
JSS

MMMMMM YYYY, Volume VV, Issue II.

Exact and Asymptotic Weighted Logrank Tests for

Interval Censored Data:

The interval R package

(Draft Date: February 3, 2010)

Michael P. Fay
National Institute of Allergy

and Infectious Diseases

Pamela A. Shaw
National Institute of Allergy

and Infectious Diseases

Abstract

For right censored data perhaps the most commonly used tests are weighted logrank
tests, such as the logrank and Wilcoxon-type tests. In this paper we review several
generalizations of those weighted logrank tests to interval censored data and present an R
package, interval, to implement many of them. The interval package depends on the perm
package, also presented here, which performs exact and asymptotic linear permutation
tests. The perm package performs many of the tests included in the already available coin
package, and provides an independent validation of coin. We review analysis methods
for interval censored data, and we describe and show how to use the interval and perm
packages.

Keywords: logrank test, Wilcoxon test, exact tests, network algorithm, R.

1. Introduction

In their original paper introducing the logrank test, Peto and Peto (1972) outlined how to
perform permutation-based logrank tests for interval censored data. Later, Finkelstein (1986)
studied the application of the logrank test to interval censored data in detail using a grouped
continuous model. These logrank tests are appropriate for comparing treatment groups when
the response is time to an event and time may only be known to fall into an interval. An
example is time to progression-free survival (see e.g., Freidlin, Korn, Hunsberger, Gray, Sax-
man, and Zujewski (2007)), where patients are monitored intermittently and progression is
known to have occurred only to within the time since the last visit.

2 Weighted Logrank Tests for Interval Censored Data

A näıve approach, if one has interval censored data, is to simply impute the mid-point of the
intervals and perform the usual right censored weighted logrank tests. Law and Brookmeyer
(1992) studied this näıve approach (Law and Brookmeyer (1992) use the term ‘doubly censored
observations’ to mean interval censored observations), and showed through simulation that
when the censoring mechanism is different between the two groups, the type I error of a
nominal 0.05 test was in one case estimated to be as high as 0.19. Thus, there is clearly a
need for the tests specifically designed for interval censored data.

Despite the demonstrated need for these methods and despite the development of several
methods for generalizing the logrank test to interval censored data, these tests are rarely used
in the medical literature. This may be due to lack of knowledge about the interval censored
methods, but it also may be due to the lack of widely available software to test interval
censored data nonparametrically.

In this paper we describe an R package, called interval, to perform weighted logrank tests
(WLRT) (including a generalization of the Wilcoxon-Mann-Whitney test) for interval censored
data. For each type of rank score (e.g., logrank-type or Wilcoxon-type) the interval package
allows three methods for creating tests: (1) score tests, (2) permutation tests derived from the
score statistics in the grouped continuous model (GCM), both described in Fay (1999), and
(3) multiple imputation tests as described in Huang, Lee, and Yu (2008). The p-values from
the permutation tests may be calculated either asymptotically using a permutational central
limit theorem or exactly using either complete enumeration, a network algorithm (for the
two-sample case only), or Monte Carlo resampling. We know of no readily available software
to perform these tests (or other different generalizations of the WLRTs to interval censored
data), except for the Splus functions (written by the first author) upon which the interval
package is based (see interval.tar.gz at http://stat.cmu.edu/S/).

In Section 2 we give a brief background on the analysis of interval censored data, with emphasis
on nonparametric maximum likelihood estimation of the distribution and generalizations the
of WLRTs for interval censored data. We review different forms of the likelihood as well as
the different methods for carrying out the WLR tests. This section reviews what is known
about the asymptotic validity of these tests for different interval censoring settings. With this
background, we hope to give intuition on the methods for users primarily familiar with the
usual right-censored logrank tests and also provide information to guide the applied researcher
to make an appropriate choice for the test for their setting of interest.

The mathematical formulation of the WLRTs used in interval package are outlined in Sec-
tion 3. Section 4 provides step-by-step instructions for how to use the interval package to
perform data analysis. This application section demonstrates the use of two main functions
of interval: icfit which provide nonparametric maximum likelihood estimators (NPMLEs)
of the survival distribution and ictest which performs weighted logrank tests.

As explained in Section 2, all implementations of the WLRTs require first fitting an NPMLE
of the overall survival distribution and, for some kinds of inferences, permutation methods
may be used. Because of this latter fact, the interval depends on the perm package which
performs exact and asymptotic linear permutation tests. Note that this package is mostly
redundant because nearly all of the tests performed by perm are available in the package coin
and the exact tests are generally faster in coin (Hothorn, Hornik, van de Wiel, and Zeileis
(2006)). The redundancy provides independent software to check the results from perm. In
Section 5 we go into detail about the design of the perm package and how it differs from

http://stat.cmu.edu/S/

3

the coin package. In Section 6 we detail the design of the interval package. The interval
package uses an E-M style algorithm to find the NPMLE of the overall distribution where the
initial estimator of the distribution may come from a function from another package. The
default initial estimate uses a function whose main calculation engine uses the computeMLE

function from MLEcens, an available package for bivariate interval censored data that is also
applicable for univariate interval censored data. Additionally, the Icens package may be used
to calculate an initial distribution estimate, and we have designed the interval package to
be able to input NPMLEs from the Icens package, using the class structure designed there.
Further, we show how the wlr_trafo function may be used seamlessly from within coin to
perform exact permutation tests possibly more quickly than using the default perm package.

2. Background on Analysis Methods for Interval Censored Data

2.1. Censoring Assumptions

Interval censored data arise when the response of interest is a time-to-event variable, but
instead of the response time, only whether or not the event has yet occurred at a series
of assessment times is observed. For example, suppose the event is time until first disease
occurrence, and we can assume that this disease will not spontaneously be cured without
treatment (e.g., HIV). The response data may be a series of assessment times on the individual
corresponding to times when blood samples used for detecting the disease were taken, and at
each blood sample we determine if the disease is detected or not. Typically, we do not keep
information about all the assessment times, but only record the last disease-free assessment
time and the first assessment time where the disease was detected. When all the assessment
times (not just the two that we keep information about) are independent of the event time we
say that the censoring is non-informative. In the example, the censoring is non-informative
if the subjects are not more or less likely to get a blood sample taken if they have the
disease. More difficult situations where the assessment times may depend on the event can
cause informative censoring and are not discussed in this paper or handled by the software
described here. See Zhang, Sun, Sun, and Finkelstein (2007) and the references therein for
methods for informative interval censoring.

2.2. Nonparametric Maximum Likelihood Estimation of the Survival Dis-
tribution

With right censored data often we will plot the NPMLE of the survival function which in
that case is called the Kaplan-Meier or product-limit estimator (see Kalbfleisch and Prentice
(1980)). The Kaplan-Meier estimator is typically called “undefined” after the last observation
if that observation is right censored. This is because the NPMLE is not unique in that space,
as changes in the survival distribution after that last censored observation do not effect the
likelihood of the observed data.

A similar and much more common non-uniqueness problem occurs with interval censored
data. Consider a simple case where every subject is assessed at day 0, day 7, day 14, and so
on, for every 7 days until the study ends at 20 weeks and suppose that at least one failure
is observed every week. Then no information about the survival time between days 0 and 7
is available and if two survival functions match at days 0, 7, 14, etc. they will give the same

4 Weighted Logrank Tests for Interval Censored Data

likelihood value. For this case, we represent the class of NPMLEs of the survival function
by the probability mass associated with the intervals (0, 7], (7, 14], . . ., (19, 20]. This class
does not represent one unique survival function, but any survival function within the class
will maximize the likelihood. The interval package represents the class of NPMLEs of the
survival distribution by putting gray rectangles in the area where the function is not unique
(see Section 4). This type of non-uniqueness is called representational non-uniqueness by
Gentleman and Vandal (2002). For ease of exposition (and in line with most of the literature)
we will call the class of NPMLEs of the distribution ‘the’ NPMLE of the distribution.

For studies with irregular assessment times between individuals, we also represent the NPMLE
of the survival distribution as a vector of probability masses and a set of intervals on which the
masses are distributed; however, the determination of that set of intervals is not as obvious.
Turnbull (1976) showed that the NPMLE of the survival distribution is only unique up to
a set of intervals, which may be called the innermost intervals (these intervals are known
also as the Turnbull intervals, or the regions of the maximal cliques, see Gentleman and
Vandal (2001)). Turnbull (1976) showed how the NPMLE can then be found by the self-
consistent algorithm, which is a special case of the E-M algorithm. Convergence of the E-M
algorithm does not guarantee convergence to the global maximum (see e.g., Tanner (1996));
however, Gentleman and Geyer (1994) showed that for interval censored data, a self-consistent
estimate (i.e., an estimate that results at convergence of the self-consistent algorithm) is
the NPMLE if it meets certain conditions, the Kuhn-Tucker conditions. Gentleman and
Geyer (1994) proposed a “polishing algorithm” whereby we provisionally set the estimated
probability mass in some intervals to zero if they are below some bound, then check the
Kuhn-Tucker conditions to make sure that those values are truly zeros at the NPMLE. If
those conditions are not met then a small probability is added back on and the E-M iterations
continue. Convergence may be defined when the maximum reduced gradient is less than
some minimum error, and the Kuhn-Tucker conditions are met (see Gentleman and Geyer
(1994)). For univariate interval censored data, once the innermost intervals (i.e., regions of the
maximal cliques) are determined, the probability assigned to those intervals which maximizes
the likelihood is unique (see e.g., Gentleman and Vandal (2002) Lemma 4). For bivariate
interval censored data, this uniqueness of probabilities may not hold and that situation is
called mixture non-uniqueness (see Gentleman and Vandal (2002)).

There are many other algorithms for calculating the NPMLE, and the Icens package provides
many of the different algorithms described in Gentleman and Vandal (2001). The default
calculation of the NPMLE in the interval uses the E-M algorithm with the polishing algorithm
of Gentleman and Geyer (1994) after calculating an initial estimator of the NPMLE using the
computeMLE function of the MLEcens package. Although MLEcens was designed for bivariate
interval censored data, once the data are reduced to the set of maximal cliques, the calculation
is the same as for the univariate interval censored case. The optimization step (going from
the set of maximal cliques to the NPMLE) in MLEcens uses the support reduction algorithm
of Groeneboom, Jongbloed, and Wellner (2008). The advantage of the initial estimator is
speed, and for completeness in interval the Kuhn-Tucker conditions are checked.

2.3. Overview of Weighted Logrank Tests

For right censored data, the logrank test is a score test for the equality of survival distributions
under the proportional hazards model, thus it is an efficient test when the proportional hazards

5

assumption holds. There are several different versions of the logrank test that have been
developed (see Kalbfleisch and Prentice (1980)). In particular, the likelihood could be the
marginal likelihood of the ranks, the partial likelihood, or the grouped continuous model.
Further, the variance could be estimated by the Fisher’s information from the likelihood, by
martingale methods (see Fleming and Harrington (1991)) or by permutation methods. The
differences between the several different versions of the logrank test are often not a focus of
applied statisticians; however, in this paper since we are emphasizing validation of software,
these slight differences need to be considered to avoid confusion and will be discussed in detail
in later sections (see e.g., Callaert (2003)).

In addition to the logrank test, which is a WLRT with constant weight of 1 (or approximately
1), an important WLRT is the one that generalizes the Wilcoxon-Mann-Whitney test. We
will call these latter tests Wilcoxon-type tests, but they are known by other names (e.g.,
Prentice-Wilcoxon test, proportional odds model, Harrington-Fleming Gρ class with ρ = 1).
Similar to the logrank test, the Wilcoxon-type tests also have been derived using different
likelihoods and using different variances. The important point for the applied researcher is
that the Wilcoxon-type tests emphasize early differences in distributions (when there are more
people at risk) more than the later differences (when there are fewer people at risk), while the
logrank test gives constant (or near constant) weights when the test is written in the weighted
logrank form (see equation 6), which implies comparatively more weight to later differences
than the Wilcoxon-type test.

We now summarize the next two subsections which detail the extension of logrank tests
to interval censored data. Both likelihoods that may be applied to interval censored data,
the likelihood under the grouped continuous model (LGCM) and the marginal likelihood
of the ranks (MLR), should give similar answers. The permutation form of the tests are
generally preferred over the score test forms when using the LGCM, since permuting allows
exact inference when the censoring is not related to the covariate (e.g., treatment), and the
permutation results avoid theoretical problems of the score test (see below and Fay (1996)).
When the censoring is related to treatment and there are few inspection times compared to
the number of subjects, the usual score test is recommended since it is asymptotically valid
in this case. Now we give some more details on the different tests for interval censored data.

2.4. Choosing the Likelihood for WLR Tests

There has not been a single obvious approach for creating a likelihood to use for interval
censored data. Self and Grosman (1986) used the marginal likelihood of the ranks (MLR).
This has the advantage that we need not estimate the baseline distribution (or equivalently
the baseline hazard). The disadvantage of the MLR is that it is difficult to calculate. Note
that even in the right censored case with ties, the likelihood is usually only approximated
(see Kalbfleisch and Prentice (1980) pp. 74-75). Satten (1996) introduces a stochastic ap-
proximation to the MLR using Gibbs sampling for the proportional hazards model and it is
generalized to proportional odds and other models by Gu, Sun, and Zuo (2005).

Finkelstein (1986) (see also, Fay (1996, 1999)) used the likelihood under the grouped continu-
ous model (LGCM). In the LGCM, we estimate a baseline distribution, which is a monotonic
function estimated at each observation point, and the functionŠs value at each of those points
is a nuisance parameter that must be estimated. Because there are so many nuisance param-
eters and the number of them may depend on the sample size, the standard likelihood-based

6 Weighted Logrank Tests for Interval Censored Data

tests (i.e., Score test, Wald test, and Likelihood ratio test) may not follow the usual theory (see
Fay (1996)). Note, however, that the permutation test formed from the scores of the LGCM
is theoretically justified and is known to be a valid test when the censoring is unrelated to
the covariate (see the following section). We discuss the computational issues of the LGCM
in the next section. For the non-censored case, Pettitt (1984) studied the two likelihoods and
showed that both likelihoods give asymptotically equivalent score tests as long as either the
number of categories of response is fixed, or the number of categories does not increase too
quickly compared to the total sample size. Pettitt concluded (see Pettitt (1984), section 5.1)
that the score test for the MLR was more efficient (i.e., had greater power) than the score
test for the LGCM; however, Pettitt did not consider the permutation form of the test using
the LGCM.

Finally, when imputation methods are used then martingale methods may be used (see Huang
et al. (2008) and below).

The interval package allows the user to choose between the LGCM and imputation/martingale
likelihood methods through the score option within ictest, as will be demonstrated in section
4. The MLR is not supported within the interval package at this time.

2.5. Choosing the Inferential Method for WLR Tests

Once the likelihood is chosen, and the associated efficient score (the first derivative of the
loglikelihood with respect to the parameter of interest evaluated under the null, i.e., the U
in equation 5 below) is calculated, then the distribution of that score under the null must be
estimated so that the p-value corresponding to the test statistic can be calculated. There are
several methods for doing this, but the three most common are using asymptotic methods
with the observed Fisher’s information, which is commonly known as the score test, using
permutation methods, or using multiple imputation (Huang et al. (2008)).

When the censoring mechanism is the same for all treatment groups, the permutation test is
known to be valid for either the MRL or the LGCM. In this case of equal censoring, the score
test is only known to be asymptotically valid using the MRL; using the LGCM we require
the additional assumption that the number of observation times remains fixed as the sample
size goes to infinity (see Fay (1996) for a discussion of this issue).

When there is unequal censoring then the theory for the permutation method is not formally
met. Thus, we have previously suggested that with unequal censoring the score variance
is better (see e.g., Fay (1996), p. 820 for the interval censoring case). Further work needs
to be done to explore unequal interval censoring; however, we can get some assurance for
the practical use of the permutation method from the special case of right censored data,
where it has been shown through simulation that the permutation method usually controls
the type I error except in extreme cases of unequal censoring and very unbalanced sample sizes
between groups (Heinze, Gnant, and Schemper (2003)). Heinze et al. (2003) also developed
an imputation method that controlled the type I simulated error for all cases, and we discuss
other related imputation methods applied to interval censored data next.

Another strategy to create WLRT for interval censored data is to impute right censored data
from the interval censored data and then properly adjust the variance. Huang et al. (2008)
improved on some earlier attempts at this variance adjustment after imputation. This appears
to be a reasonable strategy, and provides an independent check on the other methods. Since
this imputation method is closely related to the within-cluster resampling of Hoffman, Sen,

7

and Weinberg (2001), we use ‘wsr’ (for within subject resampling) to label these methods
in the interval package. On each imputation Huang et al. (2008) only considered the usual
martingale derived variance (use method="wsr.HLY" in ictest), while the interval package
additionally allows for permutational variance (method="wsr.pclt") and Monte Carlo esti-
mation within each imputation (method="wsr.mc").

2.6. Regression in Interval Censored Data

This section is provided for completeness, but these methods are not a part of the interval
package.

For parametric methods, it is straightforward to form the likelihood for interval censored
data under the accelerated failure time model and standard likelihood based methods may
be applied (see equation 1). These methods are provided in the survival package using the
survreg function. For right-censored data a more common regression method is the semi-
parametric Cox proportional hazards regression. In this model the baseline hazard function is
completely nonparametric, but does not need to be estimated. The score test from this model
is the logrank test. The generalization of the model to interval censored data typically uses
the marginal likelihood of the ranks (see Satten (1996), Goggins, Finkelstein, and Zaslavsky
(1999)). The only available software for doing these models of which we are aware is an S
function (which calls a compiled C program requiring access to a SPARC based workstation)
to perform a Monte-Carlo EM algorithm for proportional hazards models described in Goggins
et al. (1999) available at http://hedwig.mgh.harvard.edu/biostatistics/software. An-
other approach to semi-parametric modeling is to specifically estimate the non-parametric part
of the model with a piecewise constant intensity model (see Farrington (1996) or Carstensen
(1996)). This is the approach taken with the Icens function in the Epi package.

3. Mathematical Formulation of the Scores for the WLRT

In this section, we provide the general form of rank invariant score test on the grouped
continuous model, and for each of the three main rank scores available within ictest: those
from the logistic (Sun (1996)), the group proportional hazards (Finkelstein (1986)), and the
generalized Wilcoxon Mann Whitney (Fay (1996)) models. In the details that follow, we
briefly describe the underlying survival model (or hazard model) and the mathematical form
of the individual scores. Further details on the derivation of the tests are given in Fay (1996)
and Fay (1999). The other rank scores available in interval are also described briefly.

Suppose we have n subjects. For the ith subject, use the following notation:

xi is the time to event, Xi is the associated random variable.

Li is the largest observation time before the event is known to have occurred.

Ri is the smallest observation time at or after the event is known to have occurred. In other
words, we know that xi ∈ (Li, Ri]. (Note that interval allows the endpoints of each
interval to be either included or excluded using Lin and Rin options, but for ease of
explanation we assume the pattern just described.) We allow Ri = ∞ to denote right
censoring.

zi is a k × 1 vector of covariates.

http://hedwig.mgh.harvard.edu/biostatistics/software

8 Weighted Logrank Tests for Interval Censored Data

Let the ordered potential observation times be 0 = t0 < t1 < t2 < · · · < tm < tm+1 = ∞.
Partition the sample space by creating (m+ 1) intervals, with the jth interval denoted Ij ≡
(tj−1, tj]. For simplicity, we assume that Li, Ri ∈ {t0, . . . , tm+1}. Let

αij =

{
1 if Li < tj ≤ Ri
0 otherwise

We write the general model of the survival for the ith individual as

Pr(Xi > tj |zi) = S(tj |z′iβ, γ)

where β is a k × 1 vector of treatment parameters, and γ is an m × 1 vector of nuisance
parameters for the unknown survival function.

In the interval package, there are several different ways we can model S(tj |z′iβ, γ). Most of
these ways use a model closely related to the accelerated failure time (AFT) model. Thus, we
begin by defining the AFT model, where the time to event for the ith subject, Xi, is modeled
as

log(Xi) = µ+ z′iβ + σεi (1)

where µ and σ are location and scale parameters and the distribution of εi is known to be F .
In the grouped continuous model, we replace the log transformation with g(·), an unknown
monotonic transformation that absorbs the µ and σ parameters, to get:

g(Xi) = z′iβ + εi (2)

where here also εi ∼ F and F is some known distribution (e.g., logistic, normal). Then the
model of the survival distribution at time t is

S(t|z′iβ, γ) = 1− F{g(Xi)− z′iβ} (3)

and in the grouped continuous model, g(·) is described at all the places where the likelihood
may change (i.e., at t1, . . . , tm) by the vector of nuisance parameters, γ.

The grouped continuous likelihood for interval censored data is

L =
n∏
i=1

m+1∑
j=1

αij
[
S(tj−1|z′iβ, γ)− S(tj |z′iβ, γ)

]
=

n∏
i=1

[
S(Li|z′iβ, γ)− S(Ri|z′iβ, γ)

]
(4)

To form the score statistic we take the derivative of log(L) with respect to β and evaluate
it at β = 0. The MLE of the nuisance parameters when β = 0 (in terms of the baseline
survival) are the NPMLE of survival, Ŝ(tj), j = 1, . . . ,m. For convenience, let Ŝ(t0) = 1 and
Ŝ(tm+1) = 0, even though these values are known by assumption.

We can write the efficient score vector for the parameter β (see Fay (1996), Fay (1999)) as

U =
n∑
i=1

zi

(
Ŝ′(Li)− Ŝ′(Ri)
Ŝ(Li)− Ŝ(Ri)

)
≡

n∑
i=1

zici (5)

where Ŝ′(t) is the derivative with respect to β evaluated at β = 0 and at g(t) = F−1(1− Ŝ(t)),

i.e., Ŝ′(t) = f
[
F−1

{
1− Ŝ(t)

}]
and f and F−1 are the density and quantile functions of F

respectively.

9

When zi is an k × 1 vector of indicators of k treatments, we can rewrite the `th row of U as

U` =
m∑
j=1

wj

[
d′j` −

n′j`d
′
j

n′j

]
, (6)

where

wj =
Ŝ(tj)Ŝ

′(tj−1)− Ŝ(tj−1)Ŝ
′(tj)

Ŝ(tj)
[
Ŝ(tj−1)− Ŝ(tj)

] ,

and d′j` represents the expected value under the null of the number of deaths in Ij for the
`th treatment group, d′j represents the expected value under the null of the total number of
deaths in Ij , similarly n′j` and n′j represent the expected number at risk.

We now give the values for ci (from equation 5) and wi (from equation 6) for some different
survival models provided in ictest. Although not developed first, we present the model of Sun
(1996) first because it is the generalization of the logrank test most commonly used for right
censored data. Sun (1996) modeled the odds of discrete hazards as proportional to exp(z′iβ)
(see Fay (1999)), leading to the more complicated survival function:

S(tj |zi, γ) =
j∏

k=1

{
1 +

(
S(tk−1|γ)− S(tk|γ)

S(tk|γ)

)}−1
.

Here and in the other two models, S(tj |γ) is a estimator of survival that does not depend on
the covariates zi, and S(tj |γ) is nonparametric because the γ is m× 1 and there are only m
unique time points observed in the data. Denote its estimator S(t|γ̂) ≡ Ŝ(t), which is the
NPMLE of the survival function of all the data ignoring covariates. Under the model of Sun
(1996) we get,

ci =
Ŝ(Li) log S̃(Li)− Ŝ(Ri) log S̃(Ri)

Ŝ(Li)− Ŝ(Ri)
(7)

where S̃(tj) = exp
(
−
∑j
`=1 λ̂`

)
, and λ` =

{
Ŝ(t`−1)− Ŝ(t`)

}
/Ŝ(t`−1), and

wj = 1.

This model is called from the interval package by the option scores="logrank1".

The second model we consider was actually developed first, it is the grouped proportional
hazards model introduced by Finkelstein (1986), where the survival function is modeled as
S(tj |z′iβ, γ) = S(tj |γ)exp(z

′
iβ). This comes from the model of equation 2 when F is the extreme

minimum value distribution. Under this grouped proportional hazards model, the ci values
are:

ci =


Ŝ(Li) log Ŝ(Li)−Ŝ(Ri) log Ŝ(Ri)

Ŝ(Li)−Ŝ(Ri)
for Ri < tm+1

log Ŝ(Li) for Ri = tm+1 ≡ ∞
(8)

and

wj =
Ŝ(tj−1)

[
log Ŝ(tj−1)− log Ŝ(tj)

]
Ŝ(tj−1)− Ŝ(tj)

.

10 Weighted Logrank Tests for Interval Censored Data

Note that because this model makes a proportional hazards assumption, we call the resulting
test a logrank test also and the model is called by scores="logrank2" in the interval package.
When Ŝ(tj−1)/Ŝ(tj) ≈ 1 then wj ≈ 1.

Next, consider the model proposed by Peto and Peto (1972) (see Fay (1996)) giving the
Wilcoxon-type test, where the odds are proportional to exp(−ziβ) so that the survival function
is

S(tj |zi, γ) =

{
1 +

(
1− S(tj |γ)

S(tj |γ)

)
exp(ziβ)

}−1
and we get

ci = Ŝ(Li) + Ŝ(Ri)− 1

and

wj = Ŝ(tj−1)

This comes from the model of equation 2 when F is the logistic distribution. Since in the
absence of censoring the resulting test reduces to the Wilcoxon-Mann-Whitney test, we call
this model from the interval package by the option scores="wmw".

Other scores are possible (but less often used) from the model of equation 2 by choosing
different distributions for F . The user may specify that F is normal with scores="normal", or
may supply an arbitrary distribution by using scores="general" and specifying the function,
f
{
F−1(·)

}
(see equation 5), using the dqfunc option.

For illustrative purposes, we now give the form of the three most often used scores in the
special case of right censoring. For this, we introduce new notation. Suppose that there are
m∗ observed failure times, t∗1 < t∗2 < · · · < t∗m∗ . In other words there are m∗ subjects for
which xi = Ri is known, so that Li = limε→0Ri− ε ≡ Ri− 0. Let nj and dj be the number of
subjects who are at risk or fail respectively at t∗j . Then the Kaplan-Meier survival estimate
is (see e.g., Kalbfleisch and Prentice (1980))

Ŝ(t) =
∏
j|t∗j≤t

(
nj − dj
nj

)
.

In the following table we summarize the formulation of the scores for the three model (score)
choices in interval, as described above, for ordinary right censored data.

Scores For Right Censored Data

Test Score (ci) for Observed Score (ci′) for Right-censored
(Model) failure at t∗h observation at t∗h′

Logrank1 1−
∑h
`=1

d`
n`

−
∑h
`=1

d`
n`

(Logistic, Sun)

Logrank2 nh
dh

{
− log

(
nh−dh
nh

)}
+ log Ŝ(t∗h) log

{
Ŝ(t∗h′)

}
(Group Prop Hazards, Finkelstein)

Generalized WMW Ŝ(t∗h−1) + Ŝ(t∗h)− 1 Ŝ(t∗h′)− 1
(Proportional Odds)

11

4. Application

The calls to the interval package are designed to be in the same format as in the survival
package. As noted in the previous section, the icfit and ictest functions will also work on
right censored data (see demo("right.censored.examples")).

We demonstrate the two main functions in interval, icfit and ictest, with the commonly
used interval censored breast cosmesis data set of Finkelstein and Wolfe (1985). The data
are from a study of two groups of breast cancer patients, those treated with radiation ther-
apy with chemotherapy (treatment=“RadChem”) and those treated with radiation therapy
alone (treatment=“Rad”). The response is time (in months) until the appearance of breast
retraction, and the data are interval censored between the last clinic visit before the event
was observed (left) and the first visit when the event was observed (right) (or Inf if the event
was not observed). The following provides the first few observations of the data set.

> library(interval)

package MLEcens version 0.1-2 loaded

Type ’help(package=MLEcens)’ for an overview of the package

> data(bcos)

> head(bcos)

left right treatment

1 45 Inf Rad

2 6 10 Rad

3 0 7 Rad

4 46 Inf Rad

5 46 Inf Rad

6 7 16 Rad

4.1. Survival Estimation

First, we calculate the NPMLE for each treatment group in the breast cosmesis data sepa-
rately.

> fit1 <- icfit(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos)

> summary(fit1)

treatment=Rad:

Interval Probability

1 (4,5] 0.0463

2 (6,7] 0.0334

3 (7,8] 0.0887

4 (11,12] 0.0708

5 (24,25] 0.0926

12 Weighted Logrank Tests for Interval Censored Data

6 (33,34] 0.0818

7 (38,40] 0.1209

8 (46,48] 0.4656

treatment=RadChem:

Interval Probability

1 (4,5] 0.0433

2 (5,8] 0.0433

3 (11,12] 0.0692

4 (16,17] 0.1454

5 (18,19] 0.1411

6 (19,20] 0.1157

7 (24,25] 0.0999

8 (30,31] 0.0709

9 (35,36] 0.1608

10 (44,48] 0.0552

11 (48,60] 0.0552

The Surv function is from the survival package, and the type="interval2" treats the vari-
ables ‘left’ and ‘right’ as the left and right endpoints of the interval. The assumption is that
the left interval is excluded by the right one is included, except that if both are equal then
both are included, and values of left may be 0 and values of right may be Inf. One can change
the inclusion/exclusion defaults by using the Lin and Rin options.

These results match those calculated from Icens, an available package for computing the
NPMLE for censored and truncated survival data (see Gentleman and Vandal (2001)). The
summary function applied to an icfit object gives the intervals with positive probability for
the NPMLE of the survival distribution function, i.e. where the estimated survival distribution
drops; however, there are infinitely many functions which drop exactly the same increment
within those intervals. The NPMLE is only unique outside of the intervals which are listed
from the summary of the fit. For example, there are infinitely many survival functions for
the treatment=Rad group, that have S(4) = 1 and S(5) = 1 − 0.0463 = 0.9537. Thus,
as has been done in the Icens package, when plotting the NPMLEs we denote the areas
with the indeterminate drops with grey rectangles. The function which linearly interpolates
the survival within these indeterminate regions is also displayed on the graph. We plot the
NPMLE for each treatment group using plot(fit1) to get Figure 1.

4.2. Two-sample Weighted logrank tests

There are five score tests available in ictest, which are selected by setting the scores ar-
gument to be one of “logrank1”, “logrank2”, “wmw”, “normal”, or “general”. As stated in
Section 3, the two forms of the logrank scores are those associated with Finkelstein (1986)
and those associated with Sun (1996). Although Finkelstein (1986) are perhaps more natural
for interval censored data, we make those of Sun (1996) the default (scores="logrank1" or
equivalently rho=0) since these scores reduce to the usual logrank scores with right censored
data. The default method is the permutation test, and since the sample size is sufficiently
large we automatically get the version based on the permutational central limit theorem:

> icout <- ictest(Surv(left, right, type = "interval2") ~ treatment,

13

Figure 1: Non-parametric Maximum Likelihood Survival from Breast Cosmesis Data

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

S
ur

vi
va

l

treatment=Rad
treatment=RadChem

14 Weighted Logrank Tests for Interval Censored Data

+ data = bcos)

> icout

Asymptotic Logrank two-sample test (permutation form), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment

Z = -2.6684, p-value = 0.007622

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected

To pick which of the rank score methods is best, one may plot for each treatment group
the NPMLE of the distribution transformed by the inverse of the error distribution from the
grouped continuous model (see Fay (1996)). In generalized linear models these transforma-
tions are known as links. For example, the proportional hazards is motivated by the extreme
value error distribution whose inverse is the complementary log-log link, which is the default.
In Figure 2 we plot this using the fit1 icfit object which contains the NPMLE for each
treatment group using the code: plot(fit1,dtype="link"). Other links besides the default
complementary log-log link are possible: dlink=qlogis or dlink=qnorm for the fit of the
proportional odds and normal model, respectively. Fay (1996) presents those plots for these
data and none of the models looks clearly better than the others.

Because a major part of the calculation of the test statistic is estimating the NPMLE under
the null hypothesis (i.e., for the pooled treatment groups), this NPMLE is saved as part of
the output (icout$fit, in the above example) so that we can calculate this NPMLE once
and reuse it for the calculation of the other two score tests. Here is code for the Finkelstein
logrank formulation, which takes advantage of a precalculated NPMLE:

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ initfit = icout$fit, scores = "logrank2")

Asymptotic Logrank two-sample test (permutation form), Finkelstein’s

scores

data: Surv(left, right, type = "interval2") by treatment

Z = -2.6839, p-value = 0.007277

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.944182

treatment=RadChem 48 9.944182

* like Obs-Exp, positive implies earlier failures than expected

Notice how the two different logrank tests give very similar results, p close to 0.007 in both
cases. We demonstrate the third score test, the generalization of the Wilcoxon-Mann-Whitney
scores to interval censored data, and also demonstrate the ictest function in default mode:

15

Figure 2: Complementary log-log Transformation of Distribution from Breast Cosmesis Data.
If parallel then proportional hazards is a good model.

0 10 20 30 40 50 60

−
3

−
2

−
1

0
1

time

Tr
an

sf
or

m
ed

 D
is

tr
ib

ut
io

n

treatment=Rad
treatment=RadChem

16 Weighted Logrank Tests for Interval Censored Data

> L <- bcos$left

> R <- bcos$right

> trt <- bcos$treatment

> ictest(L, R, trt, scores = "wmw", initfit = icout$fit)

Asymptotic Wilcoxon two-sample test (permutation form)

data: {L,R} by trt

Z = -2.1672, p-value = 0.03022

alternative hypothesis: survival distributions not equal

n Score Statistic*

Rad 46 -5.656724

RadChem 48 5.656724

* like Obs-Exp, positive implies earlier failures than expected

4.3. K-sample and trend tests

We can perform k-sample tests using the ictest function. We create fake treatment as-
signments with four treatment groups for the individuals in the breast cosmesis data set to
demonstrate.

> set.seed(1232)

> fakeTrtGrps <- sample(letters[1:4], dim(bcos)[[1]], replace = TRUE)

> ictest(L, R, fakeTrtGrps)

Asymptotic Logrank k-sample test (permutation form), Sun’s scores

data: {L,R} by fakeTrtGrps

Chi Square = 1.3685, p-value = 0.7129

alternative hypothesis: survival distributions not equal

n Score Statistic*

d 27 -0.752043

b 24 1.882177

c 20 -2.804827

a 23 1.674693

* like Obs-Exp, positive implies earlier failures than expected

When scores="wmw" and the responses are all non-overlapping intervals then this reduces to
the Kruskal-Wallis test.

The function ictest performs a trend test when the covariate is numeric. The one-sided
test with alternative="less" rejects when the correlation between the generalized rank
scores (e.g., WMW scores or logrank scores) and the covariate are small. Below, a continuous
covariate z that is uncorrelated to the outcome is created for individuals in the cosmesis
dataset to illustrate the trend test.

17

> set.seed(931)

> fakeZ <- rnorm(dim(bcos)[[1]])

> ictest(L, R, fakeZ, alternative = "less")

Asymptotic Logrank trend test(permutation form), Sun’s scores

data: {L,R} by fakeZ

Z = 0.068, p-value = 0.5271

alternative hypothesis: higher independent variable implies earlier failure times than expected

n Score Statistic*

[1,] 94 0.4421146

* postive so larger covariate values give earlier failures than expected

4.4. Exact permutation tests

We can also estimate the exact permutation p-value for any score choice in ictest using the
exact argument. Here the logrank test using Sun (1996) scores is redone as an exact test:

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ exact = TRUE, scores = "logrank1")

Exact Logrank two-sample test (permutation form), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.006

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from 999 Monte Carlo replications

99 percent confidence interval on p-value:

0.0002072893 0.0184986927

The exact argument automatically chooses between an exact calculation by network algo-
rithm or an approximation to the exact p-value by Monte Carlo through the methodRuleIC1

function. In this case the network algorithm was expected to take too long and the Monte
Carlo approximation was used. If a more accurate approximation to the exact p-value is
needed then more Monte Carlo simulations could be used and these are changed using the
mcontrol option. Additionally, if icout is an “ictest” object created by the ictest function,
then icout$scores will give the vector of rank scores, ci, which may be imputed into other
software (e.g., StatXact) to create an exact permutation test. A more seamless interaction is
possible with the coin package (see Section 5.3).

18 Weighted Logrank Tests for Interval Censored Data

4.5. Other test options

All of the above are permutation based tests, but we may use other methods. Here are the
results from the usual score test for interval censored data:

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ initfit = icout$fit, method = "scoretest", scores = "logrank2")

Asymptotic Logrank two-sample test (score form), Finkelstein’s scores

data: Surv(left, right, type = "interval2") by treatment

Chi Square = 7.8749, p-value = 0.005012

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.944182

treatment=RadChem 48 9.944182

* like Obs-Exp, positive implies earlier failures than expected

where in this case the nuisance parameters are defined after calculation of the NPMLE as
described in Fay (1996). The results agree exactly with Fay (1996) and are similar to those
in Finkelstein (1986). The very small differences may be due to differing convergence criteria
in the NPMLE. The imputation method of Huang et al. (2008) may also be employed (note
that scores=“logrank2”, “normal”, or “general” are not available for this method):

> icoutHLY <- ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, initfit = icout$fit, method = "wsr.HLY", mcontrol = mControl(nwsr = 99),

+ scores = "logrank1")

> icoutHLY

Asymptotic Logrank 2-sample test(WSR HLY), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment

Chi Square = 7.1047, p-value = 0.007688

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from Monte Carlo replications

These results agree with Huang et al. (2008) within the error to be expected from such an
imputation method (Huang et al. (2008) had p = 0.0075).

For the breast cosmesis data, if we can assume that the assessment times are independent of
treatment arm, then the assumptions needed for the permutation methods and the imputation
methods are met. The assumptions for the theoretical use of the score function do not hold

19

because the NPMLE is on the boundary of the parameter space since some masses where set
to zero in the calculation of the NPMLE (although the ad hoc adjustment appears to give
reasonable results). When some of these masses are set to zero then the anypzero element of
the icfit object will be TRUE, as we see here:

> icoutHLYfitanypzero

[1] TRUE

If we cannot assume independence of assessment times and treatment arm then the exchange-
ability assumption needed for the permutation method is not met, and the imputation method
may be used. Further research is needed on the practical ramifications of the violation of any
of these assumptions.

5. The perm package

The default method for inference in the interval package is the permutation test. The perm
package presented here is a stand-alone R package that performs linear permutation tests.
The tests that can be done in perm can also be done in the existing coin package; however,
there are slight differences in the calculations and presentation, as outlined below.

5.1. Overview of Methods

The perm package does linear permutation tests, meaning permutation tests where the test
statistic is either of the form,

T (y,x) =
n∑
i=1

cizi (9)

as in equation 5, or of a quadratic version of T (y,x) (e.g., see k-sample tests below). We
consider only the case where ci is a scalar and zi is either a scalar or a k× 1 vector (although
more general cases are studied in Sen (1985), see also Hothorn et al. (2006)). Following Sen
(1985), we can write the mean and variance of T under the permutation distribution (i.e.,
permute indices of c1, . . . , cn and recalculate T , where there are n! different permutations with
each equally likely) as,

U = EP (T) = nc̄z̄

V = V arP (T) =
1

n− 1

{
n∑
i=1

(ci − c̄)2
}

n∑
j=1

(zi − z̄)(zi − z̄)′
 ,

where c̄ and z̄ are the sample means.

In the perm package, if zi is a scalar we define the one-sided p-value when alternative="greater"

as

pG =

∑n!
i=1 I(Ti ≥ T0)

n!
,

20 Weighted Logrank Tests for Interval Censored Data

where I(A) = 1 when A is true and 0 otherwise, Ti is the test statistic for the ith of n!
possible permutations, and T0 is the observed value of T . When alternative="less" then
the p-value, say pL, is given as above except we reverse the direction of the comparison
operator in the indicator function. Note that if you add or multiply by constants which do not
change throughout all permutations then the p-value does not change. Thus, a permutation
test on T can represent a test on the difference in means in the two-sample case, and can
represent a test on the correlation when zi is numeric. When alternative="two.sided",
then p2 is twice the minimum one-sided p-value (i.e., p2 = min(1, 2 min(pL, pG))), and when
alternative="two.sidedAbs" then

p2A =

∑n!
i=1 I(|Ti − U | ≥ |T0 − U |)

n!
.

When zi is a k × 1 vector, we consider only the alternative="two.sided", and the Wald-
type test statistic Q = (T −U)′V −(T −U) is calculated, where V − is the generalized inverse
of V .

To calculate the exact p-values, one may use complete enumeration, but this quickly becomes
intractable and other algorithms are needed. One algorithm supplied is the network algorithm
(see e.g., Agresti, Mehta, and Patel (1990)). Monte Carlo approximations to the exact p-
values may also be performed. Finally, the perm allows asymptotic methods such as the
permutational central limit theorem (PCLT). Sen (1985) reviews the PCLT which shows that
under the permutation distribution with standard regularity conditions on the ci and zi,
V −1/2(T −U) is asymptotically approximately multivariate normal with mean 0 and variance
the identity matrix.

Note that because of the way exact p-values are defined, the way the computer treats ties with
T0 and the Ti can lead to non-negligible differences in the calculated exact p-values for small
samples. This is a problem for all permutation test software, but because of the generality of
the perm package (i.e., the Ti can be any values) it can be a particularly difficult one. The
solution taken by perm and by coin (Versions 1.0-8 or later) is to round so that differences
between Ti and T0 that are close to zero become zero. In perm this is done with the digits

option, which by default rounds the Ti to the nearest 12 digits. This can particularly be a
problem for WLRTs, as is shown by the example in Section 6.3.

5.2. Design and Implementation

The three main functions in perm perform the two-sample (permTS), k-sample (permKS), and
trend (permTREND) tests. To demonstrate the package we will use the ChickWeight data set
in the datasets package which is part of the base distribution of R. The data are from an
experiment on chicks fed one of four diets. We use only the weight in grams of the chicks at
day 21 (i.e., Time=21) as the response. For the two-sample examples that follow, we use only
the chicks given diets 3 and 4.

> data(ChickWeight)

> head(ChickWeight)

weight Time Chick Diet

1 42 0 1 1

2 51 2 1 1

21

3 59 4 1 1

4 64 6 1 1

5 76 8 1 1

6 93 10 1 1

The package uses the S3 methods, which allows object-oriented programming. The evaluation
of any of the three main functions is determined by the class of the first object in the function
call. This is similar to the calls to the analogous functions in the stats package. For example,
as is possible using t.test or wilcox.test from the stats, we can call the test using the
formula structure, which automatically uses the permTS.formula function. The formula
is weight~Diet where the ith element of weight represents ci and the ith element of Diet
represents zi in equation 9. We also use the data and subset variables to name the data set
and pick out only the Day 21 weights of those chicks who got Diets 3 or 4.

> permTS(weight ~ Diet, data = ChickWeight, subset = Diet %in%

+ c(3, 4) & Time == 21)

Permutation Test using Asymptotic Approximation

data: weight by Diet

Z = 1.1412, p-value = 0.2538

alternative hypothesis: true mean of Diet=3 minus mean of Diet=4 is not equal to 0

sample estimates:

mean of Diet=3 minus mean of Diet=4

31.74444

Equivalently, we can define the responses explicitly and do the same test, with the default
structure,

> y3 <- ChickWeight[ChickWeight$Time == 21 & ChickWeight$Diet ==

+ 3, "weight"]

> y4 <- ChickWeight[ChickWeight$Time == 21 & ChickWeight$Diet ==

+ 4, "weight"]

> permTS(y3, y4)

Permutation Test using Asymptotic Approximation

data: y3 and y4

Z = 1.1412, p-value = 0.2538

alternative hypothesis: true mean of y3 minus mean of y4 is not equal to 0

sample estimates:

mean of y3 minus mean of y4

31.74444

The permTS uses a function (determined by the option methodRule) to automatically choose
the method used in the permutation test. Since in this case the exact network method is not
expected to give an quick answer, the default methodRule automatically chooses to use the

22 Weighted Logrank Tests for Interval Censored Data

PCLT. If the sample sizes are small enough, then exact methods are done automatically. For
example, using only the first 5 chicks on each diet, then the methodRule function chooses the
network algorithm:

> permTS(y3[1:5], y4[1:5])

Exact Permutation Test (network algorithm)

data: y3[1:5] and y4[1:5]

p-value = 0.1825

alternative hypothesis: true mean of y3[1:5] minus mean of y4[1:5] is not equal to 0

sample estimates:

mean of y3[1:5] minus mean of y4[1:5]

60.6

Note that the network algorithm is written entirely in R code, so efficiency gains may be
possible by translating portions of the code into C code (see e.g., Chambers (2008)).

In addition to the pclt and exact.network methods, the two-sample test additionally has a
complete enumeration exact algorithm (method="exact.ce") which is useful for simulations
involving a small number of observations in each group, and the Monte Carlo approximation
to the exact p-value using the exact.mc method. The user may supply their own methodRule
function, which must have three input values: the numeric vectors c = [c1, . . . , cn] and z =
[z1, . . . , zn] (see equation 9), and the logical variable exact given by the option of the same
name. For the two-sample test the output of a methodRule function should be a character
vector which is one of “pclt”, “exact.network”, “exact.ce”, or “exact.mc”. The logical variable
exact causes the default methodRule for permTS to choose from among the three exact
algorithms based on the estimated speed of the calculations (see help for methodRuleTS1).

All methods except exact.mc produce an ’htest’ object, which is a list with elements described
in the help for permTS and printed according to the print method from the stats package. The
exact.mc creates an mchtest object, which additionally prints out confidence intervals on the
p-value based on the Monte Carlo replications to help the users determine if the p-value would
change much if the Monte Carlo procedure was repeated with a different random seed. Note
that even if the confidence interval on the p-value is large, the given p-value from the exact.mc
method (i.e., [one plus the number of Monte Carlo replications that are equal to or more
extreme than the observed test statistic] divided by [one plus the number of replications]) is
always a valid p-value (see e.g., Fay, Kim, and Hachey (2007), equation 5.3).

For the k-sample test the calls may also be made by formula structure,

> permKS(weight ~ Diet, data = ChickWeight, subset = Time == 21)

K-Sample Asymptotic Permutation Test

data: weight by Diet

Chi Square = 11.1786, df = 3, p-value = 0.01080

or by explicit definition of the response (c) and group (z) vectors,

23

> y <- ChickWeight[ChickWeight$Time == 21, "weight"]

> g <- ChickWeight[ChickWeight$Time == 21, "Diet"]

> permKS(y, g)

K-Sample Asymptotic Permutation Test

data: y and g

Chi Square = 11.1786, df = 3, p-value = 0.01080

The methodRule function works the same way as for permTS except a different default metho-
dRule function is used since the exact.network method is not available for the k-sample test.

If we can assume for illustration that the diets are inherently ordered, then we may want to
use the trend test. For the trend test (i.e., when zi is a scalar) the calls may also be made by
formula structure (not shown), or the default,

> permTREND(y, as.numeric(g))

Permutation Test using Asymptotic Approximation

data: y and as.numeric(g)

Z = 2.7879, p-value = 0.005305

alternative hypothesis: true correlation of y and as.numeric(g) is not equal to 0

sample estimates:

correlation of y and as.numeric(g)

0.4202893

Similar methodRule functions may be used (see help for permTREND).

Options for the algorithm methods are controlled by the variable control, and the function
permControl allows changing of only a subset of the options. For example, suppose one
wanted to do a simulation on data of the same size as the example. Then one could calculate
the complete enumeration matrix once (using the chooseMatrix function), and then each sim-
ulation could reuse that matrix. This will save time as illustrated below on the ChickWeight
data:

> system.time(cm19c10 <- chooseMatrix(length(y3) + length(y4),

+ length(y3)))

user system elapsed

4.81 0.00 4.81

> system.time(permTS(y3, y4, method = "exact.ce", control = permControl(cm = cm19c10)))

user system elapsed

0.20 0.04 0.23

> system.time(permTS(y3, y4, method = "exact.network", control = permControl(cm = cm19c10)))

24 Weighted Logrank Tests for Interval Censored Data

user system elapsed

4.44 0.01 4.45

In a simulation, the first calculation only needs to be done once.

5.3. Comparison with coin Package

This section compares the two permutation packages, coin (version 1.0-8) and perm (version
0.9-9.1).

The primary motivation for the creation of the perm package is for an independent, within R,
validation of the coin package. All checks between coin and perm have shown no differences
(see perm.coin.check.R in the test directory). In many ways, coin is the more comprehensive
and general package of the two. For example, coin allows the following not supported in
perm: user supplied transformations on the responses and covariates, other (nonlinear) test
statistics, stratification, and multiple responses and covariates. Further, the exact algorithms
in coin are faster than those in perm.

Here are some minor ways that perm is different from coin. First, the print method for coin
prints a standardized Z statistic to show direction of the effect, while the print method for
perm prints the difference in means and only additionally prints the Z statistic when the PCLT
is used. Second, the perm package allows methodRule functions, as previously described, to
automatically choose the calculation method. No similar feature is offered in coin. Third,
when using the Monte Carlo approximation to the exact (method="exact.mc" in perm and
distribution=approximate() in coin), then perm prints confidence intervals automatically with
the print method, while coin prints them only when using the pvalue function. Fourth, the
perm package allows the exact.ce method, which does complete enumeration. If a simulation
is desired for the two-sample test on a small sample size, then the exact.ce with the cm vari-
able fixed by the control option (so that it does not need to be recalculated for each simulation)
may give faster results than other algorithms. Fifth, the perm package allows two types of
two-sided p-values (alternative="two.sided" and alternative="two.sidedAbs"), while
the coin allows only one type of alternative (called alternative="two.sided" in coin but
equal to alternative="two.sidedAbs" in perm). We emphasize that these differences are
minor and when the two packages do the same analysis, both are similar.

Further extensibility of the perm package may not be needed since many of the ways it may
be expanded are covered by the coin package.

6. The interval package

We have already given some examples of how to use the interval package. In this section, we
give more details on the structure of the package.

6.1. Design and Implementation

The interval package uses S3 methods. The two main functions are the icfit function and
the ictest function. Both functions allow a formula as well as a default implementation,
and both implementation styles were presented in Section 4. Although the typical response

25

for the formula will be of the Surv class, from the survival package, we also allow numeric
responses and these are treated as exactly observed values.

The icfit function outputs an object of class icfit which is a list with the elements described
in the help, and with most elements exactly as in the icsurv class of the Icens package. The
icfit class is different from the icsurv class primarily because it allows the NPMLE of the
distributions for multiple strata to be stored as on icfit object as is possible in the surv

class of the survival package. For example, if the right hand side of the formula contains a
factor object with k factors then the resulting icfit object will contain k separate NPMLEs,
one for each factor. In that case the strata element will be a numeric vector of size k giving
the number of elements in each strata, and the other objects (e.g., the vector of probability
masses, pf) will be larger to include all the separate NPMLEs. The NPMLEs are separated
by stratum when either the summary or plot methods are applied to the icfit objects.

The available methods for icfit objects are print, summary, "[" and plot. The print

method prints as a list except the ‘A’ matrix (described below) is not printed, only its dimen-
sions are given. The summary and plot methods have been shown in Section 4 and they either
print or plot on one graph the NPMLE for each stratum. The "[" method allows picking out
the ith stratum from an icfit object.

Here are some details on the calculations in icfit. The icfit function calls a separate
function, Aintmap, that calculates an ‘A’ matrix and the ‘intmap’. The A matrix is an n×m
matrix of zeros and ones with the ijth element being an indicator of whether the interval
associated with the ith observation contains the jth interval of the intmap. The intmap is a
matrix which gives left and right endpoints of the intervals associated with the columns of A,
and the attributes of the intmap tell whether the endpoints are included or not as determined
by the Lin and Rin options. The default is to exclude the left interval and include the right
(i.e., (L,R]), except when either L = R (then the intervals are treated as exact, i.e., [R,R])
or R = ∞ which is not included. Differences in the inclusion of the endpoints can change
the results (see Ng (2002)). When the intervals of the intmap are regions of maximal cliques
then the A matrix is the transpose of the incidence or clique matrix defined in Gentleman and
Vandal (2002). The Aintmap is called internally by the icfit function, and the innermost
intervals (i.e., regions of maximal cliques) are calculated to possibly reduce the number of
columns of the A matrix.

Once an A matrix is calculated and reduced to represent only innermost intervals, the initial
estimate of the survival distribution is needed for the E-M algorithm. The initfit option
controls that initial estimate. An allowable option for initfit is an object of either class
icfit or icsurv. Another option for initfit is a character vector giving the name of a
function that inputs five variables (L,R, Lin, Rin, and A; although all need not be used),
and outputs a vector of probability masses estimating the distribution and optionally the
corresponding intmap. The default for initfit is initcomputeMLE, a function that calls
computeMLE from the MLEcens package. Note that if the initfit function, such as the
initcomputeMLE function, gives an error then the icfit ignores this calculation, gives a
warning, and calculates a very simple initial distribution. In the control option of icfit,
other values may be passed to the initfit function through the initfitOpts element of
control, and initfitOpts must be a named list of options.

Once the initial distribution is calculated then it is used in an E-M algorithm that allows
‘polishing’ elements to zero, then checking the Kuhn-Tucker conditions (see Gentleman and

26 Weighted Logrank Tests for Interval Censored Data

Geyer (1994)). If the initial distribution is very close to the NPMLE, then convergence may
happen on the first iteration. On the other hand, the initial distribution need not be very
close to the NPMLE but convergence can still happen. If the initial distribution has some
intervals set to zero that should not be, then the Kuhn-Tucker conditions will not be met and
the message value of the resulting icfit object (e.g., fit$message) will state this fact.

We test in demo("npmle.R") that the NPMLE estimates from the Icens package match those
from the icfit function. In that file we compare the NPMLE from the two packages for
the cosmesis data. We additionally simulate 30 other data sets and show that the NPMLEs
match for all the simulated data sets (data not shown).

The ictest function outputs an object of class ictest for which there is a print method,
modeled after the print method for the htest class used in the stats package that comes
with base R. Objects of class ictest are lists with many objects (see ictest help).

There are four choices for a predefined type of rank score: “logrank1” (scores described in
Sun (1996)), “logrank2” (scores described in Finkelstein (1986)), “wmw” and “normal” (the
WMW scores or normal scores described in Fay (1996)). Additionally, the option “general”
allows general scores for arbitrary error distributions on the grouped continuous model (see
Fay (1996)). To show the general scores we consider the logistic error distribution. We can
show that these scores are equivalent to the Wilcoxon-type scores (within computation error):

> icout <- ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, scores = "wmw")

> wmw.scores <- icout$scores

> logistic.scores <- ictest(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, icFIT = icout$fit, scores = "general",

+ dqfunc = function(x) {

+ dlogis(qlogis(x))

+ })$scores

> max(abs(wmw.scores - logistic.scores))

[1] 9.992007e-16

There are many inferential methods available for ictest as described in Section 2.5 and
the method may be either explicitly stated as a character vector or may be the result of
a methodRule function. The methodRule function works similarly as in the perm package,
except the input must be three objects: the vector of rank scores, the vector of group mem-
bership values, and a exact a logical value coming from the object of the same name in
the input. Other methodRule functions may be created to automatically choose the method
based on a function of these three objects, but the default is methodRuleIC1 (see help for
that function for details). Note that permutation inferences are available for all types of rank
scores, but other types of inferences are not available for all the scores; see Section 2.5 and
the ictest help for details.

Here is an overview of the calculation functions used in ictest. First, unless icFIT is given,
the NPMLE of the distribution for all individuals is calculated using the icfit function.
Any options used with the icfit function may be passed from the ictest call by using
the icontrol option. Using the resulting NPMLE from the icfit call, the rank scores are
calculated using the wlr_trafo function.

27

Similar to the ictest function, wlr_trafo is an S3 function with a default method and
one for Surv objects, but additionally there is a method for data.frame objects. In the
data.frame method, there must be only one variable which has either a Surv or numeric

class. The purpose of the data.frame method is to properly interact with the coin package
(see Section 6.2 below). Once the rank scores are calculated, then other functions are called
depending on the inferential method chosen: the icScoreTest function for the score test, the
icWSR function for the imputation approach, and the functions from perm for the permutation
approaches.

6.2. Interacting with the coin Package

The coin package allows different transformations for the response variables and we can use
the wlr_trafo function as a transformation function within coin.

> library(coin)

> independence_test(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, ytrafo = wlr_trafo)

Asymptotic General Independence Test

data: Surv(left, right, type = "interval2") by treatment (Rad, RadChem)

Z = -2.6684, p-value = 0.007622

alternative hypothesis: two.sided

This repeats the asymptotic results from the method="pclt" of ictest. The usefulness of
coin are the fast algorithms for exact permutation calculations. Even these fast methods are
still intractable for the full breast cosmesis data set, but we show here how the method may
be applied quickly to a subset of that data.

> SUBSET <- c(1:5, 50:65)

> independence_test(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, subset = SUBSET, ytrafo = wlr_trafo, distribution = exact())

Exact General Independence Test

data: Surv(left, right, type = "interval2") by treatment (Rad, RadChem)

Z = -1.0722, p-value = 0.2899

alternative hypothesis: two.sided

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ subset = SUBSET, method = "exact.network")

Exact Logrank two-sample test (permutation form), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.2861

alternative hypothesis: survival distributions not equal

28 Weighted Logrank Tests for Interval Censored Data

n Score Statistic*

treatment=Rad 5 -1.514936

treatment=RadChem 16 1.514936

* like Obs-Exp, positive implies earlier failures than expected

The p-values are different since, as discussed in Section 5.3, the default two-sided method is
different for the coin package than the perm package (and hence also the interval package).
When we use alternative="two.sidedAbs" then we reproduce the results from coin:

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ subset = SUBSET, method = "exact.network", alternative = "two.sidedAbs")

Exact Logrank two-sample test (permutation form), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.2899

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 5 -1.514936

treatment=RadChem 16 1.514936

* like Obs-Exp, positive implies earlier failures than expected

Note that the algorithms in coin can be considerably faster. To show this consider a larger
subset of the breast cosmesis data:

> SUBSET2 <- c(1:12, 47:58)

> system.time(independence_test(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, subset = SUBSET2, ytrafo = wlr_trafo,

+ distribution = exact()))

user system elapsed

0.03 0.00 0.03

> system.time(ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, subset = SUBSET2, method = "exact.network",

+ alternative = "two.sidedAbs"))

user system elapsed

2.47 0.00 2.50

6.3. On Handling Ties For Exact Permutation Implementation

In implementing the exact version of permutation tests, the way ties are handled may change
the resulting p-values by non-negligible amounts. In this section we detail a simple artificial

29

example to show how the handling of ties is difficult, in terms of reliably reproducing results,
and we show that the ictest function gives the correct results.

Consider the data set with:

> L <- c(2, 5, 1, 1, 9, 8, 10)

> R <- c(3, 6, 7, 7, 12, 10, 13)

> group <- c(0, 0, 1, 1, 0, 1, 0)

> example1 <- data.frame(L, R, group)

> example1

L R group

1 2 3 0

2 5 6 0

3 1 7 1

4 1 7 1

5 9 12 0

6 8 10 1

7 10 13 0

In this case we can calculate the NPMLE exactly:

(L R] probability

2 3 2
7

5 6 2
7

9 10 3
14

10 12 3
14

We calculate this with the interval package as

> library(interval)

> summary(icfit(L, R), digits = 12)

Interval Probability

1 (2,3] 0.285714285714

2 (5,6] 0.285714285714

3 (9,10] 0.214285714286

4 (10,12] 0.214285714286

which matches the exact to at least 12 digits:

> print(3/14, digits = 12)

[1] 0.214285714286

Usually the fit will not be this close, and the closeness of the fit is determined by the
icfitControl list (see the help).

The problem relates to the numerical precision of the calculated rank scores and subsequent
permutation p-value when there is a small number of permutations and ties in the test statis-
tics with different permutations (for interval censoring, possibly stemming from overlapping

30 Weighted Logrank Tests for Interval Censored Data

intervals). While not unique to interval censored data, this combination of factors may be
more common in this setting.

We can calculate the exact scores for the Sun method (Eq (7); i.e. scores="logrank1") these
are [

5

7
,
11

35
,
18

35
,
18

35
,−24

35
,−13

70
,−83

70

]

These scores sum to zero (as do all such scores regardless of the model). There are

(
7
3

)
= 35

unique permutations with equal probability. Note that the difference in means of the orig-
inal scores, (with group=[0, 0, 1, 1, 0, 1, 0]), gives equivalent values to the permutation with
group=[1, 1, 0, 0, 0, 1, 0] because the sum of the first and second scores equals the sum of the
third and fourth scores. Thus, we have a tie in the permutation distribution. We need to
make sure the computer treats it as a tie otherwise the p-value will be wrong. Dealing with
ties in computer computations can be tricky (see R FAQ 7.31 at
http://cran.r-project.org/doc/FAQ/R-FAQ.html). To see the details, we completely enu-
merate all the sums of the scores in one group. We use the function chooseMatrix from perm
to generate the full list of permutations of the original group variable. We print out only the
first 9 of the 35 ordered test statistics, placing the difference in means in the 8th column, next
to the permutation of the group allocation:

> score1 <- wlr_trafo(Surv(L, R, type = "interval2"))

> cm <- chooseMatrix(7, 3)

> T <- ((1 - cm) %*% score1)/4 - (cm %*% score1)/3

> cbind(cm, T)[order(T),][1:9,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 1 1 0 0 0 -1.0166667

[2,] 1 1 1 0 0 0 0 -0.9000000

[3,] 1 1 0 1 0 0 0 -0.9000000

[4,] 0 1 1 1 0 0 0 -0.7833333

[5,] 1 0 1 0 0 1 0 -0.6083333

[6,] 1 0 0 1 0 1 0 -0.6083333

[7,] 1 1 0 0 0 1 0 -0.4916667

[8,] 0 0 1 1 0 1 0 -0.4916667

[9,] 0 1 1 0 0 1 0 -0.3750000

The seventh and eighth largest of the 35 test statistics are tied, and the eighth largest is
equal to the original group assignment, so that the one sided p-value is 8/35 = 0.2286. We
see that ictest properly calculates this p-value. The way that perm can directly address
the ties issue is to allow the user to specify numerical precision, i.e. rounding to the nearest
permControl()$digits significant digits; and perm treats values of the permutation distri-
bution that are tied for that many significant digits as true ties.

We have not shown that this method of breaking ties always works properly; however, it
does work in all the cases we have tried. We would like to emphasize that this issue is only
a problem with small sample sizes using exact permutation methods. Additionally, it is a

http://cran.r-project.org/doc/FAQ/R-FAQ.html

31

problem with all permutation tests where the test statistics have a non-zero probability of
creating a tie. Very small differences in the rank scores will only produce correspondingly
small differences in the asymptotic approximation, so as the sample sizes get large and, as
guaranteed by the permutational central limit theorem, the estimate becomes more accurate,
the way ties are handled effects large sample results minimally.

Acknowledgements

We would like to thank the editors and anonymous reviewers for the Journal of Statistical
Software for their valuable comments that have improved this paper and the packages.

References

Agresti A, Mehta C, Patel N (1990). “Exact inference for contingency tables with ordered
categories.” Journal of the American Statistical Association, 85, 453–458.

Callaert H (2003). “Comparing Statistical Software Packages: The Case of the Logrank Test
in StatXact.” American Statistician, 57, 214–217.

Carstensen B (1996). “Regression models for Interval Censored Survival Data: Application
to HIV Infection in Danish Homosexual Men.” Statistics in Medicine, 15, 2177–2189.

Chambers JM (2008). “Software for Data Analysis: Programming with R.”

Farrington C (1996). “Interval Censored Data: A Generalized Linear Modeling Approach.”
Statistics in Medicine, 15, 283–292.

Fay MP (1996). “Rank invariant tests for interval censored data under the grouped continuous
model.” Biometrics, 52, 811–822.

Fay MP (1999). “Comparing several score tests for interval censored data (Corr: 1999V18
p2681).” Statistics in Medicine, 18, 273–285.

Fay MP, Kim HJ, Hachey M (2007). “On using Truncated Sequential Probability Ratio Test
Boundaries for Monte Carlo Implementation of Hypothesis Tests.” Journal of Computa-
tional and Graphical Statistics, 16(4), 946–967.

Finkelstein D, Wolfe R (1985). “A Semiparametric Model for Regression Analysis of Interval-
Censored Failure Time Data.” Biometrics, 41, 845–854.

Finkelstein DM (1986). “A proportional hazards model for interval-censored failure time
data.” Biometrics, 42, 845–854.

Fleming T, Harrington D (1991). Counting Processes and Survival Analysis. Wiley, New
York.

Freidlin B, Korn EL, Hunsberger S, Gray R, Saxman S, Zujewski JA (2007). “Proposal for
the use of progression-free survival in unblinded randomized trials.” Journal of Clinical
Oncology, 25(15), 2122–2126.

32 Weighted Logrank Tests for Interval Censored Data

Gentleman R, Geyer C (1994). “Maximum Likelihood for Interval Censored Data: Consistency
and Computation.” Biometrika, 81, 618–623.

Gentleman R, Vandal A (2001). “Computational Algorithms for Censored-Data Problems
using Intersection Graphs.” Journal of Compuational and Graphical Statistics, 10, 403–
421.

Gentleman R, Vandal A (2002). “Nonparametric estimation of the bivariate CDF for arbi-
trarily censored data.” Canadian Journal of Statistics, 30, 557–571.

Goggins WB, Finkelstein DM, Zaslavsky AM (1999). “Applying the Cox Proportional Hazards
Model When the Change Time of a Binary Time-varying Covariate Is Interval Censored.”
Biometrics, 55, 445–451.

Groeneboom P, Jongbloed G, Wellner J (2008). “The support reduction algorithm for com-
puting nonparametric function estimates in mixture models.” Scand Stat Theory Appl, 35,
385–399.

Gu M, Sun L, Zuo G (2005). “A Baseline-Free Procedure for Transformation Models Under
Interval Censorship.” Lifetime Data Analysis, 11, 473–488.

Heinze G, Gnant M, Schemper M (2003). “Exact Log-Rank Tests for Unequal Follow-Up.”
Biometrics, 59, 1151–1157.

Hoffman EB, Sen PK, Weinberg CR (2001). “Within-cluster resampling.” Biometrika, 88,
420–429.

Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2006). “A Lego System for Conditional
Inference.” The American Statistician, 60(3), 257–263.

Huang J, Lee C, Yu Q (2008). “A generalized log-rank test for interval-censored failure time
data via multiple imputation.” Statistics in Medicine, DOI: 10.1002/sim.3211.

Kalbfleisch J, Prentice R (1980). The Statistical Analysis of Failure Time Data. Wiley, New
York.

Law C, Brookmeyer R (1992). “Effects of mid-point imputation on the analysis of doubly
censored data.” Statistics in Medicine, 11, 1569–1578.

Ng M (2002). “A modification of Peto’s survival curves for interval-censored data.”Biometrics,
58, 439–442.

Peto R, Peto J (1972). “Asymptotically Efficient Rank Invariant Test Procedures (with dis-
cussion).” Journal of the Royal Statistical Society, series A, 135, 185–207.

Pettitt A (1984). “Tied, grouped continuous and ordered categorical data: A comparison of
two models.” Biometrika, 71, 35–42.

Satten GA (1996). “Rank-based inference in the proportional hazards model for interval
censored data.” Biometrika, 83(2), 355–370. Cited By (since 1996): 37.

Self SG, Grosman EA (1986). “Linear rank tests for interval-censored data with application
to PCB levels in adipose tissue of transformer repair workers.” Biometrics, 42, 521–530.

33

Sen P (1985). “Permutational Central Limit Theorems.” In S Kotz, NL Johnson (eds.),
“Encyclopedia of Statistics,” volume 6. Wiley.

Sun J (1996). “A Non-Parametric Test for Interval-Censored Failure Time Data with Appli-
cation to AIDS Studies.” Statistics in Medicine, 15, 1387–1395.

Tanner M (1996). Tools for Statistical Inference, third edition. Springer, New York.

Turnbull B (1976). “The Empirical Distribution Function with Arbitrarily Grouped, Censored
and Truncated Data.” Journal of the Royal Statistical Society, Series B, 38, 290–295.

Zhang Z, Sun L, Sun J, Finkelstein D (2007). “Regression analysis of failure time data with
informative interval censoring.” Statistics in Medicine, 26, 2533–2546.

	Introduction
	Background on Analysis Methods for Interval Censored Data
	Censoring Assumptions
	Nonparametric Maximum Likelihood Estimation of the Survival Distribution
	Overview of Weighted Logrank Tests
	Choosing the Likelihood for WLR Tests
	Choosing the Inferential Method for WLR Tests
	Regression in Interval Censored Data

	Mathematical Formulation of the Scores for the WLRT
	Application
	Survival Estimation
	Two-sample Weighted logrank tests
	K-sample and trend tests
	Exact permutation tests
	Other test options

	 The perm package
	Overview of Methods
	Design and Implementation
	Comparison with coin Package

	 The interval package
	Design and Implementation
	Interacting with the coin Package
	On Handling Ties For Exact Permutation Implementation

