
Writing new grob functions

Hadley Wickham

2005-11-16

As you use ggplot more, you may discover some of the limitations of the included grob functions and
want to write your own. (Although I’m very open to suggestions and if you develop a useful grob function I
will be happy to include in the main package). This document will discuss in detail how grob functions work
and what you need to do to build your own. As an example I will work through the process of creating a
grob function that produces a 1d density plot with jittered rug plot, not unlike that created by densityplot
in lattice.

ggplot uses grid graphics, so to be able to create new grob functions you will need some familiarity with
basic grid functions. This isn’t too hard to acquire, and I suggest you look at the code for the basic grob
functions (eg. grob_points, grob_rect) for some simple examples.

There are three functions you will need to write when creating a new grob function:

� A convenient function for adding your grob function to a plot. This is what the users uses to add the
grob to the plot. This provides a convenient place to modify other plot settings (eg. scales) that your
grob might need. See gghistogram and ggpoint for examples.

� The grob function. This converts a list of aesthetics, plus some optional parameters to a gList of grobs.
This function is prefixed with grob_.

� The preprocessor function (optional). If your grob function creates new aesthetics (like the densityplot
will, by creating a new y position aesthetic) you will need this preprocessing stage so that the new
aesthetics are available for the scale functions. This function is prefixed with pre_

Example

In this example, we’re going to develop a grob function to display a 1d density with jittered grob plot. We
first need to decide what aesthetics and what optional parameters this function will take. We want to give
the user some flexibility over the how the density is computed, and the appearance of the density plot. So
let’s use the following option parameters:

� adjust: adjustment to default bandwidth

� kernel: type of kernel to use

� colour: the colour of the density line

There is only one aesthetic we need: x. From this we will compute the density and create a y aesthetic.
We do this in the pre_density function. Remember that this function returns a data frame that will be
used by scales, and then by grob_density

pre_density <- function(data, adjust=1, kernel="gaussian", ...) {
dens <- density(data$x, adjust=adjust, kernel=kernel)
dens$'.type' <- "density"

1

rug <- data.frame(x = jitter(data$x), y=-0.5, .type="rug")
rbind(as.data.frame(dens[c("x","y",".type")]), rug)

}

We can only return one data frame, so we need to package up the data for both the density and rug
somehow. I’ve chosen to do this by adding an extra column to the data frame called .type (so named to
avoid conflict with user variables) that we will use to determine where the data should go.

The next task is to write grob function to draw the density (with lines) and the jittered rug plot (if
necessary).

grob_density <- function(aesthetics, colour="black", ...) {
aesthetics <- data.frame(aesthetics)
dens <- subset(aesthetics, .type == "density")
rug <- subset(aesthetics, .type == "rug")

dens$colour <- colour

gTree(children = gList(
grob_line(dens),
grob_rect(rug, colour="black")

))

}

Finally, we write a convenience function to make it easy to for users. This function also changes the y
label to density, and sets up an appropriate scale.

ggdensity <- function(plot = .PLOT, aesthetics=list(), ..., data=plot$data) {
plot$ylabel <- "Density"
plot <- pscontinuous(plot, "y", range=c(0,NA), expand=c(0.05,0))
gg_add("density", plot, aesthetics, ..., data=data)

}

2

