
Bayesian inference in hmmTMB

Théo Michelot

2023-01-09

This vignette describes functionalities of the package hmmTMB for Bayesian inference, which
are based on Stan (Stan Development Team (2019); Stan Development Team (2022)). The
package tmbstan conveniently integrates TMB with Stan, such that a TMB model object
(such as the one created inside the HMM class in hmmTMB) can directly be used to run MCMC
in Stan (Monnahan and Kristensen (2018)).

1 Generating data
For the sake of demonstration, we use simulated data in this vignette. You can skip this
section if you are not interested in the procedure used to generate artificial data. In the
following chunk of code, we:

1. create an empty data set, just as a way to define the number of observations;

2. create a MarkovChain object for a 2-state hidden process (St), with transition probability
matrix

Γ =
0.95 0.05

0.2 0.8


3. create an Observation object for the observation process (Zt), defined such that

Zt|{St = 1} ∼ N(0, 3)
Zt|{St = 2} ∼ N(5, 1)

That is, the observations follow a state-dependent normal distribution.

4. create an HMM object from the two model components;

5. simulate observations from the HMM object.

1

Create empty data set to specify number of observations
n <- 500
data_sim <- data.frame(z = rep(NA, n))

Hidden state process
hid_sim <- MarkovChain$new(data = data_sim, n_states = 2,

tpm = matrix(c(0.95, 0.2, 0.05, 0.8), 2, 2))

Observation process
par_sim <- list(z = list(mean = c(0, 5), sd = c(3, 1)))
obs_sim <- Observation$new(data = data_sim, dists = list(z = "norm"),

n_states = 2, par = par_sim)

Create HMM and simulate observations
hmm_sim <- HMM$new(hid = hid_sim, obs = obs_sim)
data_sim <- hmm_sim$simulate(n = n, silent = TRUE)

head(data_sim)

ID z
1 1 1.052223
2 1 -1.233942
3 1 -2.746401
4 1 1.330035
5 1 5.717938
6 1 -3.372675

Plot simulated time series
state_sim <- factor(attr(data_sim, "state"))
ggplot(data_sim, aes(1:nrow(data_sim), z, col = state_sim)) +

geom_point() +
labs(x = "time", y = "observation") +
scale_color_manual(values = pal, name = "state")

2

−5

0

5

10

0 100 200 300 400 500
time

ob
se

rv
at

io
n state

1

2

2 Model specification
We now turn to the specification of the model used for analysis.

2.1 Model structure

The steps used to create the model object are similar to the above. This time, the parameters
passed as input are starting values, i.e., from where the sampler will start exploring parameter
space. We choose values that are somwhat different from the ones used for simulation, but
within a plausible range based on the simulated data. For the hidden state process, we use
the default initial values (a matrix with 0.9 on the diagonal). We also set initial_state =
"stationary", which means that the initial distribution of the hidden state process is fixed
to the stationary distribution of the Markov chain, rather than estimated. We do this here
because the initial distribution parameters are often not well identified, which can lead to
convergence issues in the MCMC sampling.

Hidden state model
hid <- MarkovChain$new(data = data_sim, n_states = 2,

initial_state = "stationary")

Initial parameters for observation process
par <- list(z = list(mean = c(2, 7), sd = c(4, 0.5)))
obs <- Observation$new(data = data_sim, dists = list(z = "norm"),

n_states = 2, par = par)

Create HMM object

3

hmm <- HMM$new(hid = hid, obs = obs)

2.2 Priors

By default, the priors of an HMM object are set to NA, which correspond to an improper flat
prior on all model parameters. The function set_priors can be used to specify priors for
the observation parameters and/or the transition probabilities.

In practice, hmmTMB transforms parameters to a “working” scale, i.e., into parameters
defined over the whole real line (e.g., a positive parameter is log-transformed into a real
working parameter). This is to avoid having to deal with constraints during the model fitting.
The priors should be defined for those working parameters, rather than for the “natural”
parameters that we are interested in.

We can see a list of the priors, and of the parameters on the working scale, using the functions
priors() and coeff_fe(), respectively.

hmm$priors()

$coeff_fe_obs
mean sd

z.mean.state1.(Intercept) NA NA
z.mean.state2.(Intercept) NA NA
z.sd.state1.(Intercept) NA NA
z.sd.state2.(Intercept) NA NA

$coeff_fe_hid
mean sd

S1>S2.(Intercept) NA NA
S2>S1.(Intercept) NA NA

$log_lambda_obs
mean sd

$log_lambda_hid
mean sd

hmm$coeff_fe()

$obs

4

[,1]
z.mean.state1.(Intercept) 2.0000000
z.mean.state2.(Intercept) 7.0000000
z.sd.state1.(Intercept) 1.3862944
z.sd.state2.(Intercept) -0.6931472

$hid
[,1]

S1>S2.(Intercept) -2.197225
S2>S1.(Intercept) -2.197225

The observation model has four working parameters: the mean in each state (which is not
transformed because its domain is already the real line), and the log standard deviation in
each state. In hmmTMB, only normal priors can be defined, and they should be specified in
a matrix with one row for each working parameter, and two columns (mean and standard
deviation of prior). In this example, we choose the following priors:

µ1 ∼ N(0, 52)
µ2 ∼ N(0, 52)

log(σ1) ∼ N(log(2), 52)
log(σ2) ∼ N(log(2), 52)

where µj and σj are the mean and standard deviation of the observation distribution for
state j ∈ {1, 2}.

Parameter of normal priors for observation parameters
prior_obs <- matrix(c(0, 5,

0, 5,
log(2), 5,
log(2), 5),

ncol = 2, byrow = TRUE)

In a 2-state model, the two working parameters for the hidden state process are logit(γ12)
and logit(γ21), where γij = Pr(St = j|St−1 = j) is the transition probability from state i to
state j. As above, we can define a matrix with two columns to specify parameters of normal
priors. We use the following priors,

logit(γ12) ∼ N(−2, 1)
logit(γ21) ∼ N(−2, 1)

5

The mean is chosen as −2 because logit(0.1) ≈ −2, i.e., the prior suggests that the off-
diagonal elements of the transition probability matrix should be small (as is often the case
in practice due to autocorrelation in the hidden process). Note that the definition of the
working parameters is a little more complicated in models with more than 2 states.

Parameter of normal priors for transition probabilities
prior_hid <- matrix(c(-2, 1,

-2, 1),
ncol = 2, byrow = TRUE)

Finally, we update the priors stored in the model object using set_priors(), and we check
that they have been correctly set.

Update priors
hmm$set_priors(new_priors = list(coeff_fe_obs = prior_obs,

coeff_fe_hid = prior_hid))

hmm$priors()

$coeff_fe_obs
mean sd

z.mean.state1.(Intercept) 0.0000000 5
z.mean.state2.(Intercept) 0.0000000 5
z.sd.state1.(Intercept) 0.6931472 5
z.sd.state2.(Intercept) 0.6931472 5

$coeff_fe_hid
mean sd

S1>S2.(Intercept) -2 1
S2>S1.(Intercept) -2 1

$log_lambda_obs
mean sd

$log_lambda_hid
mean sd

6

3 Fitting the model
The main function to fit a model using Stan in hmmTMB is fit_stan. It takes the same
arguments as tmbstan() from the tmbstan package, and documentation for that function
should be consulted for more details. Here, we pass two arguments: the number of chains
(chains) and the number of MCMC iterations in each chain (iter). In practice, these
arguments should be chosen carefully to ensure convergence of the sampler to the stationary
distribution (see Stan documentation for more information); the values below were merely
chosen for speed. In this example, running the sampler for 2000 iterations takes about 30 sec
on a laptop.

hmm$fit_stan(chains = 1, iter = 2000)

4 Inspecting the results

4.1 Working parameters

After running fit_stan(), the output of Stan is accessible with the out_stan() function.
This is an object of class stanfit, and it can directly be used with functions from the rstan
package, e.g., to create traceplots or density plots of the posterior samples. Note that these
plots show the working parameters.

rstan::traceplot(hmm$out_stan())
rstan::stan_dens(hmm$out_stan())

coeff_fe_obs[4] coeff_fe_hid[1] coeff_fe_hid[2]

coeff_fe_obs[1] coeff_fe_obs[2] coeff_fe_obs[3]

10001250150017502000 10001250150017502000 10001250150017502000

10001250150017502000 10001250150017502000 10001250150017502000

1.0

1.1

1.2

−1.5

−1.0

−0.5

0.0

4.5

4.8

5.1

5.4

−4.0

−3.5

−3.0

−2.5

−2.0

−0.5

0.0

0.5

−0.4

−0.2

0.0

0.2

0.4

0.6

chain

1

7

coeff_fe_obs[4] coeff_fe_hid[1] coeff_fe_hid[2]

coeff_fe_obs[1] coeff_fe_obs[2] coeff_fe_obs[3]

−0.4 −0.2 0.0 0.2 0.4 0.6−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−0.5 0.0 0.5 4.5 4.8 5.1 5.4 1.0 1.1 1.2

4.2 Natural parameters

To inspect the posterior distributions of the natural parameters, which is often more interesting,
we can extract posterior samples using iters(). This returns a matrix with one column
for each parameter and one row for each MCMC iteration. It can directly be used to make
traceplots, histograms, etc. It looks like the model successfully captured the true parameter
values used for simulation. Note that this is an example of label switching, where states 1
and 2 are swapped compared to their order in the simulation model. This can often happen
in HMMs, because the labelling of states is arbitrary.

iters <- hmm$iters()
head(iters)

z.mean.state1 z.mean.state2 z.sd.state1 z.sd.state2 S1>S1 S1>S2
[1,] 0.37547464 5.133389 2.959224 1.223178 0.9359002 0.06409981
[2,] 0.11046972 4.899000 3.024539 1.059885 0.9239971 0.07600286
[3,] 0.08665420 5.043613 2.753133 1.295757 0.9022169 0.09778305
[4,] 0.18903353 4.888893 2.953271 1.182213 0.9247773 0.07522272
[5,] 0.07031309 4.864269 2.913320 1.282832 0.9180221 0.08197787
[6,] -0.16511520 4.900028 2.710627 1.147088 0.9418129 0.05818708

S2>S1 S2>S2
[1,] 0.3803550 0.6196450
[2,] 0.3209213 0.6790787
[3,] 0.4164832 0.5835168

8

[4,] 0.2987288 0.7012712
[5,] 0.3572066 0.6427934
[6,] 0.3516954 0.6483046

iters_df <- as.data.frame.table(iters)
ggplot(iters_df, aes(x = Freq)) +

geom_histogram(bins = 20, fill = "lightgrey", col = "white") +
facet_wrap("Var2", nrow = 2, scales = "free_x")

S1>S1 S1>S2 S2>S1 S2>S2

z.mean.state1 z.mean.state2 z.sd.state1 z.sd.state2

0.84 0.88 0.92 0.96 0.05 0.10 0.15 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

−0.5 0.0 0.5 1.0 4.4 4.8 5.2 5.6 2.75 3.00 3.25 0.6 0.9 1.2 1.5 1.8
0

50

100

150

0

50

100

150

Freq

co
un

t

4.3 Plotting functions

We can also use other plotting functions as we would for a model fitted using fit(). By
default, the parameter values used in that case are the posterior means. For example, we can
plot the state-dependent distributions over a histogram of the data:

hmm$plot_dist("z")

9

0.00

0.04

0.08

0.12

−5 0 5 10
z

de
ns

ity State 1

State 2

Total

References
Monnahan, Cole, and Kasper Kristensen. 2018. “No-U-Turn Sampling for Fast Bayesian
Inference in Admb and Tmb: Introducing the Adnuts and Tmbstan R Packages.” PloS One
13 (5). https://doi.org/10.1371/journal.pone.0197954.

Stan Development Team. 2019. “Stan Modeling Language User’s Guide and Reference
Manual, Version 2.29.” Stan Development Team.

———. 2022. “RStan: The R Interface to Stan.” https://mc-stan.org/.

10

https://doi.org/10.1371/journal.pone.0197954
https://mc-stan.org/

	Generating data
	Model specification
	Model structure
	Priors

	Fitting the model
	Inspecting the results
	Working parameters
	Natural parameters
	Plotting functions

	References

