
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Functions (cont.)

Some useful generic functions which work on the returned estimated
objects:

coef() and summary() – extract unstandardized and standardized
(i.e., factor loadings) coefficients, respectively

plot() – two- and three-dimensional probability and information
plots for item bundles

anova() – comparison between nested models with χ2, AIC, BIC,
etc.

residuals() and fitted() – linear dependence or pattern based
residuals

itemplot() – plots individual item response curves

fscores() – compute EAP, MAP, WLE, or ML factor scores

itemfit() – Z , χ2, infit, and outfit statistics to judge item fit

personfit() – Z , infit, and outfit for detecting person misfit

imputeMissing() – impute plausible responses given θ̂

read.mirt() – convert models to objects usable by the plink

package
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Possible MIRT models

From the mirt documentation:

itemtype

type of items to be modeled, declared as a vector for each item or a
single value which will be repeated globally. The NULL default assumes
that the items follow a graded or 2PL structure, however they may be
changed to the following: ’Rasch’, ’1PL’, ’2PL’, ’3PL’, ’3PLu’, ’4PL’,
’graded’, ’grsm’, ’gpcm’, ’rsm’, ’nominal’, ’mcm’, ’PC2PL’, and ’PC3PL’,
for the Rasch/partial credit, 1 and 2 parameter logistic, 3 parameter
logistic (lower asymptote and upper), 4 parameter logistic, graded
response model, rating scale graded response model, Rasch rating scale,
generalized partial credit model, nominal model, multiple choice model,
and 2-3PL partially compensatory model, respectively

See ?mirt for more details.
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Running example

To demonstrate some of the features in mirt I’ve constructed a simple
dataset of 6 items consisting of 2PL, ordinal, gpcm, and nominal item
models with an orthogonal bi-factor structure (one general factor that
affects all items + specific item factors that form a Thurstonian ‘simple
structure’). This dataset was used to generate the previous figures as well
and came from the mirt function simdata().

> cat(itemtype)

## 2PL 2PL 2PL nominal gpcm graded

> head(dat)

## Item_1 Item_2 Item_3 Item_4 Item_5 Item_6

## [1,] 0 0 0 1 1 2

## [2,] 0 0 0 1 1 1

## [3,] 0 1 0 1 1 2

## [4,] 0 0 0 1 1 2

## [5,] 0 1 0 1 1 2

## [6,] 1 1 0 1 0 3



Introduction IRT models IRT components mirt package Advanced features Future developments

mirt() estimation

> # one factor

> mixedmod <- mirt(dat, 1, itemtype = itemtype)

> # two factor (exploratory)

> mixedmod2 <- mirt(dat, 2, itemtype = itemtype)

> mixedmod

##

## Call:

## mirt(data = dat, model = 1, itemtype = itemtype)

##

## Full-information item factor analysis with 1 factors

## Converged in 14 iterations with 40 quadrature.

## Log-likelihood = -13986

## AIC = 28004

## AICc = 28009

## BIC = 28105

## SABIC = 28054

## G^2 = 266.3, df = 98, p = 0

## TLI = 0.896, RMSEA = 0.021
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Estimation times

Subroutine 2-factor 3-factor 4-factor

mirt() 4.2 9.2 128.8

ltm() 1353.1 — —

TESTFACT 9.6 175.3 946.3

confmirt() 117.5 172.9 202.1

MCMCirtKd() 2150.7 2368.6 2479.5

Table: Estimation times in seconds for three factor population model. See
Chalmers (2012) for more detail.
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summary()

> summary(mixedmod2, rotate = "oblimin", suppress = 0.3)

##

## Rotation: oblimin

##

## Rotated factor loadings:

##

## F_1 F_2 h2

## Item_1 0.654 NA 0.485

## Item_2 0.532 NA 0.261

## Item_3 0.677 NA 0.439

## Item_4 NA -0.526 0.391

## Item_5 NA -0.585 0.281

## Item_6 NA -0.588 0.365

##

## Rotated SS loadings: 1.197 0.97

##

## Factor correlations:

##

## F_1 F_2

## F_1 1.000 -0.642

## F_2 -0.642 1.000
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plot() and itemplot()

Confidence envelopes can be included if the information matrix was
computed.

> itemplot(mixedmod, item = 1, CE = TRU)

> itemplot(mixedmod, item = 1, type = "info", CE = TRUE)

> plot(mixedmod)
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fscores()

EAP, MAP, WLE, and ML factor scores available for all estimated
objects.

> tabscores <- fscores(mixedmod)

##

## Method: EAP

##

## Empirical Reliability:

## F1

## 0.6012

> head(tabscores)

## Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Freq F1 SE_F1

## [1,] 0 0 0 1 1 2 102 -1.03790 0.6900

## [2,] 0 0 0 1 1 1 14 -1.50165 0.7437

## [3,] 0 1 0 1 1 2 474 -0.64624 0.6647

## [4,] 1 1 0 1 0 3 11 -0.01693 0.6202

## [5,] 0 1 1 1 1 3 344 0.21448 0.5987

## [6,] 1 1 1 3 1 3 240 1.50989 0.6160
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residuals()

> residuals(mixedmod2)

## LD matrix (lower triangle) and standardized values:

## Item_1 Item_2 Item_3 Item_4 Item_5 Item_6

## Item_1 NA 0.007 0.006 0.009 0.009 0.007

## Item_2 -0.171 NA 0.007 0.004 0.017 0.015

## Item_3 0.137 0.172 NA 0.004 0.014 0.002

## Item_4 0.308 -0.055 0.071 NA 0.008 0.007

## Item_5 -0.342 -1.171 0.767 -0.259 NA 0.019

## Item_6 0.209 0.862 0.025 0.196 1.483 NA

>

> # for pattern based residuals

> head(patresid <- residuals(mixedmod, restype = "exp"))

## Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Freq exp res

## 1 0 0 0 1 1 2 102 80.69 2.463

## 2 0 0 0 1 1 1 14 19.44 -1.201

## 3 0 1 0 1 1 2 474 498.95 -0.924

## 4 1 1 0 1 0 3 11 13.18 -0.572

## 5 0 1 1 1 1 3 344 385.32 -1.941

## 6 1 1 1 3 1 3 240 225.78 1.084
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itemfit() and personfit()

Values for detecting peculiar response patterns (e.g., someone answers all
the hard questions right but easy ones wrong). Same for items, but could
also also calculate a χ2 test and plot the fitted values.

> pfit <- personfit(mixedmod)

> print(pfit[1:3, ])

## Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Zh

## 1 0 0 0 1 1 2 -0.1218

## 2 0 0 0 1 1 1 -0.8980

## 3 0 1 0 1 1 2 0.9904

> ifit <- itemfit(mixedmod, X2 = TRUE)

> print(ifit[1:3, ])

## item Zh df X2

## 1 Item_1 6.0559 18 93.71

## 2 Item_2 0.5401 18 43.83

## 3 Item_3 15.1659 18 286.73
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Empirical plot

> itemfit(mixedmod, empirical.plot = 2)

> itemfit(mixedmod, empirical.plot = 4)
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bfactor() estimation

> # specify where the specific factor load

> sp <- c(1, 1, 1, 2, 2, 2)

> bfactor.mod <- bfactor(dat, sp, itemtype, SE = TRUE)

> coef(bfactor.mod)

## $Item_1

## a1 a2 a3 d g u

## pars 0.870 0.438 0 -1.023 0 1

## SE 0.034 0.032 NA 0.032 NA NA

##

## $Item_2

## a1 a2 a3 d g u

## pars 0.478 0.368 0 1.562 0 1

## SE 0.039 0.038 NA 0.043 NA NA

##

## $Item_3

## a1 a2 a3 d g u

## pars 0.742 0.515 0 0.022 0 1

## SE 0.028 0.025 NA 0.023 NA NA

##

## $Item_4

## a1 a2 a3 ak0 ak1 ak2 d0 d1 d2

## pars 0.756 0 0.349 0 0.902 2 0 -0.862 1.423

## SE 0.027 NA 0.019 NA 0.127 NA NA 0.095 0.049

##

## $Item_5

## a1 a2 a3 d0 d1 d2

## pars 0.409 0 0.471 0 1.065 -0.958

## SE 0.024 NA 0.026 NA 0.030 0.054

##

## $Item_6

## a1 a2 a3 d1 d2

## pars 0.624 0 0.460 1.963 0.043

## SE 0.025 NA 0.022 0.044 0.022

##

## $GroupPars

## MEAN_1 MEAN_2 MEAN_3 COV_11 COV_21 COV_31 COV_22 COV_32 COV_33

## pars 0 0 0 1 0 0 1 0 1

## SE NA NA NA NA NA NA NA NA NA
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confmirt() estimation

This estimation function requires that a structural model be defined
(models can also be passed to mirt(), however confmirt() can be
more accurate and faster in higher dimensions)

> model <- confmirt.model()

+ G = 1-6

+ S1 = 1-3

+ S2 = 4-6

> conf.mod <- confmirt(dat, model, itemtype = itemtype, verbose = FALSE)

> anova(mixedmod, conf.mod)

##

## Model 1: mirt(data = dat, model = 1, itemtype = itemtype)

## Model 2: confmirt(data = dat, model = model, itemtype = itemtype, verbose = FALSE)

## Df AIC AICc BIC SABIC logLik X2 df p

## 1 98 28004 28009 28105 28054 -13986

## 2 95 27920 27928 28040 27979 -13941 89.712 3 0
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Advanced features

Advanced features

Does anybody have the time? Or the patience? Or, preferably, both?
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Customizing values and estimation

I’ve centered several methods for constraints, starting/fixed values, prior
distributions, etc., on the idea of returning a values index to see how
mirt codes the parameters. The data frame returned can then be
modified and input back into the function, or users can observe what the
parameter numbers are and apply linear constraints or prior parameter
distributions.

> values <- mirt(dat, model, itemtype, pars = "values")

> head(values)

## group item name parnum value lbound ubound est

## 1 all Item_1 a1 1 0.500 -Inf Inf TRUE

## 2 all Item_1 a2 2 0.500 -Inf Inf TRUE

## 3 all Item_1 a3 3 0.000 -Inf Inf FALSE

## 4 all Item_1 d 4 -1.033 -Inf Inf TRUE

## 5 all Item_1 g 5 0.000 0.0 0.5 FALSE

## 6 all Item_1 u 6 1.000 0.5 1.0 FALSE

> # change start value

> values[1, 5] <- 1

> newmod <- mirt(dat, model, itemtype, pars = values)
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Constraints and prior distributions

Once the parameter index has been obtained users can use this
information to impose equality constraints or give prior distributions to
help control unstable parameters.

> #set first two slopes equal

> constrmod <- mirt(dat, model, itemtype,

+ constrain = list(c(1,7)))

>

> #normal prior on first intercept (N ~ (0,2))

> priormod <- mirt(dat, model, itemtype,

+ parprior = list(c(4, ’norm’, 0, 2)))



Introduction IRT models IRT components mirt package Advanced features Future developments

Multiple group estimation

Multiple group analysis (MGA) takes into account empirical grouping
clusters that are thought to behave differently to the response data. For
instance, items may be more difficult for one group or another, may have
unequal slopes, etc., and these play a key role in determining the
‘fairness’ of a test.

Two extremes of MGA are that all the parameters are equal across
groups (equivalent to fitting any of the previous methods to all the
data while ignoring group membership), or that all groups are
completely independent (equivalent to sub-setting the data by group
and estimating independent models)

MGA becomes useful when models lie somewhere in the middle of
these extremes, where we seek for a simpler model than strict
independence while being mindful of population differences
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Multiple group estimation (cont.)

The multipleGroup() function begins at the strict independence end of
MGA. Although it’s entirely possible to declare values manually I’ve
included a few common across group constraints such as slopes,
intercepts, free means, etc., that can be passed to an optional
invariance input.

> #strictly independent model

> levels(group)

## [1] "D1" "D2"

> # model can also be a confmirt.model() object

> mg1 <- multipleGroup(dat, model = 1, group = group,

+ method = ’EM’, verbose = FALSE)
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Multiple group estimation (cont.)

Equal slopes across groups (Wald test may be useful here too). Note:
can use previously estimated models to give the current model free
parameters better starting values.

> mg2 <- multipleGroup(dat, model = 1, group = group,

+ prev.mod = mg1, invariance = ’slopes’, method = ’EM’,

+ verbose = FALSE)

> anova(mg2, mg1)

##

## Model 1: multipleGroup(data = dat, model = 1, group = group, invariance = "slopes",

## method = "EM", prev.mod = mg1, verbose = FALSE)

## Model 2: multipleGroup(data = dat, model = 1, group = group, method = "EM",

## verbose = FALSE)

## Df AIC AICc BIC SABIC logLik X2 df p

## 1 169 27855 27890 27508 27683 -13982

## 2 163 27859 27888 27550 27706 -13978 7.768 6 0.256

> #models not sig diff, equal slopes accross

> #groups probably kool
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Multiple group estimation itemplots

Superimposed item trace and information plots with each group. Also
available for polytomous and two factor IRT models.

> itemplot(mg1, item = 1)

> itemplot(mg1, item = 1, type = "info")
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mixedmirt()

The purpose of mixedmirt() is to include continuous or categorical item
and person predictors into the model directly. An example of including a
fixed effect predictor into the model at the person level would be the
inclusion of ‘Gender’, where an indicator coding is used to change the
expected probability to:

P(x = 1;θ,Ψ, βmale) = γ +
(δ − γ)

1 + exp [−1.702(a′θ + d + βmaleGender)]
.

Constraining the structure of the intercept variables is also possible and is
analogous to the LLTM model (Fisher, 1983), though using this approach
it is not limited to Rasch models. Currently the function only supports
the inclusion of fixed effect predictors at the item and person level,
though support random effects are being developed. See ?mixedmirt for
examples.
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Future developments

This package is geared towards making complex IRT modeling accessible
to those who may (or may not) be proficient with R, while still giving
front end users the flexibility to explore particular models that they are
comfortable with.
In the future I plan to add support for the following features:

Parallel processing for Monte Carlo methods

More general multilevel modeling support



Introduction IRT models IRT components mirt package Advanced features Future developments

References

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood
estimation of item parameters: Application of an EM algorithm.
Psychometrika, 46, 443-459.

Cai, L. (2010). High-Dimensional exploratory item factor analysis by
a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika,
75, 33-57.

Chalmers, R. P. (2012). mirt: A Multidimensional Item Response
Theory Package for the R Environment. Journal of Statistical
Software, 48, 1-29.

Fischer, G. H. (1983). Logistic latent trait models with linear
constraints. Psychometrika, 48, 3-26.

Gibbons, R. D., Darrell, R. B., Hedeker, D., . . . . (2007).
Full-Information item bifactor analysis of graded response data.
Applied Psychological Measurement, 31, 4-19


	Introduction
	IRT models
	IRT components
	mirt package
	Advanced features
	Future developments

