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Abstract

Weighted Quantile Sum (WQS) regression is a statistical model for multivariate re-
gression in high-dimensional datasets commonly encountered in environmental exposures.
The model constructs a weighted index estimating the mixture effect associated with all
predictor variables on an outcome. The package gWQS extends WQS regression to ap-
plications with continuous, categorical and count outcomes. We provide four examples to
illustrate the usage of the package.
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1. Introduction

Statistical methods appropriate for the simultaneous evaluation of high-dimensional predictor
sets are a critical focus in biostatistics and related quantitative fields, as well as in applied
contexts including epidemiology, genomics, and related biological disciplines. While classi-
cal strategies for addressing high-dimensional feature sets have focused either on variable-
selection methods or dimensionality-reduction techniques(like Principal Component Analysis
(PCA) ridge regression (Hoerl and Kennard 1970), lasso (Tibshirani 1996), adaptive lasso
(Zou 2006), and elastic net (Zou and Hastie 2005)), alternative strategies focusing on the
mixture effect are becoming increasingly popular. Weighted quantile sum (WQS) regres-
sion (Carrico, Gennings, Wheeler, and Factor-Litvak 2015; Czarnota, Gennings, and Wheeler
2015; Gennings, Carrico, Factor-Litvak, Krigbaum, Cirillo, and Cohn 2013; Horton, Blount,
Valentin-Blasini, Wapner, Whyatt, Gennings, and Factor-Litvak 2015; Brunst, Guerra, Gen-
nings, Hacker, Jara, Enlow, Wright, Baccarelli, and Wright 2017) is such a mixture effect
strategy that incorporates elements of both feature selection and dimensionality reduction to
assess both the overall mixture effect of a given set of predictors, and the discrete contribu-
tion of constituent predictors to this overall effect. Here we introduce the gWQS package of
the statistical software R (R Core Team 2017) for the implementation of WQS regression in
contexts with continuous, categorical, and count-based outcomes.

WQS regression constructs a weighted index estimating the mixture effect of mixture compo-
nents on an outcome, which may then be used in a regression model with relevant covariates.
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The mixture effect associated with the additive combination of the mixture components is
thereby assessed through a standard regression test on the weighted index, while the esti-
mation of weights associated with each individual predictors allows for the assessment of the
discrete effects of each individual predictor on the dependent variable.

The WQS model (Carrico et al. 2015) has the following equation:

g(p) = Bo+ B (iwi%) + 2 (1)

i=1

where ¢ is the link function as in generalized linear model, p is the mean of the outcome,
¢; is the quantile of the i*® component, w; is the weight (to be estimated) associated with
the ¥ component, 2’ is the vector of covariates and ¢ is the vector of parameters associated
with the covariates. The (3 ;_; wi¢;) term represents the index that weights and sums the
components included in the mixture. Two constrains are applied to the weights: > 5_; w; =1
and 0 < w; < 1. To estimate the model, the dataset may be split in a training and a
validation dataset: the first one to be used for the weight estimation, the second one to test
the significance of the final WQS index. In order to estimate the weights, the bootstrap
method is applied. For each bootstrap sample (usually B = 2 total samples) a dataset is
created sampling with replacement from the training dataset and the parameters of the model
in equation 1 (0 = (Bo, f1, w1, ..., we )) are estimated through an optimization algorithm
where the loglikelihood is used as the objective function:

éWQS = argmax [l(@; y) + A(Z w; — 1)]
6

i=1

where [(0;y) is the log-likelihood function and A is the lagrangian coefficient associated with
the equality constraint in which the weights have to sum to 1. An inequality constraint is
also applied in order to impose that 0 < w; < 1.

Once the weights are estimated the model is fitted in order to find the regression coefficients
in each ensemble step. After the bootstrap ensemble is complete, the estimated weights are
averaged across bootstrap samples to obtain the WQS index:

WQS =Y wigi
i=1

where w; = vB, wip) f(Biw)) and f(By1(y)) is a signal function that we will specify

-1
2,1,3:1 F(Brvy)
later in the text. Typically weights are estimated in a training set then used to construct

a WQS index in a validation set, which can be used to test to evaluate the association and
significance of the mixture to the health outcome in a standard generalized linear model, as:

g(p) = Bo+ LIWQRS + 2

Due to the structure of the model either a positive or a negative direction of the association
between the dependent variable and the WQS index has to be chosen; that is, the model
is inherently one-directional, in that it tests only for mixture effects positively or negatively
associated with a given outcome. In practice analyses should therefore be run twice to test for
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associations in either direction. The specification of a test for positive or negative association
determines the form of the signal function:

R 1, if Bl(b) and the chosen direction have the same sign
f (ﬁl(b)) =

0, if Bl(b) and the chosen direction have different sign

After the final model is fitted we can test the significance of the 8 to see if there is an
association between the WQS index and the outcome. In the case the coefficient is significantly
different from 0 then we can interpret the weights: the highest values identify the associated
components as the relevant contributors in the association. A selection threshold can be
decided a priori as 7 = 1/¢ to identify those chemicals that have a significant weight in the
index.

Since the WQS regression can be generalised and applied to multiple types of dependent
variables, different objective functions have to be defined to find the optimal weights. For a
linear regression the following function is minimised:

n C 2 C
HWQS = argmin [Z (yz — (ﬁo + ﬁl ijqj + Z'(p)) + A(Zw] — 1)]
0 i=1 j=1 j=1

For a logistic regression the following likelihood is maximised:

n

0 argmax Z y; X log 1
W S = .
¢ o i—1 Z 1+ exp(Bo + B1 251 wiqj + 2'¢p)

+<1—yi> x log (1—604-61 ijqj+z'cp>

=1

The equation to be maximised for a multinomial regression is the following:

-1 .
[ Z (yij (ﬁoz + ,81[ Z W5 4qij —+ z'sp)

=1 j=1

D

n
i=1

éWQS = argmax {
0
L-1 c
—log <1 + > exp (501 + Bu Y wigi; + Zl%)))] }
I=1 j=1
The objective function used to estimate the weights in a Poisson regression is:

n C C
Owaos = argmax [Z (yz X (50 + 81> wjgj + Z"P) — exp (ﬁo + 81> wjigi + Z/<P>

i=1 j=1 j=1

In the case of a negative binomial regression the likelihoods to be maximised is:

éWQS = arggnax [Z (yi log(a) + y; (50 + 5 Z w;iqj + z’go>

i=1 j=1

_<yi+1/0‘> log <1+anP <ﬁo+ﬁlzwj%’+z’§0>>

Jj=1

+log(I'(yi + 1/a)) —log(I'(yi + 1)) — log(F(l/Oé))]
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2. The gWQS package

The R package gWQS extends WQS regression to applications with continuous, categorical
and count outcomes. In particular, this package uses the solnp() function from the Rsolnp
package as optimization algorithm to estimates the weights. This function solves general
nonlinear programming problems through the augmented Lagrangian multiplier method (Ye
1987; Ghalanos and Theussl 2015).

We list four examples to illustrate the usage of the package.

2.1. Example 1

The main function of the gWQS package is gwqs(), which allows the implementation of
WQS regression for linear, logistic, multinomial, Poisson, quasi-Poisson and negative bino-
mial regression. For Poisson and negative binomial regression a zero inflated option is also
implemented. We created the wqs_data dataset (available once the package is installed and
loaded) to demonstrate the use of this function. These data reflect 34 exposure concentra-
tions simulated from a distribution of PCB exposures measured in subjects participating in
the NHANES study (2001-2002). Additionally, an end-point measure, simulated from a distri-
bution of leukocyte telomere length (LTL), a biomarker of chronic disease, is provided as well
(variable name: y), along with simulated dichotomous (variable name: y_bin), multinomial
(variable name: y_multinom) and count (variable name: y_count) outcome variables and
covariates, e.g. sex. This dataset can thus be used to test the gWQS package by analyzing
the mixture effect of the 34 simulated PCBs on the outcomes, with adjustments for covariates.
The following script calls a WQS model for a continuous outcome using the function gwgs Q;
we also show the script to reproduce the plots and tables that are automatically generated
when setting the options plots = TRUE, tables = TRUE:

R> # we save the names of the mixture variables in the variable "toxic_chems"
R> toxic_chems <- names(wqs_data) [1:34]

R> # we run the model and save the results in the variable "results'

R> results <- gwgs(y ~ wqs, mix_name = toxic_chems,

+ data = wqgs_data, q = 4, validation = 0.6, b = 2,

+ bl_pos = TRUE, bl_constr = FALSE, family = "gaussian",
+ seed = 2016, plots = TRUE, tables = TRUE)

R> #

R> # bar plot

R> w_ord <- order(results$final_weights$mean_weight)

R> mean_weight <- results$final_weights$mean_weight [w_ord]

R> mix_name <- factor(results$final_ weights$mix_name[w_ord],

+ levels = results$final_weights$mix_name [w_ord])
R> data_plot <- data.frame(mean_weight, mix_name)

R> ggplot(data_plot, aes(x = mix_name, y = mean_weight, fill = mix_name)) +
+ geom_bar (stat = "identity", color = "black") + theme_bw() +

+ theme (axis.ticks = element_blank(),

+ axis.title = element_blank(),

+ axis.text.x = element_text(color='black'),

+ legend.position = "none") + coord_flip()
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R> #

R> # scatter plot y vs wqgs

R> ggplot(results$y_wqs_df, aes(wgs, y_adj)) + geom_point() +

+ stat_smooth(method = "loess", se = FALSE, size = 1.5) + theme_ bw()
R> #

R> # scatter plot residuals vs fitted values

R> fit_df <- broom: :augment (results$fit)

R> ggplot(fit_df, aes(x = .fitted, y = .resid)) + geom_point() +

+ theme_bw() + xlab("Fitted values") + ylab("Residuals")

R>

y_adj
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Figure 1: Plots displayed for linear outcomes when plots = TRUE

This WQS model tests the relationship between our dependent variable, y, and a WQS
index estimated from ranking exposure concentrations in quartiles (q = 4); the wgs term
must be included in the formula). It also divided the data for training and validation, with
40% of the dataset for training and 60% for validation (validation = 0.6), and assigned 2
bootstrap samples (b = 2) for parameter estimation (in practical applications we suggest at
least 100 bootstrap samples to be used). Because WQS provides a unidirectional evaluation
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of mixture effects, we first examined weights derived from bootstrap models where 51 was
positive (b1_pos = TRUE); we could test for negative associations by setting that parameter to
be false (b1_pos = FALSE). We can also choose to constrain the 1 to be positive (b1_pos =
TRUE and bl_constr = TRUE) or negative (bl_pos = FALSE and bl_constr = TRUE) when
we estimate the weights; in the case of example 1 we are not applying a constraint to 5;. We
linked our model to a gaussian distribution to test for relationships between the continuous
outcome and exposures (family = "gaussian"), and fixed the seed to 2016 for reproducible
results (seed = 2016). We plotted a summary model with loess fit, and a summary of
each variables’ relative weight, and the residuals vs fitted values plot (plots = TRUE). The
command tables = TRUE automatically generates in the Viewer pane the tables of the weight
ranked list and the model summary.

Figure 1 A is a barplot showing the weights assigned to each variable ordered from the
highest weight to the lowest. These results indicate that the variables log_LBXFO6LA and
log_LBXDO2LA are the largest contributors to this mixture effect, with the first 6 chemicals
explaining more than the 70% of the total weights.

In plot B of figure 1 we have a representation of the wqs index vs the outcome (adjusted for
the model residual when covariates are included in the model) that shows the direction and
the shape of the association between the exposure and the outcome. For example, in this case
we can observe a linear and positive relationship between the mixture and the y variable.

In plot C a diagnostic graph of the residuals vs the fitted values is shown to check if they are
randomly spread around zero or if there is a trend.

To test the statistical significance of the association between the variables in the model, the
following code has to be run:

R> summary(results$fit)

Call:
glm(formula = formula, family = family, data = bdtf)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.09131 -0.71326 0.06459 0.78517 2.57249

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) -2.3453 0.1909 -12.29 <2e-16 ***
wgs 1.5785 0.1187 13.30 <2e-16 *x*xx
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.304685)
Null deviance: 619.48 on 299 degrees of freedom
Residual deviance: 388.80 on 298 degrees of freedom

AIC: 935.14

Number of Fisher Scoring iterations: 2
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This result tells us that the association is positive and statistically significant (p=0.025).
To have the exact values of the estimated weights we can apply the command results$final_weights.
The following code shows the first six highest weights; the full list of weights can be called by

omitting the head function:

R> head(results$final_weights)

mix_name mean_weight

log_LBXFO6LA log_LBXFO6LA 0.16181177
log_LBXDO2LA log_LBXDO2LA 0.14579100
log_LBX138LA log_LBX138LA 0.12612569
log_LBXFO7LA log_LBXFO7LA 0.11104863
log_LBXDO4LA log_LBXDO4LA 0.09430793
log_LBX167LA log_LBX167LA 0.06219165

These tables are also shown in the Viewer window when we set tables = TRUE.

The gwgs () function gives back other outputs like the vector of the values that indicate
whether the solver has converged (0) or not (1 or 2) (results$conv), the matrix with all
the estimated weights and the associated (1, standard errors, statistics and p-values for each
bootstrap sample (results$bres), the vector of the estimated wgs index (results$wgs), the
vector containing the cutoffs used to determine the quantiles (results$q_i), the list of vectors
containing the rows of the subjects included in each bootstrap dataset (results$bindex), the
rows identifying the subjects used to estimate the weights in each bootstrap (results$tindex)
and the rows identifying the subjects used to estimate the parameters of the final model
(results$vindex).

2.2. Example 2

In the following code we run a logistic regression (family = binomial) to test the association
between the exposure to the mixture and the outcome y_bin and we also add the covariate
sex. Since the mixture concentrations in this example are already standardized we can also
run a model without categorizing for quantiles (q = NULL) after checking that there were
no skewed distributions. Furthermore we examined the ability of our model to predict the
outcome on a third part of the dataset (pred = 0.3). As we see from the script below
0.4; that means that the 30% of the data are used as test dataset, 40%
for validation and the last 30% for prediction; the script to generate the additional plot is
reported:

validation =

R> # we run the logistic model and save the results in the variable
R> # "results2"

R> results2 <- gwqs(y_bin ~ wqs + sex, mix_name = toxic_chems,

+ data = wqgs_data, q = NULL, validation = 0.4, b = 2,

+ bl_pos = TRUE, bl_constr = FALSE, family = binomial,

+ seed = 2018, plots = TRUE, tables = FALSE, pred = 0.3)
R> #

R> # plot ROC curve
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R> gg roc <- ggplot(results2$df_pred, aes(d=y, m=p_y)) + geom_roc(n.cuts = 0) +
+ style_roc(xlab = "1 - Specificity", ylab = "Sensitivity")

R> auc_est <- plotROC::calc_auc(gg_roc)

R> gg roc + annotate("text", x=0.75, y=0.25,

+ label=paste0("AUC = ", round(auc_est[, "AUC"], 3)))
R>
A B
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Figure 2: Plots displayed for binary outcomes when plots = TRUE and pred > 0

From figure 2 we see the per-variable calculated weights, ordered by relative magnitude. Plot
B shows a positive relationship between the mixture and the outcome and as we can see from
the following code it is statistically significant (p<0.001):

R> summary (results2$fit)

Call:
glm(formula = formula, family = family, data = bdtf)

Deviance Residuals:
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Min 1Q Median 3Q Max
-2.5127 -0.8162 0.1340 0.7440 2.3262
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1152 0.2540 -0.454 0.650
wqgs 3.3557 0.4950 6.779 1.21e-11 *x*x*
sex 0.2871 0.3513 0.817 0.414
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 277.24 on 199 degrees of freedom

Residual deviance: 198.48 on 197 degrees of freedom
AIC: 204.48

Number of Fisher Scoring iterations: 5

In plot C we show the Receiver Operating Characteristic (ROC) curve related to the pre-
dictive model: we can see that the cutoff that is closer to the left-hand border and the top
border has around 70% sensitivity (true positive) and 30% specificity (false positive).

In this case two more parameters are returned by the gwgs () function: df_pred, which is a
data.frame including a first column the actual value of the dependent variable and as a sec-
ond column the predicted values; and pindex, the dataset rows identifying the observations
used for prediction.

The gwgs function implements the predict function to run the predictive model. The fol-
lowing code shows how to reproduce the prediction:

R>
R>
R>
R>
R>
R>
R>
+

+

+

R>
R>
R>
R>
R>
R>
R>
R>

# create a dataset exluding the data where we want to apply the prediction
# and define the group variable to identify the test and validation dataset
wqs_data$group <- 0
wqs_data$group [results2$vindex] <- 1
wqs_data_train <- wqs_data[-results2$pindex,]
# fit the model on the training dataset
results2_pred <- gwgs(y_bin ~ wgs + sex, mix_name = toxic_chems,

data = wqs_data_train, q = NULL, validation = NULL,

b = 2, valid_var = "group", bl_pos = TRUE,

bl_constr = FALSE, family = binomial, seed = 2018)
# creat the dataset on which we apply the prediction
wqs_data_pred <- wqs_datal[results2$pindex,]
# create wqs variable for the prediction dataset
mix_matrx <- as.matrix(wgs_data_pred[, rownames(results2$final_weights)])
wqs_data_pred$wgs <- as.numeric(mix_matrxj*jresults2$final_ weights$mean_weight)
# apply the predict() function
pred <- predict(results2$fit, newdata = wqs_data_pred, type = "response")
df_pred <- data.frame(y = wqs_data_pred$y_bin, p_y = pred)



10 gWQSs: WQS regression in R

R> # plot the roc curve

R> gg_roc <- ggplot(df_pred, aes(d=y, m=p_y)) + geom_roc(n.cuts = 0) +
+ style_roc(xlab = "1 - Specificity", ylab = "Sensitivity")

R> auc_est <- plotROC::calc_auc(gg_roc)

R> gg roc + annotate("text", x=0.75, y=0.25,

+ label=paste0("AUC = ", round(auc_est[, "AUC"], 3)))

2.3. Example 3

In this third case we fit a multinomial model (family = "multinomial") for categorical data:
the outcome is y_multinom, representing the race of each subject. This modeling strategy
creates a distinct logistic model comparing each level of the outcome variable to a reference
level (in this case the "Black" category). We chose to create the training and validation
dataset and assign to valid_var the name of the variable that identifies the two datasets
(valid_var = "group") and to use deciles in the estimate of the ‘wqgs‘ index (q = 10). In
this case we had to choose two directions for each level of the outcome variable (in this case
both positive: bl_pos = c(TRUE, TRUE)). We also decided to run the bootstrap in parallel
on multiple cores (plan_strategy = "multisession").

R> # we create the variable '"group" in the dataset to identify the training
R> # and validation dataset: we choose 300 observations for the validation
R> # dataset and the remaining 200 for the training dataset

R> set.seed(123)

R> wqgs_data$group <- 0

R> wgs_data$group[rownames (wqs_data) Jinj

+ sample (rownames (wgs_data), 300)] <- 1

R> #

R> # we run the logistic model and save the results in the variable

R> # '"results3"

R> results3 <- gwgs(y_multinom ~ wqgs, mix_name = toxic_chenms,

+ data = wqs_data, q = NULL, validation = 0.6,

+ valid_var = "group", b = 2, bl_pos = c(TRUE, TRUE),

+ bl_constr = FALSE, family = "multinomial", seed = 123,
+ plots = TRUE, tables = TRUE,

+ plan_strategy = "multiprocess")

R> #

R> # bar plot

R> data_plot <- results3$final_weights[order (results3$final_weights[, 2]),]
R> pos <- match(data_plot$mix_name, sort(data_plot$mix_name))

R> data_plot$mix_name <- factor(data_plot$mix_name,

+ levels(data_plot$mix_name) [pos])

R> data_plot_1 <- melt(data_plot, id.vars = "mix_name")

R> ggplot(data_plot_1l, aes(x = mix_name, y = value, fill = mix_name)) +

+ facet_wrap(~ variable) + geom_bar(stat = "identity", color = "black") +
+ theme_bw() + theme(axis.ticks = element_blank(),

+ axis.title = element_blank(),

+ axis.text.x = element_text (color='black'),
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legend.position = "none") + coord_flip()

R> # scatter plot y vs wgs
R> ggplot(results3$y_wqs_df, aes(wgs, y)) +

+ geom_point () + stat_smooth(method = "loess", se = FALSE, size = 1.5) +
+ theme_bw() + facet_wrap(~ level)

R> #

R> # scatter plot of weights for the two levels of the dependent variable
R> ggplot(data_plot, aes_string(names(data_plot)[2], names(data_plot)[3])) +
+ geom_point () + theme_bw() + xlab(names(data_plot)[2]) +

+ ylab(names (data_plot) [3]) + geom_abline(linetype = 2) +
+ ggrepel: :geom_text_repel (aes(label=mix_name))
R>
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Figure 3: Plots displayed for multinomial outcomes when plots = TRUE

In Figure 3 while plots A and B are the same as in figure 1 and 2 but divided by the levels
of the outcome variable, C is a scatter plot of the weights. This allows us to compare the
magnitude of weights estimated in each model (e.g. "white vs black" or "hispanic vs black")"),
with departures from the main diagonal indicating variables that are differentially-weighted
for each comparison, e.g. Hispanic vs. Black, or White vs. Black. This is plotted only when
the outcome has three levels.

In this case to look at the model results we do not need to use the summary function but
instead use the following command:

R> results3$fit$sum_stat

Estimate Standard_Error stat

(Intercept) _White_vs_Black 0.23054193 0.1643923 1.4023892

wqgs_White_vs_Black 1.54411947 0.3524960 4.3805302

(Intercept) _Hispanic_vs_Black 0.05901184 0.1851028 0.3188058

wqgs_Hispanic_vs_Black 4.31334550 0.4903692 8.7961175
p_value

(Intercept) _White_vs_Black 1.607990e-01
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wqgs_White_vs_Black 1.183909e-05
(Intercept) _Hispanic_vs_Black 7.498738e-01
wqgs_Hispanic_vs_Black 1.416313e-18

As we can see from the above results, both the wqgs indices for each level are significant (p
< 0.001), but, as shown from plot A and C in Figure 3, chemicals have different weights
depending on the race.

2.4. Example 4

This last example shows how to fit the wqs on count data. The dependent variable taken into
account is y_count and we fit a Poisson regression (family = poisson). We also run a strat-
ified analysis by sex estimating different weights for males and females setting stratified
= "sex_factor" (we created a new sex factor variable (sex_factor) since the previous one
was numeric (0, 1)).

R> # we create the sex factor variable sex_factor

R> wqs_data$sex_factor <- factor(wgs_data$sex, labels = c("F", "M"))
R> #

R> # we run the poisson model and save the results in the variable
R> # "results4"

R> results4 <- gwqs(y_count ~ wqs, mix_name = toxic_chems,

+ stratified = "sex_factor", data = wqs_data, q = 10,
+ validation = 0.6, b = 2, bl_pos = TRUE,

+ bl_constr = FALSE, family = poisson, seed = 123,

+ plots = TRUE, tables = TRUE)

13



14 gWQSs: WQS regression in R

y_adj
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Figure 4: Plots displayed for count outcome when plots = TRUE

The results of the model are shown in the table below:

R> summary (results4$fit)

Call:
glm(formula = formula, family = family, data = bdtf)

Deviance Residuals:
Min 1Q Median 3Q Max
-4.5053 -0.8377 0.0344 0.6967 3.1396

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 2.14946 0.04036 53.25 <2e-16 **x
wgs 0.42259 0.01539 27 .47 <2e-16 **x*

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1191.69 on 299 degrees of freedom
Residual deviance: 436.11 on 298 degrees of freedom
AIC: 1908.2

Number of Fisher Scoring iterations: 4

We notice that there is a significant positive association between the wqs index and the
dependent variable. Since we stratified by sex, we have an estimate of each weight for males
and females and we can see how the weights differ between the two genders: we have a
good agreement for some weights (e.g. log_LBX138LA has an high impact in both males and
females) and differences for others (e.g. log_LBXFO7LA is 4.5% for males being the 3rd highest
weight while for females it has a lower impact (1.3% as the 12th highest weight)).

The following test allows us to test for overdisperions of the y_count data:

R> library(AER)
R> mean (wgs_data$y_count)

[1] 23.41

R> var(wqs_data$y_count)

[1] 87.2003

R> AER::dispersiontest(results4$fit)

Overdispersion test

data: results4$fit
z = 3.4542, p-value = 0.000276
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion
1.395178

Since the test indicates the data are overdispersed we fit a quasi-Poisson or a negative bino-
mial regression (family = "quasipoisson" or family = "negbin" respectively):

R> # we run the quasi-poisson model and save the results in the variable
R> # "resultsb"

R> resultsb <- gwqs(y_count ~ wqs, mix_name = toxic_chems,

+ data = wgs_data, q = 10, validation = 0.6, b = 2,

+ bl_pos = TRUE, bl_constr = FALSE, family = quasipoisson,
+ seed = 123)

15
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R> summary(results5$fit)

Call:
glm(formula = formula, family = family, data = bdtf)

Deviance Residuals:
Min 1Q Median 3Q Max
-4.5254 -0.8962 0.0623 0.7294 2.7647

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.148395 0.045744 46.97 <2e-16 **x
wgs 0.210890 0.008671 24 .32 <2e-16 **x

Signif. codes: O 'xxkx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 1.309888)

Null deviance: 1191.69 on 299 degrees of freedom
Residual deviance: 412.62 on 298 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

A zero-inflated model can be fitted for the Poisson and negative binomial regression setting
zeroinfl = TRUE and choosing a link function for the binomial process (we can choose among
"logit", "probit", "cloglog", "cauchit", "log"). Here is shown the case of the neg-
ative binomial zero-inflated model using a "logit" link function for the binomial process
(zilink = "logit"). To test the hypothesis that different covariates regulate the count and
the binomial parts we write the formula as in the example below where the variables at the
right of the symbol " |" are those included in the binomial process; otherwise we specify the
formula in the usual way and all the variables will be included in both parts. Before fitting the
model we generate a variable from a zero inflated negative binomial. In the following model
wgs and sex are included in the count process while new_var is considered in the binomial
process. Only the code for the residual vs fitted values scatter plot is reported since it is
slightly different from the previous ones:

R> # generate new variable from normal distribution

R> set.seed(123)

R> wgs_data$new_var <- rnorm(500)

R> wgs_data$y_zinb <- rzinegbin(500, pstr0 = 0.3, mu = 3, size = 10)

R> #

R> # we run the zero-inflated negative binomial model and save the results in the variable
R> # '"results6"

R> results6 <- gwqgs(y_zinb ~ wqs + sex | new_var, mix_name = toxic_chems,

+ data = wqgs_data, q = 10, validation = 0.6, b = 2,

+ zero_infl = TRUE, zilink = "logit", bl_pos = FALSE,
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+ bl_constr = FALSE, family = "negbin'", seed = 1234,
+ plots = TRUE, tables = TRUE)
R> #

R> # scatter plot residuals vs fitted values

R> fit_df <- data.frame(.fitted = results6$fit$fitted.values,

+ .resid = results6$fit$residuals)

R> ggplot(fit_df, aes(x = .fitted, y = .resid)) + geom_point() +
+ theme_bw() + xlab("Fitted values") + ylab("Residuals")
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Figure 5: Plots displayed for count outcome when plots = TRUE

From the summary table below we note the estimate of the model; in this case the results
related to both the count and the binomial process are presented.

R> summary(results6$fit)

Call:

zeroinfl (formula = ff, data = bdtf, dist = family$family, link = zilink$name)
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Pearson residuals:
Min 1Q Median 3Q Max
-1.1674 -0.9492 -0.1087 0.6255 4.4365

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>lzl)

(Intercept) 1.12152 0.14885 7.535 4.89e-14 *x*x

wqgs -0.01626 0.02898 -0.561 0.575

sex 0.04112 0.09642 0.426 0.670

Log(theta) 2.52240 0.64417 3.916 9.01e-05 *x*x*

Zero-inflation model coefficients (binomial with logit 1ink):
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -0.9087 0.1602 -5.672 1.41e-08 *x*x*
new_var -0.2871 0.1544 -1.860 0.0629 .
Signif. codes: O 'xxx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Theta = 12.4585
Number of iterations in BFGS optimization: 21
Log-likelihood: -559.8 on 6 Df

3. Discussion

WQS regression is a new method that allows the investigation of the associations between
mixtures of predictors and continuous, count, or categorical data. This approach is particu-
larly robust against outliers and extreme values because of the ranking procedure used, and is
additionally robust against collinearity through the constraints imposed during weight estima-
tion and application of an ensemble estimation procedure. As well, the capacity for covariate
adjustment and the simplicity of model interpretation are among the greatest strengths of
this approach, and underlie its applicability to health-related research. Through the weighted
index we are able to identify the combined impact of multiple predictors on a given outcome,
while in the estimation of the weights we may simultaneously assess the discrete effects of
contributing variables, with coadjustment for the overall mixture and relevant covariates.
The package gWQS provides a robust, generalizable implementation of this methodology in
R extending the application of the model to continuous, binary, multinomial and count data
applying the corresponding log-likelihood for each type of regression (zero inflated likelihoods
are also available). The new version of the package allows also to run a stratified analysis for
a categorial variable.

Future versions of the package will provide the ability to fit additional generalised linear
models.
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