
Analysing time series data with hidden Markov models
in hmmTMB

Théo Michelot

2023-01-09

Contents
1 Data preparation 3

2 Model specification 4
2.1 The R6 approach . 5
2.2 Hidden state process . 5
2.3 Observation model . 5
2.4 Hidden Markov model . 6

3 Model fitting 7

4 Model interpretation 9
4.1 State inference . 9
4.2 Model visualisation . 10

5 Model checking 12
5.1 Pseudo-residuals . 12
5.2 Posterior predictive checks . 13

6 Changing the number of states 14

7 Including covariates in an HMM 17
7.1 Covariates on transition probabilities . 17
7.2 Covariates on observation parameters . 20

7.2.1 Linear model . 20
7.2.2 Nonlinear model . 22

1

7.3 Random effects . 24

8 Extensions and other features 27
8.1 Model predictions . 27
8.2 Simulating from an HMM . 29

References 30

Load packages and color palette
library(ggplot2)
theme_set(theme_bw())
library(hmmTMB)
pal <- hmmTMB:::hmmTMB_cols

2

This vignette is a good starting point to learn about hmmTMB. It describes the main features
of the package through one detailed example: the analysis of a data set of energy prices in
Spain.

1 Data preparation
In hmmTMB, the data set to analyse must be passed as a data frame that contains the
following variables:

• ID is a reserved column name, for the identifier of the time series (in cases where there
are several time series in the data). If the data only consists of one time series, like in
the following example, then this can be omitted.

• one column for each response variable (“data stream”) that will be included in the
model. There should be at least one of these.

• one column for each covariate that will be included in the model, if any.

There are two other reserved column names, which are optional: (1) state should only
be included if the state process is known for some observations (see “Advanced features”
vignette), and (2) time is used to check that the observations are equally spaced (if provided).

In this vignette, we will use the data set shown below, which is taken from the MSwM R
package (Sanchez-Espigares and Lopez-Moreno (2021)). The column Price is the response
variable that we want to model with an HMM, representing the price of energy in Spain (in
cents/kWh) over 1784 working days from Jan 1, 2002 to Oct 31, 2008. All other columns are
covariates related to the prices of raw matrials (Oil, Gas, Coal), to energy demand (Demand),
and to the state of the financial market (EurDol and Ibex35). See ?MSwM::energy for more
detail about each variable.

data(energy, package = "MSwM")
head(energy)

Price Oil Gas Coal EurDol Ibex35 Demand
1 3.188083 22.43277 14.40099 38.35157 1.134687 8.3976 477.3856
2 4.953667 22.27263 19.02747 38.35157 1.106439 8.3771 609.1261
3 4.730917 22.65383 18.48417 38.35157 1.106684 8.5547 650.3715
4 4.531000 23.67657 18.30143 38.35157 1.116819 8.4631 647.0499
5 5.141875 23.67209 14.55602 38.35157 1.122965 8.1773 627.9698
6 6.322083 23.60534 15.22485 38.35157 1.122460 8.1866 693.2467

3

We add a column for the date, to make time series plots.

Create a grid of days that excludes weekends
day1 <- as.POSIXct("2002/01/01", format = "%Y/%m/%d", tz = "UTC")
day2 <- as.POSIXct("2008/10/31", format = "%Y/%m/%d", tz = "UTC")
days_with_we <- seq(day1, day2, by = "1 day")
which_we <- which(format(days_with_we, '%u') %in% 6:7)
days <- days_with_we[-which_we]
energy$Day <- days

ggplot(energy, aes(Day, Price)) + geom_line()

2.5

5.0

7.5

10.0

2002 2004 2006 2008
Day

P
ric

e

2 Model specification
There are many good references presenting the mathematical formulation of HMMs in more
or less detail; see for example Rabiner (1989) for a seminal introduction, Stamp (n.d.) for
a computer scientist’s introduction, McClintock et al. (2020) for a fairly non-technical
description (with a focus on ecological applications), and Zucchini, MacDonald, and Langrock
(2017) for a monograph. We will only provide some superficial description of the model
formulation in this document.

An HMM is based on the assumption that the distribution of some observed variable(s) is
driven by an unobserved state, i.e., each state gives rise to a different distribution for the
observed variable. There are therefore two model components:

1. a model for the hidden state process (St), which is typically assumed to be a first-order
Markov process;

2. a model for the observation process (Zt), which may be multivariate. This model
describes the distribution of the observation, conditional on the state process.

4

2.1 The R6 approach

hmmTMB uses R6 classes to implement model objects (Chang (2021)), the most important
being MarkovChain, Observation, and HMM. With R6, we first need to create an object using
the syntax

object <- Class$new(...)

where Class should be replaced by the class of the object that we create, and where the
brackets contain arguments needed to create the object. (The details are described below.)
Then, we can interact with the object using “methods”, i.e., functions specific to that class.
The syntax for this is slightly different from most R code, and looks something like

object$method(...)

2.2 Hidden state process

The hidden state process is stored as a MarkovChain object in hmmTMB. The main modelling
decision required at this stage is the number of states of the model, i.e., the number of
values that the hidden process St can take. Here, we choose N = 2 states, assuming that the
observed energy price arises from one of two distributions, depending on the underlying state.

hid1 <- MarkovChain$new(data = energy, n_states = 2)

There are a few other arguments we could specify for more complex model formulations,
and this is discussed in more detail in other parts of the vignette. In particular, we could
pass an initial transition probabilitiy matrix with the argument tpm. This would then be
used as a starting point for the parameter estimation. (By default, the transition probability
matrix is initialised with 0.9 along the diagonal, and 0.1/N elsewhere.) We could also include
covariates on the dynamics of the Markov chain, as illustrated later in this document, using
the formula argument.

2.3 Observation model

The observation model, which defines the conditional distribution of the observations (given
the state), is stored in an Observation object. Here, the response variable Price is strictly
positive, but all values are pretty far from zero, so we use a normal distribution in each state.
That is, we assume

Zt|{St = j} ∼ N(µj, σj),

where µj > 0 and σj > 0 are the mean and standard deviation of the distribution of price Zt

in state j ∈ {1, 2}. In hmmTMB, "norm" refers to the normal distribution. The distributions

5

are passed in a named list, with one element for each response variable; here, there is only
one.

In addition to the family of distribution, we need to choose initial parameter values for the
observation process. This is because the model is fitted by numerical optimisation of the
likelihood function, and the optimiser requires a starting point. The general idea is to pick
values that are plausible given the data and the way we expect the states to be defined. We
might for example use some quantiles of the observed prices for the mean parameter. These
are also provided to the Observation object as a list, with the following structure:

• each element of the list corresponds to a response variable (here there is only one:
Price), and is itself a list;

• each element of the inner list corresponds to a parameter (here, mean and sd), and is a
vector of length the number of states.

We provide two initial means and two initial standard deviations (one for each state), for the
price variable.

List observation distribution(s)
dists <- list(Price = "norm")
List of initial parameter values
par0_2s <- list(Price = list(mean = c(3, 6), sd = c(1, 1)))
Create observation model object
obs1 <- Observation$new(data = energy, n_states = 2, dists = dists, par = par0_2s)

2.4 Hidden Markov model

An HMM is the combination of the hidden state and the observation model, and so we
create an HMM object using the two components. Printing it in the command line shows
some information about the model formulation, as well as initial parameter values (because
the model hasn’t been fitted yet). In cases where the model includes covariates, i.e., the
parameters are time-varying, these initial values correspond to the first row of the data set
(which is what t = 1 means).

hmm1 <- HMM$new(obs = obs1, hid = hid1)

hmm1

#######################
Observation model

6

#######################
+ Price ~ norm(mean, sd)

* mean.state1 ~ 1
* mean.state2 ~ 1
* sd.state1 ~ 1
* sd.state2 ~ 1

> Initial observation parameters (t = 1):
state 1 state 2

Price.mean 3 6
Price.sd 1 1

#########################
State process model
#########################

state 1 state 2
state 1 . ~1
state 2 ~1 .

> Initial transition probabilities (t = 1):
state 1 state 2

state 1 0.9 0.1
state 2 0.1 0.9

3 Model fitting
Model fitting consists in estimating all model parameters, in particular the transition proba-
bilities of the state process, and the state-dependent observation parameters. Fitting this
simple model takes less than a second on a laptop.

Once it has been fitted, the model stores the estimated parameters, and we can see them by
printing the model (or, alternatively, with hmm$par()). Here, we find

µ1 = 3.4, µ2 = 6.0
σ1 = 0.8, σ2 = 1.1

Γ =
0.99 0.01

0.01 0.99



7

The first state therefore captures periods with lower energy prices (with a mean of 3.4
cents/kWh), and the second state captures higher prices (mean = 6 cents/kWh). Note that,
if covariates were included in the model, the parameters would be time-varying, and printing
the model would show the parameters for the first time step of the data (as indicated by t =
1).

hmm1$fit(silent = TRUE)

hmm1

#######################
Observation model
#######################
+ Price ~ norm(mean, sd)

* mean.state1 ~ 1
* mean.state2 ~ 1
* sd.state1 ~ 1
* sd.state2 ~ 1

> Estimated observation parameters (t = 1):
state 1 state 2

Price.mean 3.362 6.021
Price.sd 0.802 1.141

#########################
State process model
#########################

state 1 state 2
state 1 . ~1
state 2 ~1 .

> Estimated transition probabilities (t = 1):
state 1 state 2

state 1 0.992 0.008
state 2 0.011 0.989

Just like for

8

4 Model interpretation

4.1 State inference

It is often of interest to make inferences about the unobserved state process. In this example,
we might want to know which time periods were more likely to be in the “high energy price”
state. There are a few different functions for this purpose in hmmTMB.

• viterbi() can be used for “global decoding”, i.e., to obtain the most likely state
sequence over the whole data set. This is done using the so-called Viterbi algortihm.
It returns a vector of same length as the data set, where each element is the state for
the corresponding time step. This may for example be useful to plot the time series,
coloured by most likely state.

• state_probs() can be used for “local decoding”, and returns a matrix of probabilities
of being in each state at each time step. This gives a little more information than the
Viterbi algorithm, and provides a measure of the uncertainty in the state classification.
Note that, although the state probabilities and the Viterbi algorithm usually agree, they
are not guaranteed to (see Zucchini, MacDonald, and Langrock (2017) for a discussion
of the difference between local and global decoding).

• sample_states() implements the forward-filtering backward-sampling algorithm, and
returns posterior samples of the state sequence. This is similar to the output of the
Viterbi algorithm, but accounts for the uncertainty in the classification.

We create a new data set, for plotting, which includes the data variables and two other
columns: one for the Viterbi state sequence, and one for the probability of being in state 2
(high price state).

data_plot <- energy

Coloured by most likely state sequence
data_plot$state <- factor(paste0("State ", hmm1$viterbi()))
ggplot(data_plot, aes(Day, Price, col = state)) +

geom_point() +
scale_color_manual(values = pal, name = NULL)

Coloured by state probability
data_plot$pr_s2 <- hmm1$state_probs()[,2]
ggplot(data_plot, aes(Day, Price, col = pr_s2)) +

geom_point() +

9

scico::scale_color_scico(palette = "berlin",
name = expression("Pr("~S[t]~"= 2)"))

2.5

5.0

7.5

10.0

2002 2004 2006 2008
Day

P
ric

e State 1

State 2

2.5

5.0

7.5

10.0

2002 2004 2006 2008
Day

P
ric

e

0.25

0.50

0.75

1.00
Pr(St = 2)

The second plot suggests that most time steps are classified with high probability of being in
either state 1 or state 2, but there is high uncertainty (i.e., Pr(St = 1) ≈ Pr(St = 2) ≈ 0.5)
for observations that have intermediate values.

4.2 Model visualisation

There are several built-in functions to create plots of a fitted model in hmmTMB. For example,
hmm1$plot_ts("Price") produces a time series plot of the Price variable, coloured by the
most likely state sequence (similar to the one we made manually above).

To help interpreting the states, or to assess goodness-of-fit, it is often useful to plot the
estimated state-dependent observations distributions. This is what the function plot_dist()
does. More specifically, it shows a histogram of the observations, overlaid with curves of the
estimated distributions, weighted by the proportion of time spent in each state (measured
from Viterbi sequence). From this plot, it is clear that state 1 tends to capture smaller prices,
and state 2 higher prices, but there is some overlap between the two states for values around
5 cents/kWh.

hmm1$plot_dist("Price")

10

0.0

0.1

0.2

0.3

2.5 5.0 7.5 10.0
Price

de
ns

ity State 1

State 2

Total

In models that include covariates, the function plot() can be used to visualise the relevant
model parameters as functions of covariates (e.g., transition probabilities, or observation
parameters). This first model does not have covariates, but we will add some later so, for the
sake of comparison, we show a plot of the mean of the price distribution in each state, as a
function of the EurDol exchange rate variable. In that plot, we also include the observations,
coloured by the Viterbi sequence.

hmm1$plot("obspar", "EurDol", i = "Price.mean") +
geom_point(aes(x = EurDol, y = Price, fill = state, col = state),

data = data_plot, alpha = 0.3)

11

P
ric

e.
m

ea
n

0.6 0.7 0.8 0.9 1.0 1.1

2.5

5.0

7.5

10.0

EurDol

State 1

State 2

5 Model checking

5.1 Pseudo-residuals

Pseudo-residuals are one method to assess goodness-of-fit of the observation distributions
in an HMM (Zucchini, MacDonald, and Langrock (2017)). Similarly to residuals in linear
models, pseudo-residuals should be independent and normally distributed if the model
assumptions were satisfied. Deviations from these properties suggest lack of fit. We compute
the pseudo-residuals for Price using the pseudores() function, and investigate the two
properties (normal distribution and independence) separately, using a quantile-quantile plot
and an autocorrelation function (ACF) plot, respectively.

Get pseudo-residuals in a matrix (one row for each response variable)
pr <- hmm1$pseudores()

Computing conditional CDFs... done
Computing residuals for Price ... done

Check normality; should be along 1:1 diagonal
qqnorm(pr["Price",])
abline(0, 1)

Check independence; should decay to zero

12

acf(pr["Price",])

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series pr["Price",]

There is some slight deviation from the 1:1 diagonal in the upper part of the quantile-quantile
plot, but the fit seems adequate overall, suggesting that a mixture of 2 normal distributions
works well for this data set. On the other hand, the ACF plot indicates that there is strong
residual autocorrelation; i.e., much of the autocorrelation in the data was not captured by
the model. This is clearly apparent from the time series plots shown above: successive
prices within each state are not independent. There is no single remedy for this problem,
but several approaches could be considered, including increasing the number of states, or
including covariates to account for this autocorrelation.

5.2 Posterior predictive checks

Another strategy to check goodness-of-fit is to generate simulated data from the fitted model,
and then compare those to the observed data. Some relevant summary statistics can be
compared between the true and simulated data sets using the check() function in hmmTMB.
It takes as an argument a goodness-of-fit function, which itself takes a dataset as input and
return the statistic(s) to use for comparison of observed and simulated data.

We choose the following statistics:

• the 0%, 25%, 50%, 75%, and 100% quantiles (i.e., min, median, max, and quartiles);

• the autocorrelation of the observation process, measured as the correlation between
Zt−1 and Zt.

This function returns the statistics that we want to compare,
in a named vector
gof <- function(data) {

13

s <- c(quantile(data$Price, seq(0, 1, by = 0.25)),
autocor = cor(data$Price[-1], data$Price[-nrow(data)]))

}

Run posterior predictive checks
checks <- hmm1$check(check_fn = gof, silent = TRUE, nsims = 500)

Plot histograms of simulated statistics
checks$plot

75% 100% autocor

0% 25% 50%

5 6 8.5 9.0 9.5 10.010.511.011.5 0.5 0.6 0.7 0.8 0.9

−0.5 0.0 0.5 1.0 1.5 3.0 3.5 4.0 4.5 3.5 4.0 4.5 5.0 5.5
0.00

0.25

0.50

0.75

1.00

0

5

10

15

0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

statistic

de
ns

ity

Vertical line is observed value

The observed values of the 0%, 25%, 50%, and 75% quantiles are well within the range of
simulated values, suggesting that those features are well captured by the model. The 100%
quantile (i.e., the maximum) is almost always smaller in the simulations than in the real data,
which means that the model underestimates how long the upper tail is. The autocorrelation
is also captured poorly, as we also saw from the pseudo-residuals. Here, the distribution of
simulated autocorrelations are between 0.55 and 0.65, whereas the true value is around 0.95.

6 Changing the number of states
Using a different number of states requires very little changes in the code shown above.
Consider that we now want to use N = 3 states. We need to specify n_states = 3 when

14

creating the MarkovChain and Observation components of the model. We also need to
change the initial values, as we now need three values of each parameter. Everything else is
identical.

Hidden state process
hid2 <- MarkovChain$new(data = energy, n_states = 3)

Observation model
par0_3s <- list(Price = list(mean = c(2.5, 4, 6), sd = c(0.5, 0.5, 1)))
obs2 <- Observation$new(data = energy, n_states = 3,

dists = dists, par = par0_3s)

Create and fit HMM
hmm2 <- HMM$new(obs = obs2, hid = hid2)
hmm2$fit(silent = TRUE)

Show parameters
hmm2

#######################
Observation model
#######################
+ Price ~ norm(mean, sd)

* mean.state1 ~ 1
* mean.state2 ~ 1
* mean.state3 ~ 1
* sd.state1 ~ 1
* sd.state2 ~ 1
* sd.state3 ~ 1

> Estimated observation parameters (t = 1):
state 1 state 2 state 3

Price.mean 2.511 3.878 6.072
Price.sd 0.491 0.441 1.114

#########################
State process model
#########################

15

state 1 state 2 state 3
state 1 . ~1 ~1
state 2 ~1 . ~1
state 3 ~1 ~1 .

> Estimated transition probabilities (t = 1):
state 1 state 2 state 3

state 1 0.962 0.038 0.000
state 2 0.022 0.961 0.017
state 3 0.000 0.016 0.984

Plot state-dependent distributions
hmm2$plot_dist("Price")

Time series plot coloured by most likely state sequence
hmm2$plot_ts("Price")

Plot prices against euro-dollar exchange rate,
with estimated state-specific means
data_plot$state <- factor(paste0("State ", hmm2$viterbi()))
hmm2$plot("obspar", "EurDol", i = "Price.mean") +

geom_point(aes(x = EurDol, y = Price, fill = state, col = state),
data = data_plot, alpha = 0.3)

0.0

0.1

0.2

0.3

2.5 5.0 7.5 10.0
Price

de
ns

ity

State 1

State 2

State 3

Total

2.5

5.0

7.5

10.0

0 500 1000 1500
time

P
ric

e

state

1

2

3

16

P
ric

e.
m

ea
n

0.6 0.7 0.8 0.9 1.0 1.1

2.5

5.0

7.5

10.0

EurDol

State 1

State 2

State 3

There is now one state for lower prices (state 1), one state for higher prices (state 3), and
another state for intermediate prices (state 2). Choosing the number of states requires a
trade-off between flexibility and interpretability: a model with more states is able to capture
more detailed features of the data-generating process, but fewer states are typically easier to
interpret. This issue is for example discussed by Pohle et al. (2017).

7 Including covariates in an HMM
One of the main functionalities of hmmTMB, compared to other R packages for hidden
Markov modelling, is to allow for flexible covariate models on most model parameters. In
particular, these can include linear and nonlinear relationships (the latter modelled using
splines), and random effects. We showcase how covariates can be included in the two model
components: the state process, or the observation model.

7.1 Covariates on transition probabilities

A popular extension of HMMs is to include the effects of covariates on the transition
probabilities of the state process. This addresses questions of the type “Is the probability of
switching from state 1 to state 2 affected by some covariate?”, or “Is the probability of being
in state 1 affected by some covariate?”.

We investigate the effect of oil prices on the transition probabilities. Intuitively, we expect
an effect because higher oil prices would likely lead to higher energy prices. The covariate
dependence is specified through the argument formula when creating a MarkovChain object.
This can either be an R formula (like in the example below), or a matrix of character strings
where each element is the formula for the corresponding transition probability matrix. In the
latter case, the diagonal should be filled with "." because the diagonal transition probabilities

17

are not modelled directly. In this example, we assume the same formula for all transition
probabilities: a linear relationship with Oil. Model specification is otherwise unchanged.

State process model
f <- ~ Oil
hid3 <- MarkovChain$new(data = energy, n_states = 2, formula = f)

Observation model
obs3 <- Observation$new(data = energy, n_states = 2,

dists = dists, par = par0_2s)

Fit HMM
hmm3 <- HMM$new(obs = obs3, hid = hid3)
hmm3$fit(silent = TRUE)

The regression coefficients which describe the relationship between the covariate and the
transition probabilities can be printed using the coeff_fe() function. The estimated
coefficients suggest that oil price has a positive effect on Pr(St+1 = 2|St = 1) (coeff = 0.06),
and a negative effect on Pr(St+1 = 1|St = 2) (coeff = -0.07). That is, the process is more
likely to transition to state 2 and to stay in state 2 when oil is expensive, which is consistent
with our intuition.

hmm3$coeff_fe()

$obs
[,1]

Price.mean.state1.(Intercept) 3.3644286
Price.mean.state2.(Intercept) 6.0292220
Price.sd.state1.(Intercept) -0.2203988
Price.sd.state2.(Intercept) 0.1278369

$hid
[,1]

S1>S2.(Intercept) -7.21869570
S1>S2.Oil 0.06264683
S2>S1.(Intercept) -1.23941310
S2>S1.Oil -0.06729944

Confidence intervals on the estimated model parameters can also be derived using confint(),
with an optional argument for the level of the interval (default: 0.95 for 95% confidence

18

interval). The 95% confidence intervals for the effect of oil on the two transition probabilities
don’t overlap with zero.

round(hmm3$confint(level = 0.95)$coeff_fe$hid, 2)

mle lcl ucl
S1>S2.(Intercept) -7.22 -9.78 -4.66
S1>S2.Oil 0.06 0.01 0.12
S2>S1.(Intercept) -1.24 -3.49 1.01
S2>S1.Oil -0.07 -0.12 -0.02

The relationship can also be visualised (with confidence bands), by plotting the transition
probabilities as functions of the covariate. We can also plot the stationary state probabilities,
which measure the probability of being in each state in the long run, over a grid of covariate
values. The latter option can sometimes help with interpretation, like in this example: in the
second plot, it is clear that the probability of being in state 2 increases with oil price.

Plot transition probabilities as functions of oil price
hmm3$plot("tpm", var = "Oil")

Plot stationary state probabilities as functions of oil price
hmm3$plot("delta", var = "Oil")

P
r(

1
−

>
 2

)
P

r(
2

−
>

 2
)

P
r(

1
−

>
 1

)
P

r(
2

−
>

 1
)

20 40 60 80 20 40 60 80

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Oil

0.00

0.25

0.50

0.75

1.00

20 40 60 80
Oil

S
ta

tio
na

ry
 s

ta
te

 p
ro

ba
bi

lit
ie

s

State 1

State 2

We used the formula ~Oil to include a linear effect of oil price. We could include a nonlinear
effect with a formula like ~ s(Oil, k = 5, bs = "cs"). We illustrate spline models below,
when including covariates on the observation parameters.

19

7.2 Covariates on observation parameters

Another option to include covariates in an HMM is to assume an effect on the parameters
of the state-dependent observation distributions. The question of interest is then “In each
state, does the distribution of observations depend on some covariate?”. This is a powerful
tool which, as we will see below, can be used to implement state-switching regression models.
However, note that interpretation can become difficult in such models. For example, if the
mean energy price depends not only on the currently active state, but also on some covariate,
what is the interpretation of each state? What if the mean is sometimes higher in state 1
and sometimes higher in state 2 (depending on the covariate)?

In the following, we consider an analysis similar to that of Langrock et al. (2017), where the
effect of the euro-dollar exhange rate is included as a covariate.

7.2.1 Linear model

We now assume that the mean energy price in each state is a linear function of the euro-
dollar exchange rate. This corresponds to the Markov-switching generalised linear model, an
extension of Markov-switching regression:

Zt|{St = j} ∼ N(µj, σj)
log(µj) = β

(j)
0 + β

(j)
1 x1t,

where β(j)
0 is the intercept, and β

(j)
1 the slope for the exchange rate covariate x1t in state

j ∈ {1, 2}.

We specify this model using the formulas attribute of the Observation object. This is
defined as a nested list, with one element for each parameter of each observed variable.

State process
hid4 <- MarkovChain$new(data = energy, n_states = 2)

Observation model
f <- list(Price = list(mean = ~ EurDol))
obs4 <- Observation$new(data = energy, n_states = 2, dists = dists,

par = par0_2s, formulas = f)

Fit HMM
hmm4 <- HMM$new(obs = obs4, hid = hid4)
hmm4$fit(silent = TRUE)

20

Look at regression coefficients
hmm4$coeff_fe()

$obs
[,1]

Price.mean.state1.(Intercept) 3.0790748
Price.mean.state1.EurDol 0.3207086
Price.mean.state2.(Intercept) 6.6210952
Price.mean.state2.EurDol -0.7912204
Price.sd.state1.(Intercept) -0.2258342
Price.sd.state2.(Intercept) 0.1338693

$hid
[,1]

S1>S2.(Intercept) -4.891296
S2>S1.(Intercept) -4.553888

The estimated coefficients are β̂(1)
1 = −2.3 and β̂(1)

1 = −0.9, suggesting that the euro-dollar
exchange rate has a negative effect on mean energy price in each state. We can visualise this
relationship with the plot function.

data_plot$state <- factor(paste0("State ", hmm4$viterbi()))
hmm4$plot("obspar", "EurDol", i = "Price.mean") +

geom_point(aes(x = EurDol, y = Price, fill = state, col = state),
data = data_plot, alpha = 0.3)

21

P
ric

e.
m

ea
n

0.6 0.7 0.8 0.9 1.0 1.1

2.5

5.0

7.5

10.0

EurDol

State 1

State 2

7.2.2 Nonlinear model

The plot of Price against EurDol shown above indicates that the relationship between those
two variables is quite complex, and probably nonlinear. Nonlinear models can be fitted in
hmmTMB, using some model specification functionalities from the R package mgcv, which
implements generalised additive models. This gives great flexibility to capture complex
covariate effects.

To estimate the effect of the euro-dollar exchange rate on mean price, we adapt the linear
model shown above to

Zt|{St = j} ∼ N(µj, σj)
log(µj) = β

(j)
0 + f

(j)
1 (x1t),

where f (j)
1 is a smooth function, modelled using splines. This defines a Markov-switching

generalised additive model, as described for example by Langrock et al. (2017). For more
details about spline-based models, see for example Wood (2017).

We update the linear formula passed to the Observation object, following the mgcv syntax,
to ~ s(EurDol, k = 8, bs = "cs"). This indicates that we want to use a cubic spline
basis of dimension 8. We can create and fit the model as before. This takes longer than the
linear model, because the formulation is much more flexible, and more parameters need to
be estimated. In particular, similarly to generalised additive models, the smoothness of the
relationship is estimated from the data, rather than assumed, which can be computational.

22

hid5 <- MarkovChain$new(data = energy, n_states = 2)
f <- list(Price = list(mean = ~s(EurDol, k = 10, bs = "cs")))
obs5 <- Observation$new(data = energy, n_states = 2, dists = dists,

par = par0_2s, formulas = f)
hmm5 <- HMM$new(obs = obs5, hid = hid5)

hmm5$fit(silent = TRUE)

data_plot$state <- factor(paste0("State ", hmm5$viterbi()))
hmm5$plot("obspar", "EurDol", i = "Price.mean") +

geom_point(aes(x = EurDol, y = Price, fill = state, col = state),
data = data_plot, alpha = 0.3)

P
ric

e.
m

ea
n

0.6 0.7 0.8 0.9 1.0 1.1

2.5

5.0

7.5

10.0

EurDol

State 1

State 2

These results illustrate both the flexibility of non-parametric models to capture complex
relationships between HMM parameters and covariates, and the challenge of interpreting the
results. The definition of states 1 and 2 is not as clear as before, because the mean price in
state 2 for some values of the covariate is lower than the mean price in state 1 for some other
values.

We can compare the most likely state sequences in the two models, which are somewhat
different.

23

hmm4$plot_ts("Price")
hmm5$plot_ts("Price")

2.5

5.0

7.5

10.0

0 500 1000 1500
time

P
ric

e

state

1

2

2.5

5.0

7.5

10.0

0 500 1000 1500
time

P
ric

e

state

1

2

7.3 Random effects

Using the convenient mgcv syntax, it is also possible to specify random effects on the transition
probabilities or the observation parameters. This may be particularly useful in studies where
there are multiple time series, which should be pooled into a common model, while accounting
for heterogeneity between them.

In the energy example, we only have one time series, so we (rather artificially) use the year
as the group variable for a random effect on the mean parameter of the price in each state.
That is, we consider the model

Zt|{St = j} ∼ N(µj, σj)
log(µj) = β

(j)
0 + γ

(j)
k

where k ∈ {2002, 2003, . . . , 2008} is the index for the year, and where the year-specific
intercepts are assumed to be independent and identically distributed in each state, as

γ
(j)
k ∼ N(0, s2

j)

In this model, the observation process has six parameters to estimate:

• the standard deviation of price in each state, σ1 and σ2;

• the shared intercept in each state, β(1)
0 and β(2)

0 ;

• the variance of the random intercepts in each state, s2
1 and s2

2.

24

For the analysis, we first extract the year for each row of the energy data set. Note that we
treat it as a factor (categorical) variable here, rather than a continuous variable.

energy$Year <- factor(format(energy$Day, "%Y"))
head(energy$Year)

[1] 2002 2002 2002 2002 2002 2002
Levels: 2002 2003 2004 2005 2006 2007 2008

To implement the model described above, we need to include Year as a random effect on the
state-dependent observation parameters. More specifically, it should affect the mean of the
price variable in each state. To indicate that it is a random effect, we use the mgcv syntax
s(Year, bs = "re"). Model fitting takes a little longer than in model with fixed covariate
effects, because TMB needs to integrate over the random effects in this example.

Formula for RE of year on mean price
f <- list(Price = list(mean = ~ s(Year, bs = "re")))
Create Observation object with RE formula
obs6 <- Observation$new(data = energy, n_states = 2,

dists = dists, par = par0_2s,
formula = f)

Create hidden state process
hid6 <- MarkovChain$new(data = energy, n_states = 2)
Create and fit HMM
hmm6 <- HMM$new(obs = obs6, hid = hid6)
hmm6$fit(silent = TRUE)

We can see estimates of all the model parameters listed above using the coeff_fe() and
sd_re() functions on the Observation model object. The former returns σj and β(j)

0 , and
the latter returns sj for each state.

Fixed effect coefficients
round(obs6$coeff_fe(), 2)

[,1]
Price.mean.state1.(Intercept) 3.84
Price.mean.state2.(Intercept) 5.68
Price.sd.state1.(Intercept) -0.41
Price.sd.state2.(Intercept) -0.35

25

Std dev of random effects
round(obs6$sd_re(), 2)

[,1]
Price.mean.state1.s(Year) 0.84
Price.mean.state2.s(Year) 1.71

The year-specific random intercepts γ(j)
k are also predicted, and can be printed using

coeff_re(). For each state, there are 7 levels: one for each year from 2002 to 2008.

Predicted random intercepts
round(obs6$coeff_re(), 2)

[,1]
Price.mean.state1.s(Year).1 -0.11
Price.mean.state1.s(Year).2 -1.45
Price.mean.state1.s(Year).3 -0.30
Price.mean.state1.s(Year).4 1.12
Price.mean.state1.s(Year).5 0.83
Price.mean.state1.s(Year).6 -0.19
Price.mean.state1.s(Year).7 0.01
Price.mean.state2.s(Year).1 1.19
Price.mean.state2.s(Year).2 -1.76
Price.mean.state2.s(Year).3 -3.16
Price.mean.state2.s(Year).4 1.30
Price.mean.state2.s(Year).5 1.84
Price.mean.state2.s(Year).6 -0.28
Price.mean.state2.s(Year).7 0.88

We see that the year-specific intercepts overall increase with time (negative for first three
years, then positive), suggesting that, in each state, the mean energy price increased between
2002 and 2008. The mean energy price in each state can also be plotted against the year, to
visualise the between-year heterogeneity with uncertainty bounds.

hmm6$plot("obspar", "Year", i = "Price.mean")

26

P
ric

e.
m

ea
n

20
02

20
03

20
04

20
05

20
06

20
07

20
08

2

4

6

8

Year

State 1

State 2

8 Extensions and other features

8.1 Model predictions

From a model that includes covariates, we can predict the HMM parameters using the function
predict(), possibly with confidence intervals. It takes as input the new data set, and the
component of the model that should be predicted (either tpm for transition probabilities,
delta for stationary state probabilities, and obspar for observation parameters). Here, we
consider the model with oil price as a covariate on the transition probabilities as an example.
If we want confidence intervals, we also need to specify the argument n_post, which is the
number of posterior samples used to approximate the confidence interval.

Covariate data for predictions
newdata <- data.frame(Oil = c(20, 80))

Predict transition probabilities
hmm3$predict(what = "tpm", newdata = newdata, n_post = 1e3)

$mean
, , 1

state 1 state 2
state 1 0.99670106 0.003298938

27

state 2 0.08186387 0.918136130

, , 2

state 1 state 2
state 1 0.857116390 0.1428836
state 2 0.002396023 0.9976040

$lcl
, , 1

[,1] [,2]
[1,] 0.98883837 0.0005233782
[2,] 0.01981723 0.7766480114

, , 2

[,1] [,2]
[1,] 0.5213850840 0.0123774
[2,] 0.0001838278 0.9888598

$ucl
, , 1

[,1] [,2]
[1,] 0.9994766 0.01116163
[2,] 0.2233520 0.98018277

, , 2

[,1] [,2]
[1,] 0.98762260 0.4786149
[2,] 0.01114018 0.9998162

Predict stationary state probabilities
hmm3$predict(what = "delta", newdata = newdata, n_post = 1e3)

28

$mean
state 1 state 2

[1,] 0.9506178 0.04938223
[2,] 0.0313359 0.96866410

$lcl
[,1] [,2]

[1,] 0.815871138 0.005980575
[2,] 0.001194481 0.822105355

$ucl
[,1] [,2]

[1,] 0.9940194 0.1841289
[2,] 0.1778946 0.9988055

8.2 Simulating from an HMM

The function simulate() can be used to simulate from an HMM model object. This first
generates one realisation from the hidden Markov chain, and then simulates observations
based on the hidden state and the observation model. We need to pass to simulate() the
number n of observations that should be simulated and, if the model includes covariate
dependences, a data frame data with columns for the covariates.

In the code below, we simulate from the model hmm3, which included the effect of oil prices
on the transition probabilities. Plotting the simulated time series gives some insights into
how well the model captures features of the real data. In particular, the simulated time series
does not display the same autocorrelation as the observations.

Simulate a time series of same length as data
sim_data <- hmm3$simulate(n = nrow(energy), data = energy, silent = TRUE)
head(sim_data)

Price Oil Gas Coal EurDol Ibex35 Demand Day Year
1 5.542174 22.43277 14.40099 38.35157 1.134687 8.3976 477.3856 2002-01-01 2002
2 5.384562 22.27263 19.02747 38.35157 1.106439 8.3771 609.1261 2002-01-02 2002
3 5.131766 22.65383 18.48417 38.35157 1.106684 8.5547 650.3715 2002-01-03 2002
4 5.162530 23.67657 18.30143 38.35157 1.116819 8.4631 647.0499 2002-01-04 2002
5 6.223208 23.67209 14.55602 38.35157 1.122965 8.1773 627.9698 2002-01-07 2002
6 6.051424 23.60534 15.22485 38.35157 1.122460 8.1866 693.2467 2002-01-08 2002

29

ID
1 1
2 1
3 1
4 1
5 1
6 1

Plot simulated prices
ggplot(sim_data, aes(Day, Price)) + geom_line()

2.5

5.0

7.5

10.0

2002 2004 2006 2008
Day

P
ric

e

References
Chang, Winston. 2021. R6: Encapsulated Classes with Reference Semantics. https://CRAN.
R-project.org/package=R6.

Langrock, Roland, Thomas Kneib, Richard Glennie, and Théo Michelot. 2017. “Markov-
Switching Generalized Additive Models.” Statistics and Computing 27 (1): 259–70.

McClintock, Brett T, Roland Langrock, Olivier Gimenez, Emmanuelle Cam, David L Borchers,
Richard Glennie, and Toby A Patterson. 2020. “Uncovering Ecological State Dynamics with
Hidden Markov Models.” Ecology Letters 23 (12): 1878–1903.

Pohle, Jennifer, Roland Langrock, Floris M van Beest, and Niels Martin Schmidt. 2017.

30

https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6

“Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated
Using Animal Movement.” Journal of Agricultural, Biological and Environmental Statistics
22 (3): 270–93.

Rabiner, Lawrence R. 1989. “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition.” Proceedings of the IEEE 77 (2): 257–86.

Sanchez-Espigares, Josep A., and Alberto Lopez-Moreno. 2021. MSwM: Fitting Markov
Switching Models. https://CRAN.R-project.org/package=MSwM.

Stamp, Mark. n.d. “A Revealing Introduction to Hidden Markov Models.” http://www.cs.
sjsu.edu/faculty/stamp/RUA/HMM.pdf.

Wood, Simon N. 2017. Generalized Additive Models: An Introduction with R. CRC press.

Zucchini, Walter, Iain L MacDonald, and Roland Langrock. 2017. Hidden Markov Models
for Time Series: An Introduction Using R, Second Edition. CRC Press.

31

https://CRAN.R-project.org/package=MSwM
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

	Data preparation
	Model specification
	The R6 approach
	Hidden state process
	Observation model
	Hidden Markov model

	Model fitting
	Model interpretation
	State inference
	Model visualisation

	Model checking
	Pseudo-residuals
	Posterior predictive checks

	Changing the number of states
	Including covariates in an HMM
	Covariates on transition probabilities
	Covariates on observation parameters
	Linear model
	Nonlinear model

	Random effects

	Extensions and other features
	Model predictions
	Simulating from an HMM

	References

