Haplo Stats:
Statistical Methods for Haplotypes When
Linkage Phase is Ambiguous
version 1.1.1

Jason P. Sinnwell and Daniel J. Schaid
Mayo Clinic, Rochester MN

April 23, 2004

Contents

1

2

3

4

Brief Description
Operating System and Installation
New Features

Getting Started

4.1 Example Data,
4.2 Creating a Genotype Matrix
4.3 Random Numbers and Setting Seed

Preview Missing Data: summaryGeno

Haplotype Frequency Estimation: haplo.em

6.1 Algorithm
6.2 Example Usage
6.3 Control Parameters for haploem
6.4 Haplotype Frequencies by Group Subsets

Haplotype Score Tests: haplo.score

7.1 Quantitative Trait Analysis
7.2 Ordinal Trait Analysis
7.3 Binary Trait Analysis
7.4 Plots and Haplotype Labels
7.5 Skipping Rare Haplotypes
7.6 Haplotype Scores, Adjusted for Covariates
7.7 Permutation p-values
7.8 Combine Score and Group Results: haplo.score.merge
7.9 Score Tests on Sub-Haplotypes: haplo.scoreslide
7.10 Plot Results from haplo.score.slide

Regression Models: haplo.glm

8.1 Setting Up the data.frame
8.2 Regression for a Quantitative Trait
8.3 Fitting Haplotype x Covariate Interactions
8.4 Regression for a Binomial Trait
8.5 Control Parameters and Genetic Models

10
13
14

16
16
18
19
20
20
22
23
25
26
27

9 License and Warranty 36
10 Acknowledgements 37

A Counting Haplotype Pairs When Marker Phenotypes Have
Missing Alleles 38

1 Brief Description

Haplo Stats is a suite of S-PLUS/R routines for the analysis of indirectly
measured haplotypes. The statistical methods assume that all subjects are
unrelated and that haplotypes are ambiguous (due to unknown linkage phase
of the genetic markers). The genetic markers are assumed to be codominant
(i.e., one-to-one correspondence between their genotypes and their pheno-
types), and so we refer to the measurements of genetic markers as genotypes.
The primary functions in Haplo Stats are:

e haplo.em: for the estimation of haplotype frequencies, and posterior
probabilities of haplotype pairs for a subject, conditional on the ob-
served marker data

e haplo.glm: glm regression models for the regression of a trait on hap-
lotypes, possibly including covariates and interactions

e haplo.score: score statistics to test associations between haplotypes and
a variety of traits, including binary, ordinal, quantitative, and Poisson.

For those users who have used the previously distributed haplo.score pack-
age, it is important to note that the haplo.score function has changed dra-
matically from the previous distribution, including the parameters passed to
this function. Please follow the examples provided in this document to see
how to use this function.

2 Operating System and Installation

Haplo Stats version 1.1.1 library is written for both S-PLUS (version 6.0)
and R for Unix. It has been placed on the Comprehensive R Archive Net-
work (CRAN) for R version 1.9.0. Like other packages available on CRAN,
Haplo Stats is made available for Unix and Windows systems, with addi-
tional portability to other systems as well. Installation procedures for S-
PLUS and R systems will vary; the Unix installations are explained in the
README .haplo.stats text file, located at the top level of the haplo.stats di-
rectory. The procedures for running analyses are the same for S-PLUS and
R, following instructions in this document.

3 New Features

1. Accounting for missing genotypes: The original release of the haplo.score
package removed subjects who were missing any marker genotypes. The
current Haplo Stats functions allow for missing marker genotypes.

2. Improved EM algorithm for estimating haplotype frequencies: See sec-
tion 6.

3. Haplotype frequencies by subsets: Another new feature provides esti-
mated haplotype frequencies for subsets defined by levels of a qualita-
tive "group” variable (see the new function haplo.group). This informa-
tion can be combined with output from haplo.score by the new function
haplo.score.merge. These new functions are useful for case-control stud-
ies in order to align estimates of haplotype frequencies for cases and
controls with the corresponding score statistics.

4. Regression models: The function haplo.glm is a major new addition,
which provides a way to regress a trait on haplotypes, covariates, and
possibly their interactions.

4 Getting Started

After installing the Haplo Stats package, the routines and an example data
set are available by starting an S-PLUS or R session and attaching the appro-
priate directory. The easiest way to get started is by following an example.
An experienced user may want to skip the example and simply view the de-
tails in the help files. As illustrated in the following example session, a user
enters the indented text following the prompt ”>", and the output results
follow.

4.1 Example Data

First load the Haplo Stats library and the example data set (hla.demo). If
the Haplo Stats library is installed for global use, load the library as done
below. If installed as a local library, specify its location in lib.loc parameter
as shown in comments(##).

##if local library, use:
##library(haplo.stats, lib.loc='/install/path/'

> library(haplo.stats)
> setupData(hla.demo)

[1] "hla.demo"

> attach(hla.demo)
> names (hla.demo)

[1] "resp" "resp.cat" "male" "age" "DPB.al" "DPB.a2"

(7] "DPA.a1" "DPA.a2" "DMA.al" "DMA.a2" "DMB.al" "DMB.a2"
[13] "TAP1.al" "TAP1.a2" "TAP2.al" "TAP2.a2" "DQB.al" "DQB.a2"
[19] "DQA.a1" "DQA.a2" "DRB.al" "DRB.a2" "B.al" "B.a2"
[256] "A.al" "A.a2"

The column names of hla.demo are shown above. They are defined as follows:

e resp: quantitative antibody response to measles vaccination

%"

e resp.cat: a factor with levels "low”, "normal”, "high”, for categorical
antibody response

e male: gender code with 1="male” , 0="female"
e age: age (in months) at immunization

The remaining columns are genotypes for 11 HLA loci, with a prefix
name (e.g., "DQB”) and a suffix for each of two alleles (”.al” and ".a2”). The
variables in hla.demo can be accessed by typing hla.demo$ before their names,
such as hla.demo$resp. Alternatively, it is easier for these examples to attach
hla.demo, (as shown above with attach()) so the variables can be accessed by
simply typing their names.

4.2 Creating a Genotype Matrix

Many of the functions require a matrix of genotypes, denoted here as geno.
This matrix is arranged such that each locus has a pair of adjacent columns
of alleles, and the order of columns corresponds to the order of loci on a

chromosome. If there are K loci, then the number of columns of geno is
2K. Rows represent the alleles for each subject. For example, if there are
three loci, in the order A-B-C, then the 6 columns of geno would be arranged
as A.al, A.a2, B.al, B.a2, C.al, C.a2. For illustration, three of the loci in
hla.demo will be used to demonstrate some of the functions. Create a separate
data frame for 3 of the loci, and call this geno. Then create a vector of labels
for the loci.

> geno <- hla.demo[, c(17, 18, 21:24)]
> label <- C(IIDQBH’ HDRBH, HBII)

4.3 Random Numbers and Setting Seed

Simulations are used in several of the functions (e.g., to determine ran-
dom starting values for haplo.em, and to compute permutation p-values in
haplo.score). In order to reproduce results in this user guide, you must set
the .Random.seed before any function which uses random numbers. We illus-
trate this below, and we invisibly reset the seed in making this document. In
practice, however, the user would not ordinarily reset the seed.

> seed <- c¢(17, b3, 1, 40, 37, 0, 62, 56, 5, 52, 12, 1)
> set.seed(seed)

The above mechanism for controlling .Random.seed makes results repro-
ducible in the respective S-PLUS and R platforms. However, the random
number generators for S-PLUS and R use the seeds differently, so results will
not completely agree across platforms. Because the results in this document
were generated by R on a Unix platform, results from S-PLUS that depend
on random numbers will not exactly match the results in this document.
Nonetheless, results can be forced to agree across platforms by omitting the
randomness within haplo.em (and its results used in haplo.score and haplo.glm)
by setting the control parameter n.try=1 within haplo.em.control (see section
6.3).

5 Preview Missing Data: summaryGeno

Before computing haplotype statistics, the user may want to look for missing
genotype data to determine the completeness of the data. If many genotypes

7

are missing, the functions may take a long time to compute results, and the
user may want to remove some of the subjects with a lot of missing data.
This can be accomplished with the summaryGeno function, which checks for
missing allele information and counts the number of potential haplotype pairs
that are consistent with the observed data (see the Appendix for a description
of this counting algorithm).

The codes for missing values of alleles are defined by the parameter
miss.val, which may be a vector to define multiple missing value codes. Be-
cause it has been common practice to use a zero to code for missing alleles,
the default values for miss.val are 0 and NA. Below, name the result from
summaryGeno as geno.desc. Since it is a data frame, individual rows may be
printed. Here we show the results for subjects 1-10, 80-85, and 135-140.

> geno.desc <- summaryGeno(geno, miss.val = c(0, NA))
> print(geno.desc[c(1:10, 80:85, 135:140), 1)

loc miss-0 loc miss-1 loc miss-2 num_enum_rows

1 3 0 0 4
2 3 0 0 4
3 3 0 0 4
4 3 0 0 2
5 3 0 0 4
6 3 0 0 2
7 3 0 0 4
8 3 0 0 2
9 3 0 0 2
10 3 0 0 1
80 3 0 0 4
81 2 0 1 1800
82 3 0 0 2
83 3 0 0 1
84 3 0 0 2
85 3 0 0 4
135 3 0 0 4
136 3 0 0 2
137 1 0 2 129600
138 3 0 0 4
139 3 0 0 4
140 3 0 0 4

The columns with 'loc miss-" illustrate the number of loci missing either 0,
1, or 2 alleles, and the last column, num_enum_rows, illustrates the number of
haplotype pairs that are consistent with the observed data. In the example
above, subjects indexed by rows 81 and 137 have missing alleles. Subject #81
has one locus missing two alleles, while subject #137 has two loci missing
two alleles. As indicated by num_enum_rows, subject #81 has 1,800 potential
haplotype pairs, while subject #137 has nearly 130,000.

Because of the missing data, the number of possible haplotype pairs is
quite large, which increases computation time of haplo.em in section 6.2.
With geno rows #81 and #137 included, haplo.em requires about 300 seconds
of CPU time, while without those two rows it takes just over 1 second. It is
a good idea to preview the data for missing values using the summaryGeno
function. If there are just a few subjects with missing alleles, it may be
worthwhile to exclude them.

6 Haplotype Frequency Estimation: haplo.em

6.1 Algorithm

For genetic markers measured on unrelated subjects, with linkage phase un-
known, haplo.em computes maximum likelihood estimates of haplotype prob-
abilities. Because there may be more than one pair of haplotypes that are
consistent with the observed marker phenotypes, posterior probabilities of
haplotype pairs for each subject are also computed. Unlike the usual EM
which attempts to enumerate all possible haplotype pairs before iterating
over the EM steps, our progressive insertion algorithm progressively inserts
batches of loci into haplotypes of growing lengths, runs the EM steps, trims
off pairs of haplotypes per subject when the posterior probability of the pair
is below a specified threshold, and then continues these insertion, EM, and
trimming steps until all loci are inserted into the haplotype. The user can
choose the batch size. If the batch size is chosen to be all loci, and the thresh-
old for trimming is set to 0, then this reduces to the usual EM algorithm.
The basis of this progressive insertion algorithm is from the "snphap” software
by David Clayton|[2]. Although some of the features and control parameters
of haplo.em are modeled after snphap, there are substantial differences, such
as extension to allow for more than two alleles per locus, and some other
nuances on how the algorithm is implemented.

6.2 Example Usage

Use haplo.em on geno for the 3 loci defined above, then view the results stored
in save.em. In this example we show just a quick glance of the output by
using the option nlines=10, which prints only the first 10 haplotypes of the
full results. (The nlines parameter has been employed in some of the print
methods in the Haplo Stats package to shorten the lengthy results for this
user guide. In practice, it is best to exclude this parameter so that the default
will print all results.)

> save.em <- haplo.em(geno = geno, locus.label = label, miss.val = c(0,
+ NA))
> print(save.em, nlines = 10)

Haplotypes

DQB DRB B hap.freq
1 21 1 8 0.00232
2 21 2 7 0.00227
3 21 218 0.00227
4 21 3 8 0.10408
5 21 318 0.00229
6 21 3 35 0.00570
7 21 344 0.00378
8 21 345 0.00227
9 21 349 0.00227
10 21 3 57 0.00227

Details

Inlike = -1847.675

lr stat for no LD = 632.8897 , df = 125 , p-val = O

10

Explanation of Results

The haplotypes and their estimated frequencies are listed, as well as a few
details. The Ir stat for no LD is the likelihood ratio statistic contrasting the
Inlike for the estimated haplotype frequencies versus the Inlike assuming that
alleles from all loci are in linkage equilibrium. Trimming by the progressive
insertion algorithm can invalidate the Ir stat and the degrees of freedom (df)
— see the help file for haplo.em for more details.

Summary Method

The summary on save.em shows the list of haplotypes per subject, and
their posterior probabilities:

> summary(save.em, nlines = 7)

Subjects: Haplotype Codes and Posterior Probabilities

subj.id haplcode hap2code posterior

1 1 78 58 1.00000
2 2 13 143 0.12532
3 2 138 17 0.87468
4 3 168 25 1.00000
5 4 13 39 0.28621
6 4 17 38 0.71379
7 5 55 94 1.00000
Number of haplotype pairs: max vs used
X 1 2 3 72 135

11

1 18 0

2 50 4
4 116 29
1800 0 O

129600 0 O

O O O O

O, O O O
= O O O O

Explanation of Results

The first part of summary lists the subject id (row number of input geno
matrix), the codes for the haplotypes of each pair, and the posterior proba-
bilities of the haplotype pairs. The second part gives a table of the maximum
number of pairs of haplotypes per subject, versus the number of pairs used
in the final posterior probabilities. The haplotype codes remove the clutter
of illustrating all the alleles of the haplotypes, but may not be as informative
as the actual haplotypes themselves. To see the actual haplotypes, use the

show.haplo=TRUE option:

> summary(save.em, show.haplo =

TRUE, nlines

Subjects: Haplotype Codes and Posterior Probabilities

subj.id hapl.DQB hapl.DRB hapl.B hap2.DQB hap2.DRB hap2.B posterior

78 1
13
138
168
13.1
17
55

O W NN

32
21
62
63
21
21
31

4
7
2
13
7
7
11

62
7
7

62
7

44

51

31
62
21
31
31
31
42

11
2

0 ~N N =

61
44
44
27
44

7
55

1.
.12532
.87468
.00000
.28621
. 71379
.00000

_ O O = O O

00000

Number of haplotype pairs: max vs used

12

X 1 2 3 72 135

1 18 0 0 0 O
2 50 4 0 0 O
4 116 29 1 0 O
1800 6o o0 o0 1 O
120600 0 O O O 1

6.3 Control Parameters for haplo.em

An additional argument can be passed to haplo.em, called "control”. This is a
list of parameters that control the EM algorithm based on progressive inser-
tion of loci. The default values are set up by a function called haplo.em.control
(see the help(haplo.em.control) for a complete description). Although the
user can accept the default values, there are times when they may need to
be adjusted. For example, for small sample sizes and many possible hap-
lotypes, finding the global maximum of the log-likelihood can be difficult.
The algorithm uses multiple attempts to maximize the log-likelihood, start-
ing each attempt with random starting values. If the results from haplo.em,
haplo.score, or haplo.glm change when rerunning the analyses, this may be
due to different maximizations of the log-likelihood. To avoid this, the user
can increase the number of attempts (n.try) to maximize the log-likelihood,
increase the batch size (insert.batch.size), or decrease the trimming threshold
for posterior probabilities (min.posterior). If the EM algorithm fails to con-
verge, try increasing the maximum number of iterations (max.iter). These
parameters are defined below:

e insert.batch.size: Number of loci to be inserted in a single batch.

e min.posterior: Minimum posterior probability of haplotype pair,
conditional on observed marker genotypes. Posteriors below this min-
imum value will have their pair of haplotypes "trimmed” off the list of
possible pairs.

e max.iter: Maximum number of iterations allowed for the EM algo-
rithm before it stops and prints an error.

13

e n.try: Number of times to try to maximize the Inlike by the EM
algorithm. The first try will use, as initial starting values for the pos-
teriors, either equal values or uniform random variables, as determined
by random.start. All subsequent tries will use uniform random values
as initial starting values for the posterior probabilities.

The example below illustrates how to set the number of tries to 20, and
maximum number of iterations to 1,000. The function would take about
twice as long to finish, so we comment the code here just to demonstrate the
syntax.

##save.em <- haplo.em(geno=geno, locus.label=label, miss.val=c(0, NA),
##control = haplo.em.control(n.try = 20, max.iter = 1000))

6.4 Haplotype Frequencies by Group Subsets

To compute the haplotype frequencies for each level of a grouping variable,
use the function haplo.group. The following example illustrates the use of a
binomial response based on resp.cat, y.bin, that splits the subjects into two
groups.

> y.ord <- as.numeric(resp.cat)

> y.bin <- ifelse(y.ord == 1, 1, 0)

> group.bin <- haplo.group(y.bin, geno, locus.label = label, miss.val = 0)
> print(group.bin, nlines = 15)

group
0 1
157 63

14

Haplotype Frequencies By Group

DGB DRB B Total y.bin.0 y.bin.1
1 21 1 8 0.00232 0.00335 NA
2 21 10 8 0.00181 0.00318 NA
3 21 13 8 0.00274 NA NA
4 21 218 0.00227 0.00318 NA
5 21 2 7 0.00227 0.00318 NA
6 21 3 18 0.00229 0.00637 NA
7 21 3 35 0.00570 0.00639 NA
8 21 344 0.00378 0.00333 0.01587
9 21 3 45 0.00227 NA NA
10 21 3 49 0.00227 NA NA
11 21 3 57 0.00227 NA NA
12 21 3 70 0.00227 NA NA
13 21 3 8 0.10408 0.06974 0.19048
14 21 4 62 0.00455 0.00637 NA
15 21 7 13 0.01072 NA 0.02381

Explanation of Results

The group.bin object can be very large, depending on the number of pos-
sible haplotypes, so only a portion of the output is illustrated above. The
first section gives a short summary of how many subjects appear in each of
the groups. The second section is a table with the following columns:

e The first column gives row numbers.

e The next columns (3 in this example) illustrate the alleles of the hap-
lotypes.

e Total are the estimated haplotype frequencies for the entire data set.

e The last columns are the estimated haplotype frequencies for the sub-
jects in the levels of the group variable (y.bin=0 and y.bin=1 in this
example). Note that some haplotype frequencies have an "NA”, which
occurs when the haplotypes do not occur in the subgroups.

15

7 Haplotype Score Tests: haplo.score

The function haplo.score is used to compute score statistics to test associ-
ations between haplotypes and a wide variety of traits, including binary,
ordinal, quantitative, and Poisson. This function provides several different
global and haplotype-specific tests for association, allows for adjustment for
non-genetic covariates, and optionally allows computation of permutation p-
values (which may be needed for sparse data). Details on the background
and theory of the score statistics can be found in Schaid et al.[6].

7.1 Quantitative Trait Analysis

First, analyze the quantitative trait called resp. A quantitative trait is iden-
tified in haplo.score by the parameter trait.type="gaussian” (a reminder that
a gaussian distribution is assumed for the distribution of the error terms).
The other arguments, all set to default values, are defined in the help file,
viewed by typing help(haplo.score). Note that rare haplotypes can result in
unstable variance estimates, and hence unreliable test statistics for the rare
haplotypes. For hints on handling rare haplotypes, see section 7.5. Execute
the function then view the results using the print method (again, output
shortened by nlines).

> score.gaus <- haplo.score(resp, geno, trait.type = "gaussian",
+ skip.haplo = 0.005, locus.label = label, simulate = FALSE)
> print(score.gaus, nlines = 10)

global-stat = 46.49606, df = 38, p-val = 0.16222

16

Haplotype-specific Scores

DOB DRB B Hap-Freq Hap-Score p
[1,] 21 3 8 0.10408 -2.39631 0
[2,] 21 7 13 0.01072 -2.29908 O
[3,] 31 4 44 0.02849 -2.24273 0
[4,] 63 13 60 0.00575 -1.75669 O
[5,] 62 2 35 0.00751 -1.2084 0.22689
[6,] 51 1 44 0.01731 -0.99357 O
[7,] 63 13 44 0.01606 -0.84453 0
[8,] 33 7 57 0.00682 -0.58522 0
[9,] 31 11 44 0.01059 -0.54951 0
[10,] 63 2 7 0.01333 -0.50736 O

O O O O O O OO o o

Explanation of Results

The section Global Score Statistics prints results for testing an overall
association between haplotypes and the response. The global-stat has an
asymptotic x? distribution, with degrees of freedom (df) and p-value as in-
dicated. Haplotype-specific scores are given in a table format. The column
descriptions are as follows:

e The first column gives row numbers.

e The next columns (3 in this example) illustrate the alleles of the hap-
lotypes.

e Hap-Freq is the estimated frequency of the haplotype in the pool of all
subjects.

e Hap-Score is the score for the haplotype, the results are sorted by this
value.

e p-val is the asymptotic chi-square (1 df) p-value.

17

7.2 Ordinal Trait Analysis

To create an ordinal trait, convert resp.cat (a factor with levels "low”, "nor-
mal”, "high”) to numeric values, y.ord (with levels 1, 2, 3). For haplo.score,
use y.ord as the response variable, and set the parameter trait.type = "ordinal”.

> y.ord <- as.numeric(resp.cat)

> score.ord <- haplo.score(y.ord, geno, trait.type = "ordinal",

+ offset = NA, x.adj = NA, skip.haplo = 0.005, locus.label = label,
+ miss.val = 0, simulate = FALSE)

> print(score.ord, nlines = 10)

global-stat = 62.89774, df = 38, p-val = 0.00674

DQB DRB B Hap-Freq Hap-Score p
[1,] 21 7 13 0.01072 -3.67306 O
[2,] 21 3 8 0.10408 -2.79247 O
[3,] 31 4 44 0.02849 -2.61319 0
[4,] 63 13 60 0.00575 -2.35846 O
[5,] 33 7 57 0.00682 -0.93375 0.35043
[6,] 33 9 60 0.00682 -0.93375 0
[7,] 31 11 44 0.01059 -0.75601 O
[8,] 62 2 35 0.00751 -0.7069 O
[9,] 63 13 44 0.01606 -0.69172 O
[10,] 51 1 44 0.01731 -0.62185 O

O OO OO O O o oo

18

Warning for Ordinal Traits

When analyzing an ordinal trait with adjustment for covariates (using the
x.adj option), the software requires the libraries Design and Hmisc, distributed
by Frank Harrell, Ph.D.[4]. If the user does not have these libraries installed,
then it will not be possible to use the x.adj option. However, the unadjusted
scores for an ordinal trait (using the default option x.adj=NA) do not require
these libraries. Check the list of your local libraries in the list shown from
entering library() in your prompt.

7.3 Binary Trait Analysis

Because "low” responders are of primary interest, create a binary trait that
has values of 1 when response is "low”, and 0 otherwise. Then in haplo.score
specify the parameter trait.type="binomial".

> y.bin <- ifelse(y.ord == 1, 1, 0)

> score.bin <- haplo.score(y.bin, geno, trait.type = "binomial",

+ offset = NA, x.adj = NA, skip.haplo = 0.005, locus.label = label,
+ miss.val = 0, simulate = FALSE)

> print(score.bin, nlines = 10)

global-stat = 61.82492, df = 38, p-val = 0.00861

19

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 62 2 7 0.05098 -2.19387 0.02824
[2,] 51 1 35 0.03018 -1.58421 0.11315
[3,] 63 13 7 0.01655 -1.56008 0.11874
(4,] 210 7 7 0.01246 -1.47495 0.14023
[5,] 64 13 35 0.00897 -1.27347 0.20285
[6,] 63 13 62 0.00866 -1.14173 0.25356
[7,] 32 8 7 0.00682 -1.10475 0.26927
[8,] 64 13 63 0.00682 -1.10475 0.26927
[9,] 64 13 60 0.00654 -1.09005 0.27569
[10,] 51 1 51 0.00727 -1.08131 0.27956

7.4 Plots and Haplotype Labels

A convenient way to view results from haplo.score is a plot of the haplotype
frequencies (Hap-Freq) versus the haplotype score statistics (Hap-Score), as
shown in Figure 1.

Some points on the plot may be of interest, perhaps due to their score
statistic, or their haplotype frequency. To identify individual points in the
plot, use locator.haplo(score.gaus) for this example. Then with the left mouse
button, click on all the points of interest. After points are chosen, click on
the middle mouse button, and the points are labeled with their haplotype
labels.

7.5 Skipping Rare Haplotypes

For the quantitative trait analyses, the option skip.haplo=.005 was used to
pool all haplotypes with frequencies < 0.005 into a common group. As a
guideline, you may wish to set skip.haplo to get expected haplotype counts
greater than 5. If V is the number of subjects and f the haplotype frequency,
then the expected haplotype count is £ = 2 x N x f. So you can choose
skip.haplo = % if £ = 5 is chosen. Here we try a different cut-off than
before, skip.haplo=.01, which corresponds to expected haplotype counts of
2 x 220 x .01 = 4.4. In the output, notice the global statistic and its p-
value change (due to decreased df), but the haplotype-specific scores do not

change.

20

> plot(score.gaus)

° o
~ o
o
[8) °°
2 "
] o° o
2 o0 °
’6 o
[5) 8
n 97 e °
g o
R
o
g < °
T |
o
o
N
|
° °
o
I I I I I
0.02 0.04 0.06 0.08 0.10

Haplotype Frequency

Figure 1: Haplotype Statistics: Score vs. Frequency; Quantitative Response

> score.gaus.01 <- haplo.score(resp, geno, trait.type = "gaussian',
+ offset = NA, x.adj = NA, skip.haplo = 0.01, locus.label = label,
+ miss.val = 0, simulate = FALSE)

> print(score.gaus.01, nlines = 10)

21

global-stat = 33.37945, df = 20, p-val = 0.03064

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 21 3 8 0.10408 -2.39631 0.01656
[2,] 21 7 13 0.01072 -2.29908 0.0215
[3,] 31 4 44 0.02849 -2.24273 0.02491
[4,] 51 1 44 0.01731 -0.99357 0.32043
[5,] 63 13 44 0.01606 -0.84453 0.39837
(6,1 31 11 44 0.01059 -0.54951 0.58266
[7,] 63 2 7 0.01333 -0.50736 0.6119
[8,] 32 4 60 0.0306 -0.46606 0.64118
(9,1 21 7 44 0.02332 -0.41942 0.67491
[10,] 62 2 44 0.01367 -0.26221 0.79316

7.6 Haplotype Scores, Adjusted for Covariates

First set up a covariate matrix, with the first column for male (1 if male; 0 if
female), and the second column for age (in months). Then use the matrix as
an argument to haplo.score. When adjusting for covariates, all score statistics
can change, though not by much in this example.

x.ma <- cbind(male, age)

score.gaus.adj <- haplo.score(resp, geno, trait.type = "gaussian",
offset = NA, x.adj = x.ma, skip.haplo = 0.005, locus.label = label,
miss.val = 0, simulate = FALSE)

print (score.gaus.adj, nlines = 10)

vV + + Vv VvV

Global Score Statistics

22

global-stat = 46.68398, df = 38, p-val = 0.15764

DQB DRB B Hap-Freq Hap-Score p
[1,] 21 3 8 0.10408 -2.4097 O
[2,] 21 7 13 0.01072 -2.28963 O
[3,] 31 4 44 0.02849 -2.25293 0
[4,] 63 13 60 0.00575 -1.77427 O
[5,] 62 2 35 0.00751 -1.21288 0.22517
[6,] 51 1 44 0.01731 -0.98763 O
[7,] 63 13 44 0.01606 -0.83952 0
[8,] 33 7 57 0.00682 -0.60404 O
[9,] 31 11 44 0.01059 -0.547 0
[10,] 63 2 7 0.01333 -0.48483 0

O OO O O O O o o o

7.7 Permutation p-values

Permutation p-values are computed when simulate=TRUE. In addition to
the global statistic and haplotype-specific statistics, the function computes
a "max-stat” statistic and corresponding permutation p-value. The max-stat
is the maximum among all haplotype-specific score statistics. Because the
distribution of this statistic is unknown, the p-value for max-stat is given
only when permutations are requested. If only a few haplotypes are associ-
ated with the trait, the max-stat should have greater power than the global
statistic.

The score.sim.control function manages simulation control parameters.
Simulated statistics are based on randomly permuting the trait and covari-
ates (same order for both), but not the geno matrix, and then computing the

23

haplotype score statistics, adjusted for covariates. haplo.score employs the
simulation p-value precision criteria of Besag and Clifford[1]. These criteria
ensure that the permutation p-values for both the global and the maximum
score statistics are precise for small p-values. The algorithm performs a user-
defined minimum number of permutations (min.sim) to guarantee sufficient
precision for the simulated p-values for score statistics of individual hap-
lotypes. Permutations beyond this minimum are then conducted until the
sample standard errors for simulated p-values for both the global and max
score statistics are less than a threshold (p.threshold * p-value). The default
value for p.threshold= i provides a two-sided 95% confidence interval for the
p-value with a width that is approximately as wide as the p-value itself.
Effectively, simulations are more precise for smaller p-values. The following
example illustrates computation of permutation p-values with min.sim=1000.

> score.bin.sim <- haplo.score(y.bin, geno, trait.type = "binomial",
+ offset = NA, x.adj = NA, skip.haplo = 0.005, locus.label = label,
+ miss.val = 0, simulate = TRUE, sim.control = score.sim.control())

> print(score.bin.sim, nlines = 10)

Global sim. p-val = 0.00598
Max-Stat sim. p-val = 0.00563
Number of Simulations, Global: 2842 , Max-Stat: 2842

Haplotype-specific Scores

DQB DRB B Hap-Freq Hap-Score p-val sim p-val
[1,] 62 2 7 0.05098 -2.19387 0.02824 0.03272
[2,] 51 1 35 0.03018 -1.58421 0.11315 0.13476
[3,] 63 13 7 0.016565 -1.56008 0.11874 0.19177
(4,] 21 7 7 0.01246 -1.47495 0.14023 0.15588
[5,] 64 13 35 0.00897 -1.27347 0.20285 0.32231
[6,] 63 13 62 0.00866 -1.14173 0.25356 0.28325
[7,] 32 8 7 0.00682 -1.10475 0.26927 0.54293
[8,] 64 13 63 0.00682 -1.10475 0.26927 0.57037
[9,] 64 13 60 0.00654 -1.09005 0.27569 0.18825
[10,] 51 1 51 0.00727 -1.08131 0.27956 0.3677

7.8 Combine Score and Group Results: haplo.score.merge

When analyzing a qualitative trait, such as binary, it can be helpful to align
the results from haplo.score with haplo.group. To do so, use the function
haplo.score.merge, as illustrated in the following example:

> merge.bin <- haplo.score.merge(score.bin, group.bin)
> print (merge.bin, nlines = 10)

DQB DRB B Hap.Score p.val Hap.Freq y.bin.0 y.bin.1

1 62 2 7 -2.1939 0.02824 0.05098 0.06789 0.01587
2 51 135 -1.5842 0.11315 0.03018 0.03754 0.00907
3 63 13 7 -1.5601 0.11874 0.01655 0.02176 NA
4 21 7 7 -1.4749 0.14023 0.01246 0.01969 NA
5 64 13 35 -1.2735 0.20285 0.00897 0.01318 NA

25

6 63 13 62 -1.1417 0.25356 0.00866 0.01274 NA
7 32 8 7 -1.1047 0.26927 0.00682 0.00955 NA
8 64 13 63 -1.1047 0.26927 0.00682 0.00955 NA
9 64 13 60 -1.0900 0.27569 0.00654 0.00637 NA
10 51 151 -1.0813 0.27956 0.00727 0.00955 NA

Explanation of Results

The first column is a row index, the next columns (3 in this example)
illustrate the haplotype, the Hap.Score column is the score statistic and p.val
the corresponding x? p-value. Hap.prob is the haplotype frequency for the
total sample, and the remaining two columns are the estimated haplotype
frequencies for each of the group levels (y.bin in this example). The default
print method only prints results for haplotypes appearing in the haplo.score
output. To view all haplotypes, use the print option all.haps=TRUE, which
prints all haplotypes from the haplo.group output. The output is ordered by
the score statistic, but the order.by parameter can specify ordering by haplo-
types or by haplotype frequency. See the help file for print.haplo.score.merge
for details on printing options.

7.9 Score Tests on Sub-Haplotypes: haplo.score.slide

To evaluate the association of sub-haplotypes (subsets of alleles from the
full haplotype) with a trait, the user can evaluate a "window” of alleles by
haplo.score, and slide this window across the entire haplotype. This procedure
is implemented by the function haplo.score.slide. To illustrate this method,
we use all 11 loci in the demo data, hla.demo.

First, make the geno matrix and the locus labels for the 11 loci. Then
use haplo.score.slide for a window of 3 loci (n.slide=3), which will slide along
the haplotype for all 9 contiguous subsets of size 3, using the same gaussian
trait as above.

> geno.11 <- hla.demo[, -c(1:4)]

> label.11 <- c("DPB", "DPA", "DMA", "DMB", "TAP1", "TAP2", "D@B",

+ "DQA", "DRB", "B", "A")

> score.slide.gaus <- haplo.score.slide(resp, geno.11, trait.type = "gaussian",
+ n.slide = 3, skip.haplo = 0.005, locus.label = label.11)

> print(score.slide.gaus)

26

start.locus score.global.p score.global.p.sim score.max.p.sim

1 1 0.2963703 NA NA
2 2 0.0078762 NA NA
3 3 0.2272005 NA NA
4 4 0.7663358 NA NA
5 5 0.2172384 NA NA
6 6 0.2111682 NA NA
7 7 0.2178191 NA NA
8 8 0.1052554 NA NA
9 9 0.0404776 NA NA

Explanation of Results

The first column is the row index of the nine calls to haplo.score, the sec-
ond column is the number of the starting locus of the sub-haplotype, the third
column is the global score statistic p-value. The last two columns are the
simulated p-values for the global and maximum score statistics, respectively.
If you specify simulate=TRUE in the function call, the simulated p-values
would be present.

7.10 Plot Results from haplo.score.slide

The results from haplo.score.slide can be easily viewed in a plot shown in
Figure 2.

The x-axis has tick marks for each locus, and the y-axis is the —log;o(pval).
To select which p-value to plot, use the parameter pval, with choices "global”,
"global.sim”, and ”"max.sim” corresponding to p-values described above. If
the simulated p-values were not computed, the default is to plot the global
p-values. For each p-value, a horizontal line is drawn at the height of
—logyo(pval) across the loci over which it was calculated. For example, the
p-value score.global.p = 0.0078762 for loci 2-4 will plot as a horizontal line
plotted at y = 2.1 covering the 274, 3", and 4" x-axis tick marks.

8 Regression Models: haplo.glm

The function haplo.glm computes the regression of a trait on haplotypes, and
possibly other covariates and their interactions with haplotypes. Although

27

> plot(score.slide.gaus)

o |
N
|

o -

©

Qo

[

o

9]

o < _|

(8]

U)‘_'

N2

S

—

=)

k)

I
|
o
o |
o

DPB DMA TAP1 DQB DRB B A

Figure 2: Global p-values for sub-haplotypes; Gaussian Response

this function is based on a generalized linear model, only two types of traits
are currently supported: 1) quantitative traits with a normal (gaussian) dis-
tribution and identity link, and 2) binomial traits with a logit-link function.
The effects of haplotypes on the link function can be modeled as either ad-
ditive, dominant (heterozygotes and homozygotes for a particular haplotype
assumed to have equivalent effects), or recessive (homozygotes of a particular
haplotype considered to have an alternative effect on the trait). The basis
of the algorithm is a two-step iteration process; the posterior probabilities of
pairs of haplotypes per subject are used as weights to update the regression
coefficients, and the regression coefficients are used to update the posterior
probabilities. See Lake et al.[5] for details.

28

8.1 Setting Up the data.frame

A critical distinction between haplo.glm and all other functions in Haplo Stats
is that the definition of the regression model follows the S-PLUS/R formula
standard. So, a data.frame must be defined, and this data.frame must contain
the trait, a special kind of genotype matrix (called geno in this example) that
contains the genotypes of the marker loci, and possibly other covariates and
weights for the subjects. The key feature of this data.frame is how geno
is created. Prepare the geno matrix with the function setupGeno, which
handles character, numeric, or factor alleles, and keeps the columns of geno
as a single unit when inserting into (and extracting from) a data.frame. The
setupGeno function recodes alleles to integer values (the allele codes become
an attribute of the returned object), and returns a model.matrix, which can
then be inserted into a data.frame. Prepare the geno matrix, then create a
data.frame for use in haplo.glm.

> geno <- as.matrix(hla.demo[, c(17, 18, 21:24)])

> geno <- setupGeno(geno, miss.val = c(0, NA))

> y.bin <- 1 * (hla.demo$resp.cat == "low")

> my.data <- data.frame(geno, age = age, male = male, y = resp,
+ y.bin = y.bin)

8.2 Regression for a Quantitative Trait

The following illustrates how to fit a regression of quantitative trait y on the
haplotypes defined by the geno matrix, and the covariate male. The control
parameter, haplo.freq.min, is discussed below under the heading Explana-
tion of Results, as well as in section 8.5. The results are shown below.

> fit.gaus <- haplo.glm(y ~ male + geno, family = gaussian, data = my.data,

+ na.action = "na.geno.keep", locus.label = label, allele.lev = attributes(g
+ control = haplo.glm.control (haplo.freq.min = 0.02))

> print(fit.gaus)

Call:

haplo.glm(formula = y ~ male + geno, family = gaussian, data = my.data,
na.action = "na.geno.keep", locus.label = label, allele.lev = attributes(geno’
control = haplo.glm.control(haplo.freq.min = 0.02))

29

Coefficients:

coef se t.stat pval
(Intercept) 1.0644 0.343 3.105 0.00217
male 0.0974 0.155 0.627 0.53119
geno.17 0.2802 0.435 0.643 0.52062
geno.34 -0.3171 0.343 -0.923 0.35684
geno.77 0.2217 0.361 0.614 0.54014
geno.78 1.1414 0.384 2.974 0.00328
geno.100 0.5556 0.364 1.525 0.12871
geno.138 0.9823 0.303 3.239 0.00139
geno.rare 0.3976 0.182 2.186 0.02992
Haplotypes:
DQB DRB B hap.freq
geno.17 21 7 44 0.0229
geno.34 31 4 44 0.0286
geno.77 32 460 0.0302
geno.78 32 462 0.0239
geno.100 51 135 0.0301
geno.138 62 2 7 0.0502
geno.rare * x x 0.7100
haplo.base 21 3 8 0.1041

Explanation of Results

The above table for Coefficients lists the estimated regression coefficient
(coef), its standard error (se), the corresponding t-statistic (t.stat) , and
p-value (pval). The labels for haplotype coefficients are a pasting of the
matrix defining the genotypes (geno in the above example) and the haplotype
numbers. The haplotypes corresponding to these haplotype numbers are
listed in the above table under Haplotypes, along with the estimates of the
haplotype frequencies (hap.freq). The rare haplotypes (those with frequencies
less than haplo.freq.min = 0.02 in the above example) are pooled into a single
category labeled geno.rare. The haplo.freq.min parameter works the same as
skip.haplo described in section 7.5. The haplotype chosen as the base-line
category for the design matrix (most frequent haplotype is the default) is
labeled as haplo.base.

30

8.3 Fitting Haplotype x Covariate Interactions

9% i

Interactions are fit by the standard S-language model syntax, using a n

the model formula to indicate main effects and interactions.

> fit.inter <- haplo.glm(y ~ male * geno, family = gaussian, data = my.data,
+ na.action = "na.geno.keep", locus.label = label, allele.lev = attributes(g
+ control = haplo.glm.control(haplo.freq.min = 0.02))
> print(fit.inter)
Call:
haplo.glm(formula = y ~ male * geno, family = gaussian, data = my.data,
na.action = "na.geno.keep", locus.label = label, allele.lev = attributes(geno’

control = haplo.glm.control(haplo.freq.min = 0.02))

Coefficients:
coef se t.stat pval

(Intercept) 0.9754 0.301 3.2354 0.00142
male 0.2581 0.311 0.8308 0.40705
geno.17 0.1444 0.443 0.3257 0.74495
geno.34 -0.1716 0.596 -0.2878 0.77381
geno.77 0.8052 0.591 1.3627 0.17447
geno.78 0.4956 0.488 1.0157 0.31099
geno.100 0.5231 0.400 1.3093 0.19189
geno.138 1.1570 0.353 3.2801 0.00122
geno.rare 0.4555 0.182 2.5015 0.01315
male:geno.17 0.5087 0.711 0.7157 0.47502
male:geno.34 -0.2814 0.667 -0.4218 0.67365
male:geno.77 -0.9008 0.697 -1.2925 0.19764
male:geno.78 1.2638 0.654 1.9335 0.05456
male:geno.100 0.0507 0.660 0.0769 0.93881
male:geno.138 -0.4459 0.519 -0.8584 0.39168
male:geno.rare -0.0979 0.205 -0.4768 0.63402
Haplotypes:

DQB DRB B hap.freq
geno.17 21 7 44 0.0235
geno.34 31 4 44 0.0285
geno.77 32 460 0.0306

31

geno.78 32 462 0.0241
geno.100 51 135 0.0301
geno.138 62 2 7 0.0505
geno.rare * x x 0.7086
haplo.base 21 3 8 0.1041

Explanation of Results
The listed results are as explained under section 8.2. The only difference

is that the interaction coefficients are labeled as a pasting of the covariate
(male in this example) and the name of the haplotype

8.4 Regression for a Binomial Trait

The following illustrates the fitting of a binomial trait:

> fit.bin <- haplo.glm(y.bin ~ male + geno, family = binomial,

+ data = my.data, na.action = '"na.geno.keep", locus.label = label,
+ allele.lev = attributes(geno)$unique.alleles, control = haplo.glm.control(
+ x = TRUE)

> print(fit.bin)

Call:

haplo.glm(formula = y.bin ~ male + geno, family = binomial, data = my.data,
na.action = "na.geno.keep", locus.label = label, allele.lev = attributes(geno’
control = haplo.glm.control(haplo.freq.min = 0.02), x = TRUE)

Coefficients:

coef se t.stat pval
(Intercept) 1.546 0.419 3.686 2.90e-04
male -0.480 0.324 -1.482 1.40e-01
geno.17 -0.723 0.696 -1.039 3.00e-01
geno.34 0.364 0.623 0.585 5.59e-01
geno.77 -0.988 0.689 -1.435 1.53e-01
geno.78 -1.409 0.773 -1.823 6.97e-02
geno.100 -2.591 0.709 -3.656 3.23e-04
geno.138 -2.716 0.758 -3.582 4.23e-04
geno.rare -1.261 0.253 -4.975 1.35e-06

w
[\]

Haplotypes:

DQB DRB B hap.freq
geno.17 21 7 44 0.0230
geno .34 31 444 0.0284
geno.77 32 460 0.0306
geno.78 32 462 0.0235
geno.100 51 135 0.0298
geno.138 62 2 7 0.0518
geno.rare * % x 0.7088
haplo.base 21 3 8 0.1041

Explanation of Results

The underlying methods for haplo.glm are based on a prospective likeli-
hood. Normally, this type of likelihood works well for case-control studies
with standard covariates. For ambiguous haplotypes, however, one needs to
be careful when interpreting the results from fitting haplo.glm to case-control
data. Because cases are over-sampled, relative to the population prevalence
(or incidence, for incidence cases), haplotypes associated with disease will
be over-represented in the case sample, and so estimates of haplotype fre-
quencies will be biased. Positively associated haplotypes will have haplotype
frequency estimates that are higher than the population haplotype frequency
To avoid this problem, one can weight each subject. The weights for the cases
should be the population prevalence, and the weights for controls should be
1 (assuming the disease is rare in the population, and controls are repre-
sentative of the general population). See Stram[7] for background on using
weights, and see the help file for haplo.glm for how to implement weights.

The estimated regression coefficients for case-control studies can be biased
by either a large amount of haplotype ambiguity and mis-specified weights,
or by departures from Hardy Weinberg equilibrium of the haplotypes in the
pool of cases and controls. Generally, the bias is small, but tends to be
towards the null of no association. See Stram|[7] and Epstein[3] for further
details.

33

8.5 Control Parameters and Genetic Models

A key parameter for haplo.glm is control, which is a list of parameters that
control the procedures of haplo.glm. This control list is set up by the func-
tion haplo.glm.control. One parameter in the control function is haplo.effect,
which instructs whether the haplotype effects are fit as additive, dominant,
or recessive. That is, haplo.effect determines whether the covariate (x) coding
of haplotypes is "additive” (causing x = 0, 1, or 2, the count of a particular
haplotype), "dominant” (causing x = 1 if heterozygous or homozygous car-
rier of a particular haplotype; x = 0 otherwise), or "recessive” (causing = = 1
if homozygous for a particular haplotype; x = 0 otherwise). See the help
file for haplo.glm.control for further control parameters. The example below
illustrates the fit of a “dominant” effect of haplotypes.

> fit.dom <- haplo.glm(y ~ male + geno, family = gaussian, data = my.data,

+ na.action = "na.geno.keep", locus.label = label, allele.lev = attributes(g
+ control = haplo.glm.control (haplo.effect = "dom", haplo.freq.min = 0.02))
> print(fit.dom)

Call:

haplo.glm(formula = y ~ male + geno, family = gaussian, data = my.data,
na.action = "na.geno.keep", locus.label = label, allele.lev = attributes(geno’
control = haplo.glm.control(haplo.effect = "dom", haplo.freq.min = 0.02))

Coefficients:
coef se t.stat pval

(Intercept) 1.6493 0.373 4.416 1.61e-05
male 0.0797 0.157 0.507 6.13e-01
geno.17 -0.0604 0.423 -0.143 8.87e-01
geno.34 -0.6650 0.364 -1.827 6.91e-02
geno.77 -0.0734 0.347 -0.212 8.33e-01
geno.78 0.8537 0.364 2.344 2.00e-02
geno.100 0.2470 0.346 0.715 4.76e-01
geno.138 0.6729 0.282 2.389 1.78e-02
geno.rare 0.1120 0.340 0.329 7.42e-01
Haplotypes:

DOB DRB B hap.freq
geno.17 21 7 44 0.0230

34

geno.34
geno.77
geno.78
geno.100
geno.138
geno.rare
haplo.base

31
32
32
51
62

W ¥ N~ D DD

44
60
62
35

*

O O O O O O O

.0286
.0302
.0239
.0300
.0502
.7100
.1041

35

9 License and Warranty

License:
Copyright 2003 Mayo Foundation for Medical Education and Research.

This program is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to

Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA 02111-1307 USA

For other licensing arrangements, please contact Daniel J. Schaid.
Daniel J. Schaid, Ph.D.

Division of Biostatistics

Harwick Building - Room 775

Mayo Clinic

200 First St., SW

Rochester, MN 55905

phone: 507-284-0639

fax: 507-284-9542

email: schaid@mayo.edu

36

10 Acknowledgements

This research was supported by United States Public Health Services, Na-
tional Institutes of Health; Contract grant numbers R01 DE13276, R01 GM
65450, NO1 AI45240, and RO1 2AI33144. The hla.demo data is kindly pro-
vided by Gregory A. Poland, M.D. and the Mayo Vaccine Research Group
for illustration only, and may not be used for publication.

37

Appendix

A Counting Haplotype Pairs When Marker
Phenotypes Have Missing Alleles

The following describes the process for counting the number of haplotype
pairs that are consistent with a subject’s observed marker phenotypes, allow-
ing for some loci with missing data. Note that we refer to marker phenotypes,
but our algorithm is oriented towards typical markers that have a one-to-one
correspondence with their genotypes. We first describe how to count when
none of the loci have missing alleles, and then generalize to allow loci to
have either one or two missing alleles. When there are no missing alleles,
note that homozygous loci are not ambiguous with respect to the underlying
haplotypes, because at these loci the underlying haplotypes will not differ
if we interchange alleles between haplotypes. In contrast, heterozygous loci
are ambiguous, because we do not know the haplotype origin of the distin-
guishable alleles (i.e., unknown linkage phase). However, if there is only one
heterozygous locus, then it doesn’t matter if we interchange alleles, because
the pair of haplotypes will be the same. In this situation, if parental origin
of alleles were known, then interchanging alleles would switch parental origin
of haplotypes, but not the composition of the haplotypes. Hence, ambiguity
arises only when there are at least two heterozygous loci. For each heterozy-
gous locus beyond the first one, the number of possible haplotypes increases
by a factor of 2, because we interchange the two alleles at each heterozygous
locus to create all possible pairs of haplotypes. Hence, the number of possible
haplotype pairs can be expressed as 2%, where x = H — 1, if H (the number
of heterozygous loci) is at least 2, otherwise x = 0.

Now consider a locus with missing alleles. The possible alleles at a given
locus are considered to be those that are actually observed in the data. Let
a; denote the number of distinguishable alleles at the locus. To count the
number of underlying haplotypes that are consistent with the observed and
missing marker data, we need to enumerate all possible genotypes for the
loci with missing data, and consider whether the imputed genotypes are
heterozygous or homozygous.

To develop our method, first consider how to count the number of geno-
types at a locus, say the i locus, when either one or two alleles are missing.

38

This locus could have either a homozygous or heterozygous genotype, and
both possibilities must be considered for our counting method. If the locus
is considered as homozygous, and there is one allele missing, then there is
only one possible genotype; if there are two alleles missing, then there are
a; possible genotypes. A function to perform this counting for homozygous
loci is denoted f(a;). If the locus is considered as heterozygous, and there
is one allele missing, then there are a; — 1 possible genotypes; if there are
two alleles missing, then there are % possible genotypes. A function to
perform this counting for heterozygous loci is denoted g(a;) These functions

and counts are summarized in Table A.1.

Table A.1: Factors for when a locus having missing allele(s) is counted as
homozygous(f()) or heterozygous(g())

Number of | Homozygous | Heterozygous
missing alleles | function f(a;) | function g(a;)
1 1 a; — 1
9 a; ai(a;—l)

Now, to use these genotype counting functions to determine the number
of possible haplotype pairs, first consider a simple case where only one locus,
say the " locus, has two missing alleles. Suppose that the phenotype has H
heterozygous loci (H is the count of heterozygous loci among those without
missing data). We consider whether the locus with missing data is either
homozygous or heterozygous, to give the count of possible haplotype pairs as

]y "

where again x = H — 1 if H is at least 2, otherwise x = 0. This special case
can be represented by our more general genotype counting functions as

ai(ai —

;2"
a —i—l 5

flai) 27 + g(a;) 2+ (2)

When multiple loci have missing data, we need to sum over all possible
combinations of heterozygous and homozygous genotypes for the incomplete
loci. The rows of Table A.2 below present these combinations for up to

39

m = 3 loci with missing data. Note that as the number of heterozygous
loci increases (across the columns of Table A.2), so too does the exponent of
2. To calculate the total number of pairs of haplotypes, given observed and
possibly missing genotypes, we need to sum the terms in Table A.2 across
the appropriate row. For example, with m = 3, there are eight terms to sum
over. The general formulation for this counting method can be expressed as

TotalPairs =Y Y C(combo, j) (3)

7=0 combo

where combo is a particular pattern of heterozygous and homozygous loci
among the loci with missing values (e.g., for m = 3, one combination is
the first locus heterozygous and the 2"¢ and 3" third as homozygous), and
C'(combo, 7) is the corresponding count for this pattern when there are ¢ loci
that are heterozygous (e.g., for m = 3 and j = 1 , as illustrated in Table
A2).

Table A.2: Genotype counting terms when m loci have missing

alleles, grouped by number of heterozygous loci (out of m)

]mH j:Oofm\]zlofm\ j:20fm\ j:30fm‘
0 2%
1 f(a1)2* g(a)2"*!
2 flar) f(az)2” g(a1) f(az)27*! g(a1)g(az)2*
f(a1)g(ag)27!
3| fla)f(az)f(as)2” | glar)f(az) f(as)2""" | glai)g(az) f(as)2*™* | g(ai)g(az)g(as)2*+?
flar)g(as) f(az)2**" | g(ar) f(az)g(az)27+?
flar) f(ag)g(az)2**" | f(ai)g(ag)g(as)2*+?

40

References

[1] Besag J, Clifford P (1991) Sequential Monte Carlo p-Values. Biometrika
78:301-304

2] Clayton, David. Personal web page, software list. April 1, 2004.
<http://www-gene.cimr.cam.ac.uk/clayton/software/>.

[3] Epstein M, Satten G (2003) Inference on haplotype effects in case-control
studies using unphased genotype data. Submitted.

[4] Harrell, FE. Regression Modeling Strategies, Springer-Verlag, NY, 2001.

[5] Lake S, Lyon H, Silverman E, Weiss S, Laird N, Schaid D (2003) Estima-
tion and tests of haplotype-environment interaction when linkage phase is
ambiguous. Human Heredity 55:56-65

[6] Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002)
Score tests for association between traits and haplotypes when linkage
phase is ambiguous. Am J Hum Genet 70:425-34

[7] Stram D, Pearce C, Bretsky P, Freedman M, Hirschhorn J, Altshuler
D, Kolonel L, Henderson B, Thomas D (2003) Modeling and E-M estima-
tion of haplotype-specific relative risks from genotype data for case-control
study of unrelated individuals. Hum Hered 55:179-190

41

