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Abstract

In this tutorial we show how complete hierarchical multinomial marginal (hmm) mod-
els for categorical variables can be defined, estimated and tested using the hmmm package.
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1. Introduction

Marginal models are defined for categorical variables by imposing restrictions on marginal
distributions of contingency tables, (Agresti (2012), Ch. 12). A complete hierarchical multi-
nomial marginal model (hmm) is specified by an ordered set of marginal distributions and a set
of interactions (contrasts of logarithms of probabilities) defined within different marginal dis-
tributions according to the rules of hierarchy and completeness (Bergsma and Rudas (2002),
Bartolucci, Colombi, and Forcina (2007)). In particular, in hmm models every interaction is
defined in one and only one marginal distribution (completeness) and within the first marginal
set which contains it (hierarchy). By imposing equality and inequality constraints on marginal
interactions, interesting hypotheses (i.e. independence in sub-tables, where some categories
are collapsed, association in marginal tables, conditional independence or additive effects of
covariates in marginal tables, marginal homogeneity, monotone dependence, positive associa-
tion, among others) can be tested in hmm models.

In this tutorial we show how to define and estimate hmm models with interactions restricted
under equality and inequality constraints or influenced by the effects of covariates using the
hmmm package.

2. How to define and estimate marginal models

The starting point for the marginal modeling of categorical data is a multidimensional ta-
ble representing the joint distribution of two or more unordered and/or (partially) ordered
categorical variables.

In the hmmm package the input data must be a vector of cell frequencies arranged in antilex-
icographic order. To start with, we show how to get a named vector of frequencies from the
accident data frame, regarding accidents occurred to workers, whose columns contain the
variables: var. 1 Type of the injury (with 3 levels), var. 2 Time to recover (with 4 levels),
var. 3 Age of the worker (with 3 levels) and var. 4 solar Hour (with 2 levels) along with the
counts for each configuration of the variables (last column). Note that variables are denoted
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by integers, the lower the number identifying the variable, the faster its category subscript
changes in the vectorized contingency table.

> library("hmmm")
> data(accident, package="hmmm")
> y<-getnames (accident,st=9)

The length of the row names is controlled by the st argument. Row names identify the cells
of the contingency table and are used in the outputs displaying estimated cell probabilities.
Only the first twelve rows are printed to give an example.

cell names counts
[1,] uncertain O |-- 7 <=25 morning 21
[2,] avoidable O |-- 7 <=25 morning 9
[3,] not-avoid O |-- 7 <=25 morning O
[4,] uncertain 7 |-- 21 <=25 morning 10
[5,] avoidable 7 |-- 21 <=25 morning 9
[6,] not-avoid 7 |-- 21 <=25 morning O
[7,] uncertain 21 |-- 60 <=25 morning 5
[8,] avoidable 21 |-- 60 <=25 morning 1
[9,] not-avoid 21 |-- 60 <=25 morning 1
[10,] uncertain >= 60 <=25 morning 2
[11,] avoidable >= 60 <=25 morning 0
[12,] not-avoid >= 60 <=25 morning 1

Let us start by defining a saturated hmm model, i.e. a model without any restrictions on
the interactions. First, the list of the marginal sets has to be declared and the command
marg.list serves the need. Here, with respect to accident data, it defines the bivariate
distribution of the variables 3, 4; the two joint distributions of the variables 1, 3, 4 and 2,
3, 4; and the joint distribution. The symbol “b” states that all the log-linear interactions in
every marginal set are of baseline type (sections 3 and 4 are devoted to illustrate the use of
more general types of interactions). The second statement uses the function hmmm.model to
define the hmmm model. In the input arguments, as well as the marginal sets, information
on the number of categories and on the names of the variables involved are specified. The
output illustrates how the interactions are allocated according to the principles of hierarchy
and completeness.

> margin<-marg.list (c("marg-marg-b-b", "b-marg-b-b", "marg-b-b-b", "b-b-b-b"))
> m<-hmmm.model (marg=margin,lev=c(3,4,3,2),
+ names=c("Type", "Time", "Age", "Hour"))

>m

inter. inter.names marg. marg.names type npar start end
[1,] 3 Age 34 Age ,Hour b 2 1 2
[2,] 4 Hour 34 Age ,Hour b 1 3 3
[3,] 34 Age .Hour 34 Age ,Hour bb 2 4 5
(4,1 1 Type 134  Type,Age,Hour b 2 6 7
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(5,1 13 Type.Age 134  Type,Age,Hour bb 4 8 11
[6,] 14 Type.Hour 134  Type,Age,Hour bb 2 12 13
[7,] 134 Type.Age.Hour 134  Type,Age,Hour bbb 4 14 17
[8,1 2 Time 234  Time,Age,Hour b 3 18 20
[9,]1 23 Time.Age 234  Time,Age,Hour bb 6 21 26
[10,] 24 Time.Hour 234  Time,Age,Hour bb 3 27 29
[11,] 234 Time.Age.Hour 234  Time,Age,Hour bbb 6 30 35
[12,] 12 Type.Time 1234 Type,Time,Age,Hour bb 6 36 41
[13,]1 123 Type.Time.Age 1234 Type,Time,Age,Hour bbb 12 42 53
[14,] 124 Type.Time.Hour 1234 Type,Time,Age,Hour bbb 6 54 59

[15,] 1234 Type.Time.Age.Hour 1234 Type,Time,Age,Hour bbbb 12 60 71

A non-saturated model can be defined by imposing equality constraints on certain interactions.
For example, we can set to zero the interactions that occupy the positions 12 : 13, 14 : 17
in the vector of the parameters in order to state that the conditional independence 114 | 3
holds for the variables in accident data. This can be achieved by specifying the argument
sel of the hmmm.model function

> modelB<-hmmm.model (marg=margin,lev=c(3,4,3,2),
+ names=c("Type", "Time","Age", "Hour"),

+ sel=c(12:13,14:17))

> modB<-hmmm.mlfit (y,modelB)

The model is then estimated by the command hmmm.mlfit

> modB

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:
Likelihood Ratio Stat (df= 6 ): Gsq = 6.02965 (p = 0.41988 )

Further, estimated parameters can be printed by the following statement
> print (modB, aname="model B",printflag=TRUE)

A much more detailed output with estimated standard errors and estimated cell probabilities
is given by

> summary (modB)

When the constrained interactions are log-linear parameters defined in the joint distribution
(Agresti (2012)) it is convenient to use the argument formula of the hmmm.model function for
specifying the log-linear model without the interactions we impose to be zero. For example,
if in addition to the previous constraints, we would verify also if the odds ratios of the
distribution of Type and Time do not depend on the levels of Age and Hour, we must set to
zero the interactions of second and third order arranged in the positions from 42 to 71. These
log-linear interactions are defined in the joint distribution and we can use the statements
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> modelA<-hmmm.model (marg=margin,lev=c(3,4,3,2),

+ names=c ("Type","Time", "Age", "Hour") ,sel=c(12:13,14:17),
+ formula="Type*Age*Hour+Time*Age*Hour+Type:Time)

> modA<-hmmm.ml1fit (y,modelA)

Thus, modelA is nested in modelB. The likelihood ratio test to compare the two nested models
is obtained by the function anova

> anova (modA,modB)

statistics value df pvalue
model A 34.589455 36 0.5356700
model B 6.029646 6 0.4198800
LR test 28.559810 30 0.5407972

Note that the previous model A is not log-linear because some constrained interactions are
defined in marginal distributions. A log-linear model can be defined and estimated by the
following statements

> modellog<-loglin.model (lev=c(3,4,3,2),

+ formula="Type*Age*Hour+Time*Age*Hour+Type:Time,
+ names=c ("Type", "Time", "Age", "Hour"))

> modlog<-hmmm.mlfit (y,modellog)

3. Generalized marginal interactions

In the previous section all the interactions defined within the marginal distributions were of
log-linear type. Bartolucci et al. (2007) have shown that more general types of interactions can
be used to parameterize marginal models. This possibility is particularly useful as, in presence
of ordered categorical variables, the univariate marginal distributions are parameterized more
appropriately using non standard logits such as the global and continuation ones for example,
or bivariate distributions are parameterized by non standard odds ratios such as the global,
global-continuation and the continuation ones. This extension is also important since several
hypotheses of restrictive association and monotone dependence can be expressed by inequality
constraints on these generalized interactions (see section 5 on testing inequality constraints in
hmm models). Bartolucci et al. (2007), in particular, showed that the generalized marginal
interactions within a marginal set can be defined by assigning a logit type to every variable
of the marginal distribution. For example, if we use global logits for both variables in a
bivariate distribution then this distribution is parameterized by global logits and global log
odds ratios. If we assign continuation logits to one variable and global logits to the other one
then we have a parametrization in terms of continuation logits, global logits and continuation-
global log odds ratios. For details on generalized interactions and their interpretation refer
to Bartolucci et al. (2007) and to section 5 where their usefulness for testing hypotheses of
stochastic orderings is clarified.

The marg.list command is used to make clear the logit type assigned to every variable in
a marginal distribution as every generalized interaction depends on it. The types of logit
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allowed in hmmm are baseline (b), local (1), continuation (c) and reverse continuation (rc).
A different type of logits is discussed in the next section.

For example, we consider the data Madsen with variables: Influence (var. 1 with 3 levels),
Satisfaction (var. 2 with 3 levels), Contact (var. 3 with 2 levels), Housing (var. 4 with 4
levels). Remind that variables are denoted by integers, the lower the number identifying the
variable, the faster its category subscript changes in the vectorized contingency table.

For the Madsen data, consider the statements

> margin<-marg.list(c("marg-marg-1-1","g-marg-1-1", "marg-g-1-1","g-g-1-1"))
> model<-hmmm.model (marg=margin,lev=c(3,3,2,4) ,names=c("In","Sa", "Co", "Ho"))
> model

inter. inter.names marg. marg.names type npar start end

[1,] 3 Co 34 Co,Ho 1 1 1 1

[2,]1 4 Ho 34 Co,Ho 1 3 2 4

[3,] 34 Co.Ho 34 Co,Ho 11 3 5 7

(4,1 1 In 134  In,Co,Ho g 2 8 9

[5,] 13 In.Co 134  In,Co,Ho gl 2 10 11
[6,] 14 In.Ho 134  In,Co,Ho gl 6 12 17
[7,] 134 In.Co.Ho 134  In,Co,Ho gll 6 18 23
[8,1 2 Sa 234  Sa,Co,Ho g 2 24 25
[9,]1 23 Sa.Co 234 Sa,Co,Ho gl 2 26 27
[10,] 24 Sa.Ho 234  Sa,Co,Ho gl 6 28 33
[11,] 234 Sa.Co.Ho 234 Sa,Co,Ho gll 6 34 39
[12,]1 12 In.Sa 1234 1In,Sa,Co,Ho gg 4 40 43
[13,] 123 In.Sa.Co 1234 1In,Sa,Co,Ho ggl 4 44 47
[14,] 124 In.Sa.Ho 1234 1In,Sa,Co,Ho ggl 12 48 59
[15,] 1234 In.Sa.Co.Ho 1234 1In,Sa,Co,Ho ggll 12 60 71

This means that in the bivariate distribution of variables 3, 4 all the interactions are of
local type, while in the joint distribution of 1, 3, 4 the interactions 1 are global logits, the
interactions 13 and 14 are global-local log-odds ratios. In this marginal distribution, the
interactions 134 are differences between the logarithms of two global-local odds ratios. A
similar comment holds for the joint distribution of the variables 2, 3, 4.

To test if there is an additive effect of variables 3 and 4 on the global logits of variables 1 and
2 in the marginal distributions 134 and 234 we can use the following statements

> modelad1<-hmmm.model (marg=margin,lev=c(3,3,2,4),
+ names=c("In","Sa","Co","Ho"),sel=c(18:23,34:39))

data(madsen, package="hmmm")
y<-getnames (madsen, st=6)
modadd1<-hmmm.m1fit (y,modeladl)
modadd1

vV VvV Vv Vv

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:
Likelihood Ratio Stat (df= 12 ): Gsq = 14.76183 (p = 0.25472 )
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Moreover, to add the hypothesis that the global odds ratios of the variables 1 and 2 do not
depend on the levels of the other two variables, the ggl and ggll interactions that occupy the
positions 44 : 71 in the vector of parameters have to be constrained to zero

> modelad2<-hmmm.model (marg=margin,lev=c(3,3,2,4),

+ names=c("In","Sa","Co","Ho"),sel=c(18:23,34:39,44:71))
> modadd2<-hmmm.m1fit (y,modelad2)

> modadd2

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:
Likelihood Ratio Stat (df= 40 ): Gsq = 45.61355 (p = 0.25008 )

For an alternative way of specifying other similar hypotheses see section 6 where the effect of
covariates on interactions is taken into account.

4. Recursive marginal interactions

Cazzaro and Colombi (2008) extended the class of generalized interactions by introducing
a new type of logits: the recursive (or nested) logits. In the simplest case these logits are
defined in correspondence of a partition of the categories of a variable. As an example we
consider the data relpol with variable Religion with levels: Pr ‘Protestant’, Ca ‘Catholic’, No
‘None’ and variable Politics with levels: El ‘Extremely liberal’, Li ‘Liberal’, Sl ‘Slightly liberal’,
Mo ‘Moderate’, Sl ‘Slightly conservative’, Co ‘Conservative’, Ec ‘Extremely conservative’.
For Religion we consider the partition with sets R={Pr, Ca}, N={No} and for Politics the
partition in the sets: L={El, Li, Sl}, M={Mo} and C={Sc, Co, Ec}.

A first sets of logits are the baseline logits which are defined within every set of the partition
(the reference category can be chosen arbitrarily in every set). For example, this kind of
recursive logits for Religion and Politics are: log[pr(Ca)/pr(Pr)] and log|pr(El)/pr(Li)],

log[pr(Sl)/pr(Li)], log[p(Sc)/p(Co)], log[pr(Ec)/pr(Co)], respectively.

A second sets of logits are the baseline logits defined on the probabilities of the sets of the
partition (the reference set can be chosen arbitrarily). Considering the relpol data, the
recursive logits of the variables Religion and Politics in this case are: log[pr(N)/pr(R)] and
log[pr(C)/pr(L)], log[pr(M)/pr(L)], respectively.

The number of recursive logits is always equal to the number of categories minus one.

For a more general definition, and for several examples, see Cazzaro and Colombi (2008) and
Cazzaro and Colombi (2013).

The use of interactions based on recursive logits is requested in marg.list by the use of
“r” instead of “I”, “b”, “c”, “rc”’, “g”. The recursive logits are specified by the function
recursive that must have an argument for every variable. The argument is 0 for every
variable to which a recursive logit is not assigned otherwise it is a matrix. The rows of this
matrix specify the categories whose probabilities appear in the numerator and denominator of
every recursive logit. In a row a value 1 (-1) corresponds to the categories whose probability
is cumulated in the numerator (denominator), 0 if the category is not involved. Finally the

output of recursive must be assigned to the argument cocacontr of hmmm.model.

With the reference to the relpol data the necessary statements are
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> marginals<-marg.list(c("r-marg", "marg-r","r-r"))
> Ri<-matrix(c(-1,-1,1,
+ -1,1,0),2,3,byrow=T)
> R2<-matrix(c(-1,-1,-1, 0, 1, 1, 1,
+ -1,-1,-1, 1, 0, 0, O,
+ 1,-1, o, 0, 0, 0, O,
+ o,-1, 1, 0, 0, 0, O,
+ o, 0o, 0, 0, 1,-1, O,
+ o0, 0, 0, 0, 0,-1, 1),6,7,byrow=T)
> rec<-recursive(R1,R2)
> model<-hmmm.model (marg=marginals,lev=c(3,7),names=c("Rel","Pol"),
+ cocacontr=rec)
> model
inter. inter.names marg. marg.names type npar start end
(1,1 1 Rel 1 Rel r 2 1 2
[2,] 2 Pol 2 Pol T 6 3 8
[3,1 12 Rel.Pol 12 Rel,Pol rr 12 9 20

Here we report only the results for the saturated model, see Cazzaro and Colombi (2013) for
examples on non-saturated models.

> data(relpol, package="hmmm")
> y<-getnames(relpol,st=4)

> modr<-hmmm.mlfit (y,model)

> print (modr,printflag=T)

SUMMARY of MODEL:

OVERALL GOODNESS OF FIT:
Likelihood Ratio Stat (df= 0 ): Gsq = 0

inter. marg. type STRATA_1

linkl Rel Rel r 2.198445
link2 Rel Rel T 1.085646
1link3 Pol Pol r -0.368723
link4 Pol Pol r -0.404021
link5 Pol Pol r 1.699386
link6 Pol Pol r -0.263191
1link7 Pol Pol r -0.045611
1ink8 Pol Pol r 1.714798
1ink9 Rel.Pol Rel,Pol rr -1.665426
1ink10 Rel.Pol Rel,Pol rr -0.257114
link11l Rel.Pol Rel,Pol rr -0.96283
1link12 Rel.Pol Rel,Pol rr 0.276553
1link13 Rel.Pol Rel,Pol rr -0.065654
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link14 Rel.Pol Rel,Pol rr -0.85745
1ink15 Rel.Pol Rel,Pol rr -0.567533
1link16 Rel.Pol Rel,Pol rr -0.386656
1ink17 Rel.Pol Rel,Pol rr 0.797325
1ink18 Rel.Pol Rel,Pol rr 0.348307
1ink19 Rel.Pol Rel,Pol rr 1.071584
1ink20 Rel.Pol Rel,Pol rr -0.95906

5. Inequality constraints on interactions

Hypotheses of monotone dependence and positive/negative association between ordered cat-
egorical variables can be ascertained by testing marginal models with inequality constraints
on certain interactions. We illustrate how to define, fit and test models with parameters
constrained by inequalities using the dataset polbirth.

In the dataset polbirth involving data on political orientation and opinion on teenage birth
control, variable 1 is Politics with categories: Fatremely liberal, Liberal, Slightly liberal, Mod-
erate, Slightly conservative, Conservative, Extremely conservative and variable 2 is Birth with
categories Strongly agree, Agree, Disagree, Strongly disagree.

With these variables, for example, we can test the hypothesis that the distributions of Politics
given the levels of Birth are ordered according to the simple dominance criterion coherently
with the strength of the opinion on Birth control. This hypothesis is equivalent to require
that all the global-local log-odds ratios are non-negative. Continuation-local or local log-odds
ratios can be constrained to consider successively stronger notions of monotone dependence
(uniform and likelihood ratio stochastic orderings), see Dardanoni and Forcina (1998) and
Shaked and Shanthikumar (1994).

We test the simple monotone dependence of Politics on Birth.

The marginal sets, the logit types and the labels of the variables are declared below

> data(polbirth, package="hmmm")

> y<-getnames (polbirth)

> marginals<-marg.list(c("g-marg", "marg-1","g-1"))
> names<-c("Politics","Birth")

The interactions subject to inequality constraints, the marginal set where they are defined
and the types of logit used for each variable are listed as follows, so that in this case the
log-odds ratios of global-local types are the interactions to be constrained

> ineq<-list(marg=c(1,2),int=1ist(c(1,2)),types=c("g","1"))

The marginal model with inequalities on global-local interactions is defined using the function
hmmm.model where ineq is assigned to the argument dismarg

> model<-hmmm.model (marg=marginals,dismarg=ineq,lev=c(7,4),names=names)
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More than one list, like that specified in ineq, can compose dismarg if interactions de-
fined in different marginal distributions have to be constrained (see details in the help of the
hmmm . model function).

The model with non-negative global-local log-odds ratios (Simple monotone dependence model)
is estimated with the function hmmm.mlfit where the input noineq is declared FALSE

> mlr<-hmmm.m1fit(y,model,noineq=FALSE)

If the previous inequality constraints are turned into equality, all the global-local log-odds
ratios are null and the corresponding model is the stochastic independence model

> modelO<-hmmm.model (marg=marginals,lev=c(7,4),sel=c(10:27),names=names)
> mnull<-hmmm.ml1fit (y,model0)

The model estimated without any inequality constraints on parameters is, in this case, the
saturated model

> msat<-hmmm.ml1fit(y,model)

The fitted models are compared through the function hmmm.chibar. The arguments of
hmmm. chibar are the estimated models with inequality constraints turned into equalities
(nullfit), with inequality constraints (disfit) and without inequality constraints on pa-
rameters (satfit).

> test<-hmmm.chibar (nullfit=mnull,disfit=mlr,satfit=msat)

Function hmmm.chibar tests problems of type A and B (Silvapulle and Sen (2005) pg. 61):
the test of type A compares the model nullfit under Hy against the model disfit under
H7; while the type B problem means testing Hy : model disfit against H; : model satfit.
The main difference between type A and type B problems is that inequalities are present in
the alternative hypothesis of type A and the null hypothesis of type B problems.

The null distribution of the likelihood ratio statistic G2 for or against inequality constraints
turns out to be chi-bar-square, that is a mixture of chi-square distributions. Its tail probabil-
ities are computed by simulation (the method Simulation 2 described in Silvapulle and Sen
(2005) pg. 79 is implemented).

The output of hmmm.chibar provides the values of the likelihood ratio statistics G? and their
simulated pvalues for both tests of type A and B.

> test

chibar simulated pvalues

test pvalue
testA 64.457490 3.80154e-09
testB 2.033941 9.35751e-01
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A much detailed output is printed by summary.

6. Covariates effects on the response variables

Different models can be estimated taking into account the effects of covariates on the response
variables (as in Marchetti and Lupparelli (2011) and Glonek and McCullagh (1995)).

We consider the data accident but note that, now, var. 1 Type of the injury (3 levels), var.
2 Time to recover (4 levels) are considered as response variables and var. 3 Age of the worker
(3 levels) and var. 4 solar Hour (2 levels) as covariates. Remind that the lower the variable
number is the faster the variable sub-script changes in the vectorized table. Furthermore,
the categories of the covariates determine the strata and the data must be arranged in such
a way that the subscript of the response variable changes faster than the subscripts of the
covariates.

In order to estimate different models taking into account the covariate effects on the response
variables, first, the list of the marginal sets of the response variables has to be specified (see
section 2 for details about marg.1list). With respect to the vector of counts from accident
data, the necessary statement is

> marginals<-marg.list(c("b-marg", "marg-g","b-g"))

It is stated that in the marginal distribution of Type the interactions are baseline logits,
in the marginal distribution of Time the interactions are global logits and, in the bivariate
distribution of Type and Time, the interactions are baseline-global odds ratios.

Successively, a list of components, each for every interaction specified above, defining the
effects of the covariates on such interactions, is needed. The following statements account for
additive effect of the covariates Age and Hour on the marginal logits of the response variables
Type and Time and on the association (log-odds ratios) between the responses Type and Time.

al<-list(

Type="Type* (Age+Hour) ,
Time="Time* (Age+Hour),
Type.Time="Type. Time* (Age+Hour)
)

+ + + + vV

It is worthwhile to note that each component of the list has the name of the interaction and
contains the model formula of the covariate effects on such interaction.

The model that takes into account the covariate effects on the response variables is then spec-
ified through the function hmmm.model.X. Several arguments are included in hmmm.model.X:
the marginal sets and the names of the response variables (names) defined in the previous
statements and their number of categories, the names of the covariate variables (fnames)
and their number of categories (strata) but, in particular, the main argument is Formula to
which a list as al must be assigned.

> model<-hmmm.model.X (marg=marginals,lev=c(3,4),names=c("Type", "Time"),
+ Formula=al,strata=c(3,2),fnames=c("Age", "Hour"))
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The model is then estimated by the command hmmm.ml1fit.

> data(accident,package="hmmm")

> y<-getnames (accident,st=9,sep=";")
> mod1<-hmmm.mlfit (y,model,y.eps=0.1)
> mod1

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:
Likelihood Ratio Stat (df= 22 ): Gsq = 16.47375 (p = 0.7917 )

More detailed outputs (the estimated effects and the estimated standard errors, among others)
are given by the following statement. Note that the covariate effects preceded by the main
general effect (Intercept) are listed for every interaction.

> summary (mod1)

The necessary list of model formulas to test another interesting hypothesis in which there
is the covariates Age, Hour additive effect on the marginal logits of the responses and the
stochastic independence between Type and Time in each sub-table identified by the levels of
Age and Hour, is

alind<-list(
Type="Typex*Age+Type*Hour,
Time="Timex*Age+Time*Hour,
Type.Time="zero"

)

+ 4+ + + VvV

Note that we use "zero" to constrain to zero all the interactions of a given type, in this case
the log-odds ratios between Type and Time.

If we want to test the so-called ‘Parallel log-odds model’, that is if the effect of the covariates
Age and Hour is identical for each of the logits and the odds ratios of the responses Type and
Time, we need the following statement

alpar<-list(
Type="Type+Age+Hour,
Time="Time+Age+Hour,
Type.Time="Type.Time+Age+Hour
)

+ 4+ + + VvV

Note that the model tested in this section are Glonek-McCullagh Multivariate Logistic Models
with categorical covariate variables.

7. Further remarks

The complete hierarchical marginal models, that can be analyzed with the hmmm package,
are a generalization of several models proposed in the literature of categorical data analysis.

11
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For example, Log-linear Models are hmm models where all the interactions are defined within
the joint distribution (section 2). The Bergsma and Rudas (2002) Marginal Models are hmm
models where the interactions of log-linear type are defined in different marginal distributions
(section 2). The models described in the other sections are extensions of the Bergsma-Rudas
models involving more general type of interactions. Finally, Glonek and McCullagh (1995)
Multivariate Logistic Models (see the examples of section 6) are hmm models which use all
the marginal distributions and the parameters are the highest order interactions that can be
defined within every marginal distribution.

Note that the hmmm package can estimate the parameters of all the previous models under
inequality constraints.

Furthermore, that are other topics that this tutorial do not cover: (i) Hidden Markov models
with several observed categorical variables whose distributions conditioned by the latent states
are defined as hmm models; (ii) Lang (2004) Multinomial Poisson homogeneous models that
can be estimated with the hmmm package also under inequality constraints.
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