
evtree: Evolutionary Learning of Globally Optimal

Classification and Regression Trees in R

Thomas Grubinger
Innsbruck Medical University

Achim Zeileis
Universität Innsbruck

Karl-Peter Pfeiffer
Innsbruck Medical University

Abstract

Commonly used classification and regression tree methods like the CART algorithm
are recursive partitioning methods that build the model in a forward stepwise search.
Although this approach is known to be an efficient heuristic, the results of recursive
tree methods are only locally optimal, as splits are chosen to maximize homogeneity at
the next step only. An alternative way to search over the parameter space of trees is
to use global optimization methods like evolutionary algorithms. This paper describes
the evtree package, which implements an evolutionary algorithm for learning globally
optimal classification and regression trees in R. Computationally intensive tasks are fully
computed in C++ while the partykit (Hothorn and Zeileis 2011) package is leveraged
for representing the resulting trees in R, providing unified infrastructure for summaries,
visualizations, and predictions. evtree is compared to rpart (Therneau and Atkinson
1997), the open-source CART implementation, and conditional inference trees (ctree,
Hothorn, Hornik, and Zeileis 2006). The usefulness of evtree is illustrated in a textbook
customer classification task and a benchmark study of predictive accuracy in which evtree

achieved at least similar and most of the time better results compared to the recursive
algorithms rpart and ctree.

Keywords: machine learning, classification trees, regression trees, evolutionary algorithms, R.

1. Introduction

Classification and regression trees are commonly applied for exploration and modeling of
complex data. They are able to handle strongly nonlinear relationships with high order
interactions and different variable types. The resulting model can be interpreted as a tree
structure providing a compact and intuitive representation. Commonly used classification and
regression tree algorithms, including CART (Breiman, Friedman, Olshen, and Stone 1984)
and C4.5 (Quinlan 1993), use a greedy heuristic, where split rules are selected in a forward
stepwise search for recursively partitioning the data into groups. The split rule at each internal
node is selected to maximize the homogeneity of its child nodes, without consideration of
nodes further down the tree, hence yielding only locally optimal trees. Nonetheless, the
greedy heuristic is computationally efficient and often yields reasonably good results (Murthy
and Salzberg 1995). However, for some problems, greedily induced trees can be far from the
optimal solution, and a global search over the tree’s parameter space can lead to much more
compact and accurate models.

2 evtree: Evolutionary Learning of Globally Optimal Trees in R

The main challenge in growing globally optimal trees is that the search space is typically
huge, rendering full-grid searches computationally infeasible. One possibility to solve this
problem is to use stochastic optimization methods like evolutionary algorithms. In practice,
however, such stochastic methods are rarely used in decision tree induction. One reason
is probably that they are computationally much more demanding than a recursive forward
search but another one is likely to be the lack of availability in major software packages. In
particular, while there are several packages for R (R Development Core Team 2011) providing
forward-search tree algorithms, there is only little support for globally optimal trees. The
former group of packages includes (among others) rpart (Therneau and Atkinson 1997), the
open-source implementation of the CART algorithm; party, containing two tree algorithms
with unbiased variable selection and statistical stopping criteria (Hothorn et al. 2006; Zeileis,
Hothorn, and Hornik 2008); and RWeka (Hornik, Buchta, and Zeileis 2009), the R interface to
Weka (Witten and Frank 2011) with open-source implementations of tree algorithms such as
C4.5 or M5 (Quinlan 1992). A notable exception is the LogicReg package (Kooperberg and
Ruczinski 2011) for logic regression, an algorithm for globally optimal trees based on binary
covariates only and using simulated annealing. See Hothorn (2011) for an overview of further
recursive partitioning packages for R.

To fill this gap, we introduce a new R package evtree, available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/package=evtree, providing evolutionary
methods for learning globally optimal classification and regression trees. Generally speaking,
evolutionary algorithms are inspired by natural Darwinian evolution employing concepts such
as inheritance, mutation, and natural selection. They are population-based, i.e., a whole col-
lection of candidate solutions – trees in this application – is processed simultaneously and
iteratively modified by variation operators called mutation (applied to single solutions) and
crossover (merging different solutions). Finally, a survivor selection process favors solutions
that perform well according to some quality criterion, usually called fitness function or eval-
uation function. In this evolutionary process the mean quality of the population increases
over time (Bäck 1996; Eiben and Smith 2007). In the case of learning decision trees, this
means that the variation operators can be applied to modify the tree structure (e.g., number
of splits, splitting variables, and corresponding split points etc.) in order to optimize a fitness
functions such as the misclassificaion or error rate penalized by the complexity of the tree. A
notable difference to comparable algorithms is the survivor selection mechanism where it is
important to avoid premature convergence. In the following, we use a simple (1 + 1) selection
strategy (i.e., one parent solution competes with one offspring for a place in the population)
which can be argued to offer computational advantages for the application to classification
and regression trees.

The remainder of this paper is structured as follows: Section 2 describes the problem of
learning globally optimal decision trees and contrasts it to the locally optimal forward-search
heuristic that is utilized by recursive partitioning algorithms. Section 3 introduces the evtree
algorithm before Section 4 addresses implementation details along with an overview of the
implemented functions. A benchmark comparison – comprising 14 benchmark datasets, 3 real-
world datasets, and 3 simulated scenarios – is carried out in Section 5, showing that the
predictive performance of evtree is often significantly better compared to the commonly used
algorithms rpart and ctree (from the party package). Finally, Section 6 gives concluding
remarks about the implementation and the performance of the new algorithm.

http://CRAN.R-project.org/package=evtree

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 3

2. Globally and locally optimal decision trees

Classification and regression tree analysis aims at modeling a response variable Y by a vector
of P predictor variables X = (X1, ..., XP) where for classification trees Y is qualitative and
for regression trees Y is quantitative. Tree-based methods first partition the input space X
into a set of M rectangular regions Rm (m = 1, ...,M) then fit a (typically simple) model
within each region {Y |X ∈ Rm}, e.g., the mean, median, or variance etc. Typically, the mode
is used for classification trees and the arithmetic mean is applied for regression trees.

To show why forward-search recursive partitioning algorithms typically lead to globally sub-
optimal solutions, their parameter spaces and optimization problems are presented and con-
trasted in a unified notation. Although all arguments hold more generally, only binary tree
models with some maximum number of terminal nodes Mmax are considered. Both restrictions
make the notation somewhat simpler while not really restricting the problem: (a) Multiway
splits are equivalent to a sequence of binary splits in predictions and number of resulting
subsamples; (b) the maximal size of the tree is always limited by the number of observations
in the learning sample.

In the following, a binary tree model with M terminal nodes (which consequently has M − 1
internal splits) is denoted by

θ = (v1, s1, ..., vM−1, sM−1), (1)

where vr ∈ {1, . . . , P} are the splitting variables and sr the associated split rules for the
internal nodes r ∈ {1, ...,M − 1}. Depending on the domain of Xvr , the split rule sr contains
either a cutoff (for ordered and numeric variables) or a non-empty subset of {1, . . . , c} (for
a categorical variable with c levels), determining which observations are sent to the first or
second subsample. In the former case, there are u − 1 possible split rules if Xvr takes u
distinct values; and in the latter case, there are 2c−1 − 1 possible splits. Thus, the product
of all of these combinations forms all potential elements θ from ΘM , the space of conceivable
trees with M terminal nodes. The overall parameter space is then Θ =

⋃Mmax
M=1 ΘM (which in

practice is often reduced by excluding elements θ resulting in too small subsamples etc.).

Finally, f(X, θ) denotes the prediction function based on all explanatory variables X and the
chosen tree structure θ from Equation 1. As pointed out above, this is typically constructed
using the means or modes in the respective partitions of the learning sample.

2.1. The parameter space of globally optimal decision trees

As done by Breiman et al. (1984), let the complexity of a tree be measured by a function of
the number of terminal nodes, without further considering the depth or the shape of trees.
The goal is then to find that classification and regression tree which optimizes some tradeoff
between prediction performance and complexity:

θ̂ = argmin
θ∈Θ

loss{Y, f(X, θ)} + comp(θ). (2)

where loss(·, ·) is a suitable loss function for the domain of Y ; typically, the misclassification
rate MC and the mean squared error MSE are employed for classification and regression,
respectively. The function comp(·) is a function that is monotonically non-decreasing in the
number of terminal nodes M of the tree θ, thus penalizing more complex models in the tree
selection process. Note that finding θ̂ requires a search over all ΘM .

4 evtree: Evolutionary Learning of Globally Optimal Trees in R

The parameter space Θ becomes large for already medium sized problems and a complete
search for larger problems is computationally intractable. In fact, Hyafil and Rivest (1976)
showed that building optimal binary decision trees, such that the expected number of splits
required to classify an unknown sample is minimized, is NP-complete. Zantema (2000) proved
that finding a decision tree of minimal size that is decision-equivalent to a given decision tree
is also NP-hard. As a consequence the search space is usually limited by heuristics.

2.2. The parameter space of locally optimal decision trees

Instead of searching all combinations in Θ simultaneously, recursive partitioning algorithms
only consider one split at a time. At each internal node r ∈ {1, ...,M − 1}, the split variable
vr and the corresponding split point sr are selected to locally minimize the loss function.
Starting with an empty tree θ0 = (∅), the tree is first grown recursively and subsequently
pruned to satisfy the complexity tradeoff:

θ̃r = argmin
θ=θr−1∪(vr,sr)

loss{Y, f(X, θ)} (r = 1, . . . ,Mmax − 1), (3)

θ̃ = argmin
θ̃r

loss{Y, f(X, θ̃r)} + comp(θ̃r). (4)

For nontrivial problems, forward-search recursive partitioning methods only search a small
fraction of the global search space (v1, s1, . . . , vMmax−1, sMmax−1). They only search each
(vr, sr) once, and independently of the subsequent split rules, hence typically leading to a
globally suboptimal solution θ̃.

Note that the notation above uses an exhaustive search for the r-th split, jointly over (vr, sr),
as is employed in CART or C4.5. So-called unbiased recursive partitioning techniques modify
this search by first selecting the variable vr using statistical significance tests and subsequently
selecting the optimal split sr for that particular variable. This approach is used in conditional
inference trees (see Hothorn et al. 2006, for references to other algorithms) and avoids selecting
variables with many potential splits more often than those with fewer potential splits.

2.3. An illustration of the limitations of locally optimal decision trees

A very simple example that illustrates the limitation of forward-search recursive partitioning
methods is depicted in Figure 1. The example only contains two independent variables and
can be solved with three splits that partition the input space into four regions. As expected
the recursive partitioning methods rpart and ctree fail to find any split at all, as the loss
function on the resulting subsets cannot be reduced by the first split. For methods that
explore Θ in a more global fashion it is straightforward to find an optimal solution to this
problem. One solution is the tree constructed by evtree:

Model formula:

Y ~ X1 + X2

Fitted party:

[1] root

| [2] X1 < 1.25

| | [3] X2 < 1.25: X (n = 4, err = 0.0%)

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 5

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

X1

X
2

Figure 1: Class distribution of the (X1, X2)-plane. The two classes are indicated by black
circles and gray crosses.

| | [4] X2 >= 1.25: O (n = 4, err = 0.0%)

| [5] X1 >= 1.25

| | [6] X2 < 1.25: O (n = 4, err = 0.0%)

| | [7] X2 >= 1.25: X (n = 4, err = 0.0%)

Number of inner nodes: 3

Number of terminal nodes: 4

All instances are classified correctly. Each of the terminal nodes 3 and 7 contain four instances
of the class X. Four instances of class O are assigned to each of the terminal nodes 4 and 6.

2.4. Approaches for learning globally optimal decision trees

When compared with the described forward stepwise search, a less greedy approach is to
calculate the effects of the split rules deeper down in the tree. In this way optimal trees can
be found for simple problems. However, split selection at a given node in Equation 3 has
complexity O(PN) (if all P variables are numeric/ordered with N distinct values). Through
a global search up to D levels – i.e., corresponding to a full binary tree with M = 2D terminal
nodes – the complexity increases to O(PDND) (Papagelis and Kalles 2001). One conceivable
compromise between these two extremes is to look ahead d steps with 1 < d < D (see e.g.,
Esmeir and Markovitch 2007), also yielding a locally optimal tree but less constrained than
that from a 1-step-ahead search.

Another class of algorithms is given by stochastic optimization methods that, given an initial
tree, seek improved solutions through stochastic changes to the tree structure. Thus, these
algorithms try to explore the full parameter space Θ but cannot be guaranteed to find the
globally optimal solution but only an approximation thereof. Besides evolutionary algorithms

6 evtree: Evolutionary Learning of Globally Optimal Trees in R

(Koza 1991), Bayesian CART (Denison, Mallick, and Smith 1998), and simulated annealing
(Sutton 1991) were used successfully to solve difficult classification and regression tree prob-
lems. Koza (1991) first formulated the concept of using evolutionary algorithms as a stochastic
optimization method to build classification and regression trees. Papagelis and Kalles (2001)
presented a classification tree algorithm and provided results on several datasets from the
UCI machine learning repository (Frank and Asuncion 2010). Another method for the con-
struction of classification and regression trees via evolutionary algorithms was introduced by
Gray and Fan (2008) and Fan and Gray (2005), respectively. Cantu-Paz and Kamath (2003)
used an evolutionary algorithm to induce so-called oblique classification trees.

3. The evtree algorithm

The general framework of evolutionary algorithms emerged from different representatives.
Holland (1992) called his method genetic algorithms, Rechenberg (1973) invented evolution
strategies, and Fogel, Owens, and Walsh (1966) introduced evolutionary programming. More
recently, Koza (1992) introduced a fourth stream and called it genetic programming. All four
representatives only differ in the technical details, for example the encoding of the individual
solutions, but follow the same general outline (Eiben and Smith 2007). Evolutionary algo-
rithms are being increasingly widely applied to a variety of optimization and search problems.
Common areas of application include data mining (Freitas 2003; Cano, Herrera, and Lozano
2003), statistics (de Mazancourt and Calcagno 2010), signal and image processing (Man,
Tang, Kwong, and Halang 1997), and planning and scheduling (Jensen 2003).

The pseudocode for the general evolutionary algorithm is provided in Table 1. In the context
of classification and regression trees, all individuals from the population (of some given size)
are θs as defined in Equation 1. The details of their evolutionary selection is given below
following the general outline displayed in Table 1.

As pointed out in Section 2, some elements θ ∈ Θ are typically excluded in practice to satisfy
minimal subsample size requirements. In the following, the term invalid node refers to such
excluded cases, not meeting sample size restrictions.

1. Initialize the population.

2. Evaluate each individual.

3. While(termination condition is not satisfied) do:

a. Select parents.

b. Alter selected individuals via variation operators.

c. Evaluate new solutions.

d. Select survivors for the next generation.

Table 1: Pseudocode of the general evolutionary algorithm.

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 7

3.1. Initialization

Each tree of the population is initialized with a valid, randomly generated, split rule in the
root node. First, v1 is selected with uniform probability from 1, ..., P . Second, a split point
s1 is selected. If Xv1 is numeric or ordinal with u unique values, a split point s1 is selected
with uniform probability from the u − 1 possible split points of Xv1 . If Xv1 is nominal and
has c categories, each k = 1, ..., c has a probability of 50% to be assigned to the left or the
right daughter node. In cases where all k are allocated to the same terminal node, one of
the c categories is allocated to the other terminal node, to have the effect of ensuring both
terminal nodes are nonempty. If this procedure results in a non-valid split rule, the two steps
of random split variable selection and split point selection are repeated. With the definition
of r = 1 (the root node) and the selection of v1 and s1, the initialization is complete and each
individual of the population of trees is of type θ1 = (v1, s1).

3.2. Parent selection

In every iteration, each tree is selected once to be modified by one of the variation operators.
In cases where the crossover operator is applied, the second parent is selected randomly
from the remaining population. In this way, some trees are selected more than once in each
iteration.

3.3. Variation operators

Four types of mutation operators and one crossover operator are utilized by our algorithm.
In each modification step, one of the variation operators is randomly selected for each tree.
The mutation and crossover operators are described below.

Split

Split selects a random terminal-node and assigns a valid, randomly generated, split rule to
it. As a consequence, the selected terminal node becomes an internal node r and two new
terminal nodes are generated.

The search for a valid split rule is conducted as in Section 3.1 for a maximum of P iterations.
In cases where no valid split rule can be assigned to internal node r, the search for a valid
split rule is carried out on another randomly selected terminal node. If, after 10 attempts,
no valid split rule can be found, then θi+1 = θi. Otherwise, the set of parameters in iteration
i+ 1 are given by θi+1 = θi ∪ (vr, sr).

Prune

Prune chooses a random internal node r, where r > 1, which has two terminal nodes as
successors and prunes it into a terminal node. The tree’s parameters at iteration i + 1 are
θi+1 = θi \ (vr, sr). If θi only comprises one internal node, i.e., the root node, then θi+1 = θi
and no pruning occurs.

Major split rule mutation

Major split rule mutation selects a random internal node r and changes the split rule, defined
by the corresponding split variable vr, and the split point sr. With a probability of 50%, a

8 evtree: Evolutionary Learning of Globally Optimal Trees in R

value from the range 1, ..., P is assigned to vr. Otherwise vr remains unchanged and only sr
is modified. Again, depending on the domain of Xvr , either a random split point from the
range of possible values of Xvr is selected, or a non-empty set of categories is assigned to each
of the two terminal nodes. If the split rule at r becomes invalid, the mutation operation is
reversed and the procedure, starting with the selection of r, is repeated for a maximum of
3 attempts. Subsequent nodes that become invalid are pruned.

If no pruning occurs, θi and θi+1 contain the same set of parameters. Otherwise, the set of
parameters (vm1 , sm1 , ..., vmf

, smf
), corresponding to invalid nodes, is removed from θi. Thus,

θi+1 = θi \ (vm1 , sm1 , ..., vmf
, smf

).

Minor split rule mutation

Minor split rule mutation is similar to the major split rule mutation operator. However, it
does not alter vr and only changes the split point sr by a minor degree, which is defined by
one of the following 4 cases:

� Xvr is numerical or ordinal and has at least 20 unique values: The split point sr is
randomly shifted by a non-zero number of unique values of Xvr that is not larger than
10% of the range of unique values.

� Xvr is numerical or ordinal and has less than 20 unique values: The split point is changed
to the next larger, or the next lower, unique value of Xvr .

� Xvr is nominal and has at least 20 categories: At least one and at most 10% of the
variable’s categories are changed.

� Xvr is nominal and has less than 20 categories: One of the categories is randomly
modified.

In cases where subsequent nodes become invalid, further split points are searched that preserve
the tree’s topology. After five non-successful attempts at finding a topology preserving split
point, the non-valid nodes are pruned.

Equivalently to the major split rule mutation operator the subsequent solution θi+1 = θi \
(vm1 , sm1 , ..., vmf

, smf
).

Crossover

Crossover exchanges, randomly selected, subtrees between two trees. Let θ1
i and θ2

i be the two
trees chosen from the population for crossover. First, two internal nodes r1 and r2 are selected
randomly from θ1

i and θ2
i , respectively. Let sub1(θji , rj) denote the subtree of θji rooted by

rj (j = 1, 2), i.e., the tree containing rj and its descendant nodes. Then, the complementary

part of θji can be defined as sub2(θji , rj) = θji \ sub1(θji , rj). The crossover operator creates
two new trees θ1

i+1 = sub2(θ1
i , r1) ∪ sub1(θ2

i , r2) and θ2
i+1 = sub2(θ2

i , r2) ∪ sub1(θ1
i , r1). If

the crossover creates some invalid nodes in either one of the new trees θ1
i+1 or θ2

i+1, they are
omitted.

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 9

3.4. Evaluation function

The evaluation function represents the requirements to which the population should adapt.
In general, these requirements are formulated by Equation 2. A suitable evaluation function
for classification and regression trees maximizes the models’ accuracy on the training data,
and minimizes the models’ complexity. This subsection describes the currently implemented
choices of evaluation functions for classification and for regression.

Classification

The quality of a classification tree is most commonly measured as a function of its misclas-
sification rate MC and the complexity of a tree by a function of the number of its terminal
nodes M . evtree uses 2N ·MC(Y, f(X, θ)) as a loss function. The number of terminal nodes,
weighted by logN and a user-specified parameter α, measures the complexity of trees.

loss(Y, f(X, θ)) = 2N ·MC(Y, f(X, θ))

= 2 ·
N∑
n=1

I(Yn 6= f(X·n, θ)), (5)

comp(θ) = α ·M · logN.

With these particular choices, Equation 2 seeks trees θ̂ that minimize the misclassification
loss at a BIC-type tradeoff with the number of terminal nodes.

Other, existing and commonly used choices of evaluation functions include the Bayesian in-
formation criterion (BIC, as in Gray and Fan 2008) and minimum description length (MDL,
as in Quinlan and Rivest 1989). For both evaluation functions deviance is used for accuracy
estimation. Deviance is usually preferred over the misclassification rate in recursive partition-
ing methods, as it is more sensitive to changes in the node probabilities (Hastie, Tibshirani,
and Friedman 2009, pp. 308–310). However, this is not necessarily an advantage for global
tree building methods like evolutionary algorithms.

Regression

For regression trees, accuracy is usually measured by the mean squared error MSE. Here, it
is again coupled with a BIC-type complexity measure:

Using N · log MSE as a loss function and α · 4 · (M + 1) · logN as the complexity part, the
general formulation of the optimization problem in can be rewritten as:

loss(Y, f(X, θ)) = N log MSE(Y, f(X, θ))

= N log

{
N∑
n=1

(Yn − f(X·n, θ))
2

}
, (6)

comp(θ) = α · 4 · (M + 1) · logN.

Here, M+1 is the effective number of estimated parameters, taking into account the estimates
of a mean parameter in each of the terminal nodes and the constant error variance term. With
α = 0.25 the criteria is, up to a constant, equivalent to the BIC used by Fan and Gray (2005).
However, the effective number of parameters estimated for is actually much higher than M+1
due to the selection of parameters in the split variable and the selection of the variable itself.

10 evtree: Evolutionary Learning of Globally Optimal Trees in R

It is however unclear how these should be counted (Gray and Fan 2008; Ripley 2008, p. 222).
Therefore, a more conservative default value of α = 1 is assumed.

3.5. Survivor selection

The population size stays constant during the evolution and only a fixed subset of the can-
didate solutions can be kept in memory. A common strategy is the (µ + λ) selection, where
µ survivors for the next generation are selected from the union of µ parents and λ offsprings.
An alternative approach is the (µ, λ) strategy where µ survivors for the next generation are
selected from λ offsprings.

Our algorithm uses (1+1) selection, where one parent solution competes with one offspring for
a place in the population. In the case of a mutation operator, either the solution before modifi-
cation, θi, or after modification, θi+1, is kept in memory. In the case of the crossover operator,
the initial solutions of θ1

i competes with its subsequent solutions θ1
i+1. Correspondingly, one

of the two solutions θ2
i and θ2

i+1 is rejected. The survivor selection is done deterministically.
The tree with lower fitness, according to the evaluation function, is rejected. Note that, due
to the definition of the crossover operator, some trees are selected more than once in an iter-
ation. Correspondingly, these trees undergo the survival selection process more than once in
an iteration.

As in classification and regression tree analysis the individual solutions are represented by
trees. This design offers computational advantages over (µ + λ), with µ > 1 and λ > 1, and
(µ, λ) strategies. In particular, for the application of mutation operators no new trees have
to be constructed. The tree after modification is simply accepted or reversed to the previous
solution.

There are two important issues in the evolution process of an evolutionary algorithm: popu-
lation diversity and selective pressure (Michalewicz 1994). These factors are related, as with
increasing selective pressure the search is focused more around the currently best solutions.
An overly strong selective pressure can cause the algorithm to converge early in local optima.
On the other hand, an overly weak selective pressure can make the search ineffective. Using
a (µ + λ) strategy with µ > 1 and λ > 1, a strong selective pressure can occur in situations
as follows. Suppose the b-th tree of the population is one of the fittest trees in iteration i,
and in iteration i one split rule of the b-th tree is changed only by a minor degree. Then very
few instances are classified differently and the overall misclassification might not even change.
However, as the parent and the offspring represent one of the best solutions in iteration i,
they are both selected for the subsequent population. This situation can occur frequently,
especially when a fine-tuning operator like the minor split rule mutation is used. Then, the
diversity of different trees is lost quickly and the algorithm likely terminates in a local opti-
mum. The (1 + 1) selection mechanism clearly avoids these situations, as only the parent or
the offspring can be part of the subsequent population.

3.6. Termination

Using the default parameters, the algorithm terminates when the quality of the best 5% of
trees stabilizes for 100 iterations, but not before 1000 iterations. If the run does not converge
the algorithm terminates after a user-specified number of iterations. In cases where the
algorithm does not converge, a warning message is written to the command line. The tree
with the highest quality according to the evaluation function is returned.

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 11

4. Implementation and application in practice

Package evtree provides an efficient implementation of an evolutionary algorithm that builds
classification trees in R. CPU- and memory- intensive tasks are fully computed in C++,
while the user interfaces and plot functions are written in R. The .C() interface (Chambers
2008) was used to pass arguments between the two languages. evtree depends on the par-
tykit package (Hothorn and Zeileis 2011), which provides an infrastructure for representing,
summarizing, and visualizing tree-structured models.

4.1. User interface

The principal function of the evtree package is the eponymous function evtree() taking
arguments

evtree(formula, data = list(), weights = NULL, subset = NULL,

control = evtree.control(...), ...)

where formula, data, weights, and subset specify the data in the usual way, e.g., via
formula = y ~ x1 + x2. Additionally, control comprises a list of control parameters

evtree.control(minbucket = 7L, minsplit = 20L, maxdepth = 9L,

niterations = 10000L, ntrees = 100L, alpha = 1,

operatorprob = list(pmutatemajor = 0.2, pmutateminor = 0.2,

pcrossover = 0.2, psplit = 0.2, pprune = 0.2),

seed = NULL, ...)

where the parameters minbucket, minsplit, and maxdepth constrain the solution to a min-
imum number of observations in each terminal node, a minimum number of observations in
each internal node, and a maximum tree depth. Note that the memory requirements in-
crease by the square of the maximum tree depth. Parameter alpha regulates the complexity
parameter α in Equations 5 and 6, respectively. niterations and ntrees specify the max-
imum number of iterations and the number of trees in the population, respectively. With
the argument operatorprob, user-specified probabilities for the variation operators can be
defined. For making computations reproducible, argument seed is an optional integer seed
for the random number generator (at C++ level). If not specified, the random number gen-
erator is initialized by as.integer(runif(1, max = 2^16)) in order to inherit the state of
.Random.seed (at R level). If set to -1L, the seed is initialized by the system time.

The trees computed by evtree inherit from class ‘party’ supplied by the partykit pack-
age. The methods inherited in this way include standard print(), summary(), and plot()

functions to display trees and a predict() function to compute the fitted response or node
number etc.

4.2. Case study: Customer targeting

An interesting application for classification tree analysis is target marketing, where limited
resources are aimed at a distinct group of potential customers. An example is provided by
Lilien and Rangaswamy (2004) in the Bookbinder’s Book Club marketing case study about
a (fictitious) American book club. In this case study, a brochure of the book “The Art

12 evtree: Evolutionary Learning of Globally Optimal Trees in R

Variable Description

choice Did the customer buy the advertised book?
amount Total amount of money spent at the book Club.
art Number of art books purchased.
child Number of children’s books purchased.
cook Number of cookbooks purchased.
diy Number of do-it-yourself books purchased.
first Number of months since the first purchase.
freq Number of books purchased at the book Club.
gender Factor indicating gender.
last Number of months since the last purchase.
youth Number of youth books purchased.

Table 2: Variables of the Bookbinder’s Book Club data.

History of Florence” was sent to 20,000 customers, 1,806 of which bought the book. The
dataset contains a subsample of 1,300 customers with 10 exploratory variables (see Table 2)
for building a predictive model of customer choice.

Besides predictive accuracy, model complexity is a crucial issue in this application: Smaller
trees are easier to interpret and communicable to marketing experts and management pro-
fessionals. Hence, we use evtree with a maximal depth of two levels of splits only. This
is contrasted with rpart and ctree with and without such a restriction of tree depth to
show that the evolutionary search of the global parameter space can be much more effec-
tive in balancing predictive accuracy and complexity compared to forward-search recursive
partitioning.

All trees are constrained to have a minimum number of 10 observations per terminal node.
Additionally, a significance level of 1% is employed in the construction of conditional infer-
ence trees, which is more appropriate than the default 5% level for 1, 300 observations. To
provide uniform visualizations and predictions of the fitted models, ‘party’ objects are used
to represent all trees. For ‘rpart’ trees, partykit provides a suitable as.party() method
while a reimplementation of ctree() is provided in partykit (as opposed to the original in
party) that directly leverages the ‘party’ infrastructure.

First, the data is loaded and the forward-search trees are grown with and without depth
restriction, visualizing the unrestricted trees in Figure 2.

R> data("BBBClub", package = "evtree")

R> library("rpart")

R> rp <- as.party(rpart(choice ~ ., data = BBBClub, minbucket = 10))

R> rp2 <- as.party(rpart(choice ~ ., data = BBBClub, minbucket = 10,

+ maxdepth = 2))

R> ct <- ctree(choice ~ ., data = BBBClub, minbucket = 10, mincrit = 0.99)

R> ct2 <- ctree(choice ~ ., data = BBBClub, minbucket = 10, mincrit = 0.99,

+ maxdepth = 2)

R> plot(rp)

R> plot(ct)

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 13

With the objective of building a smaller, but at still accurate tree, evtree is constrained to
a maximum tree depth of 2, see Figure 3.

R> set.seed(1090)

R> ev <- evtree(choice ~ ., data = BBBClub, minbucket = 10, maxdepth = 2)

The resulting evolutionary tree is printed below and visualized in Figure 3.

R> plot(ev)

R> ev

Model formula:

choice ~ gender + amount + freq + last + first + child + youth +

cook + diy + art

Fitted party:

[1] root

| [2] first < 12

| | [3] art < 1: no (n = 250, err = 30.8%)

| | [4] art >= 1: yes (n = 69, err = 30.4%)

| [5] first >= 12

| | [6] art < 2: no (n = 864, err = 21.8%)

| | [7] art >= 2: yes (n = 117, err = 25.6%)

Number of inner nodes: 3

Number of terminal nodes: 4

Not surprisingly, the explanatory variable art – the number of art books purchased previously
at the book club – plays a key role in all constructed classification trees along with the number
of months since the first purchase (first), the frequency of previous purchases (freq), and
the customer’s gender. Interestingly, though, the forward-search trees select the arguably
most important variable in the first split while the evolutionary tree uses first in the first
split and art in both second splits. Thus, the evolutionary tree uses a different cutoff in art

for book club members that made their first purchase during the last year as opposed to older
customers. While the former are predicted to be buyers if they had previously bought at
least one art book, the latter are predicted to purchase the advertised art book only if they
had previously bought at least two other art books. Certainly, this classification is easy to
understand and communicate (helped by Figure 3) to practitioners.

However, we still need to answer the question how well it performs in contrast to the other
trees. Hence, we set up a function mc() the computes the misclassification rate as a measure
of predictive accuracy and a function evalfun() that computes the evaluation function (i.e.,
penalized by tree complexity) from Equation 5.

R> mc <- function(obj) 1 - mean(predict(obj) == BBBClub$choice)

R> evalfun <- function(obj) 2 * nrow(BBBClub) * mc(obj) +

+ width(obj) * log(nrow(BBBClub))

R> trees <- list("evtree" = ev, "rpart" = rp, "ctree" = ct, "rpart2" = rp2,

14 evtree: Evolutionary Learning of Globally Optimal Trees in R

rpart

art

1

< 0.5 >= 0.5

Node 2 (n = 873)

ye
s

no

0

0.2

0.4

0.6

0.8

1

art

3

< 1.5 >= 1.5

first

4

>= 11 < 11

freq

5

>= 5 < 5

Node 6 (n = 211)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 30)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 8 (n = 66)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 9 (n = 120)

ye
s

no
0

0.2

0.4

0.6

0.8

1

ctree

art

1

<= 0 > 0

freq

2

<= 10 > 10

gender

3

female male

Node 4 (n = 142)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 258)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 473)

ye
s

no

0

0.2

0.4

0.6

0.8

1

freq

7

<= 10 > 10

art

8

<= 1 > 1

Node 9 (n = 158)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 10 (n = 68)

ye
s

no

0

0.2

0.4

0.6

0.8

1

art

11

<= 2 > 2

Node 12 (n = 189)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 13 (n = 12)

ye
s

no

0

0.2

0.4

0.6

0.8

1

Figure 2: Trees for customer targeting constructed by rpart (upper panel) and ctree (lower
panel). The target variable is the customer’s choice of buying the book. The variables used
for splitting are the number of art books purchased previously (art), the number of months
since the first purchase (first), the frequency of previous purchases at the Bookbinder’s
Book Club (freq), and the customer’s gender.

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 15

evtree

first

1

< 12 >= 12

art

2

< 1 >= 1

Node 3 (n = 250)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 4 (n = 69)

ye
s

no

0

0.2

0.4

0.6

0.8

1

art

5

< 2 >= 2

Node 6 (n = 864)

ye
s

no

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 117)

ye
s

no

0

0.2

0.4

0.6

0.8

1

Figure 3: Tree for customer targeting constructed by evtree. The target variable is the
customer’s choice of buying the book. The variables used for splitting are the number of art
books purchased previously (art), and the number of months since the first purchase (first).

+ "ctree2" = ct2)

R> round(sapply(trees, function(obj) c("misclassification" = mc(obj),

+ "evaluation function" = evalfun(obj))), digits = 3)

evtree rpart ctree rpart2 ctree2

misclassification 0.243 0.238 0.248 0.262 0.255

evaluation function 660.680 655.851 694.191 701.510 692.680

Not surprisingly the evolutionary tree evtree outperforms the depth-restricted trees rpart2
and ctree2, both in terms of misclassification and the penalized evaluation function. How-
ever, it is interesting to see that evtree performs even better than the unrestricted conditional
inference tree ctree and is comparable in performance to the unrestricted CART tree rpart.
Hence, the practitioner may choose the evolutionary tree evtree as it is the easiest to com-
municate.

Although the constructed trees are considerably different, the code above shows that the pre-
dictive accuracy is rather similar. Moreover, below we see that the structure of the individual
predictions on the dataset are rather similar as well:

R> ftable(tab <- table(evtree = predict(ev), rpart = predict(rp),

+ ctree = predict(ct), observed = BBBClub$choice))

observed no yes

evtree rpart ctree

no no no 799 223

16 evtree: Evolutionary Learning of Globally Optimal Trees in R

yes 38 24

yes no 0 0

yes 12 18

yes no no 0 0

yes 0 0

yes no 21 19

yes 30 116

R> sapply(c("evtree", "rpart", "ctree"), function(nam) {

+ mt <- margin.table(tab, c(match(nam, names(dimnames(tab))), 4))

+ c(abs = as.vector(rowSums(mt))[2],

+ rel = round(100 * prop.table(mt, 1)[2, 2], digits = 3))

+ })

evtree rpart ctree

abs 186.000 216.000 238.000

rel 72.581 70.833 66.387

In this case, evtree classifies fewer customers (186) as buyers as rpart (216) and ctree (238).
However, evtree achieves the highest proportion of correct classification among the declared
buyers: 72.6% compared to 70.8% (rpart) and 66.4% (ctree).

In summary, this illustrates how evtree can be employed to better balance predictive accuracy
and complexity by searching a larger space of potential trees. As a final note, it is worth
pointing out that in this setup, several runs of evtree() with the same parameters typically
lead to the same tree. However, this may not always be the case. Due to the stochastic
nature of the search algorithm and the vast search space, trees with very different structures
but similar evaluation function values may be found by subsequent runs of evtree(). Here,
this problem is alleviated by restricting the maximal depth of the tree, yielding a clear solution.

5. Performance comparison

In this section, we compare evtree with rpart and ctree in a more rigorous benchmark
comparison.

In the first part of the analysis (Section 5.1) the algorithms are compared on 14 benchmark
datasets that are publicly available and 3 real-world datasets from the Austrian Diagnosis
Related Group (DRG) system (Bundesministerium für Gesundheit 2010). The analysis is
based on the evaluation of 250 bootstrap samples for each of the 20 datasets. The misclassi-
fication rate on the out-of-bag (Hothorn, Leisch, Zeileis, and Hornik 2005) samples is used as
a measure of predictive accuracy. Furthermore, the complexity is estimated by the number
of terminal nodes.

In the second part (Section 5.2) the algorithms’ performances are assessed on an artificial
chessboard problem that is simulated with different noise levels. The estimation of predictive
accuracy and the number of terminal nodes is based on 250 realizations for each simulation.

All models are constrained to a minimum number of 7 observations per terminal node, 20 ob-
servations per internal node, and a maximum tree depth of 9. Apart from that, the default

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 17

Dataset Instances Attributes
Binary Nominal Ordered Metric Classes

Glass identification# 214 - - - 9 6
Statlog heart* 270 3 3 1 6 2
Ionosphere# 351 2 - - 32 2
Musk+ 476 - - - 166 2
Breast cancer database# 685 - 4 5 - 2
Pima Indians diabetes# 768 - - - 8 2
Vowel# 990 - 1 - 9 11
Statlog German credit* 1000 2 10 1 7 2
Contraceptive method* 1437 3 - 4 2 3
DNA# 3186 180 - - - 3
Spam+ 4601 - - - 57 2
MAGIC gamma telescope* 19020 - - - 10 2
Servo# 167 - 4 - - -
Boston housing# 506 1 - - 12 -
MEL0101� 875 1 4 1 108 -
HDG0202� 3933 1 7 1 46 -
HDG0502� 8251 1 7 1 91 -

Table 3: Description of the evaluated benchmark datasets. The datasets marked with ∗
originate from the UCI machine learning repository (Frank and Asuncion 2010) and are made
available in the evtree package. Datasets marked with # and + are from the R packages
mlbench (Leisch and Dimitriadou 2010) and kernlab (Karatzoglou et al. 2004), respectively.
The three real-world datasets from the Austrian DRG system are marked with �.

settings of the algorithms are used. For the assessment of significant differences in predic-
tive accuracy and complexity, respectively, Dunnett’s correction from R package multcomp
(Hothorn, Bretz, and Westfall 2008) was used for calculating simultaneous 95% confidence
intervals on the individual datasets.

As missing values are currently not supported by evtree (e.g., by surrogate splits), the
16 missing values in the Breast cancer database – the only dataset in the study with missing
values – were removed before analysis.

5.1. Benchmark and real-world problems

In Table 3 the benchmark and real-world datasets from the Austrian DRG system are de-
scribed. In the Austrian DRG system, resources are allocated to hospitals by simple rules
mainly regarding the patients’ diagnoses, procedures, and age. Regression tree analysis is
performed to model patient groups with similar resource consumption. A more detailed de-
scription of the datasets and the application can be found in Grubinger, Kobel, and Pfeiffer
(2010).

The relative performance of evtree and rpart is summarized in Figure 4 (upper panels).
Performance differences are displayed relative to evtree’s performance. For example, on the
Glass dataset, the average misclassification rate of rpart is 2.7% higher than the misclassifi-
cation rate of evtree. It can be observed that on 12 out of 17 datasets evtree significantly

18 evtree: Evolutionary Learning of Globally Optimal Trees in R

outperforms rpart in terms of predictive accuracy. Only on the Contraceptive method dataset
does evtree perform slightly worse. In terms of complexity, evtree models are significantly
more complex on 10 and less complex on 7 datasets.

Figure 4 (lower panels) summarizes the relative performance of evtree and ctree. For 15 out
of 17 datasets evtree shows a better predictive performance. The algorithms’ performances
is significantly worse on the MEL0101 dataset, where the mean squared error of ctree is
5.6% lower. However, on this dataset, ctree models are on average 86.5% larger than evtree

models. The relative complexity of evtree models is significantly smaller for 15 and larger
for 1 dataset.

From these results, it is not obvious which characteristics drive evtree’s relative performance.
Presumably, for some datasets the forward-search algorithms already yield trees that are close
to optimal, thus leaving little room for further improvements. In contrast, for other datasets
with more complex interaction patterns (and possibly low main effects) evtree’s global-search
strategy is probably able to provide better predictive accuracy and/or sparser trees.

Disadvantages of the evtree algorithm are computation time and memory requirements.
While the smallest of the analyzed datasets, Glass identification, only needed approximately
4–6 seconds to fit, larger datasets demanded several minutes. The fit of a model from the
largest dataset, MAGIC gamma telescope, required approximately 40–50 minutes and a main
memory of 400 MB. The required resources were measured on an Intel Core 2 Duo with 2.2
GHz and 2 GB RAM using the 64-bit version of Ubuntu 10.10.

Another important issue to be considered is the random nature of evolutionary algorithms.
For larger datasets, frequently, considerably different solutions exist that yield a similar or
even the same evaluation function value. Therefore, subsequent runs of evtree can result in
very different tree structures. This is not a problem if the tree is intended only for predictive
purposes, and it is also not a big issue for many decision and prognosis tasks. Typically,
in such applications, the resulting model has to be accurate, compact, and meaningful in
its interpretation, but the particular tree structure is of secondary importance. Examples of
such applications include the presented marketing case study and the Austrian DRG system.
In cases where a model is not meaningful in its interpretation, the possibility of constructing
different trees can even be beneficial. However, if the primary goal is to interpret relationships
in the data, based on the selected splits, the random nature of the algorithm has to be
considered.

5.2. Artificial problem

In this section we demonstrate the ability of evtree to solve an artificial problem that is
difficult to solve for most recursive classification tree algorithms (Loh 2009). The data was
simulated with 2000 instances for both the training-set and the test-set. Predictor variables
X1 and X2 are simulated to be uniformly distributed in the interval [0, 4]. The classes are
distributed in alternating squares forming a 4 × 4 chessboard in the (X1, X2)-plane. One
realization of the simulated data is shown in Figure 5. Furthermore, variables X3 − X8 are
noise variables that are uniformly distributed on the interval [0, 1]. The ideal model for this
problem only uses variables X1 and X2 and has 16 terminal nodes, whereas each terminal
node comprises the observations that are in the region of one square. Two further simulations
are done in the same way, but 5% and 10% percent of the class labels are randomly changed
to the other class.

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

HDG0502

HDG0202

MEL0101

Boston housing

Servo

Magic gamma telescope

Spam

DNA

Contraceptive method

Statlog German credit

Vowel

Pima Indians diabetes

Breast cancer database

Musk

Ionosphere

Statlog heart

Glass identification

rpart

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40

HDG0502

HDG0202

MEL0101

Boston housing

Servo

Magic gamma telescope

Spam

DNA

Contraceptive method

Statlog German credit

Vowel

Pima Indians diabetes

Breast cancer database

Musk

Ionosphere

Statlog heart

Glass identification

ctree

relative difference in predictive accuracy (%)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−50 0 50 100 150

relative difference in complexity (%)

Figure 4: Performance comparison of evtree vs. rpart (upper panels) and evtree vs. ctree
(lower panels). Prediction error (left panels) is compared by the relative difference of the
misclassification rate or the mean squared error. The complexity (right panels) is compared
by the relative difference of the number of terminal nodes.

The results are summarized in Table 4. It can be seen that, in the absence of noise, rpart
models on average classify 69.1% of the data points correctly and has 16.6 terminal nodes. An
average ctree model has only 1.1 terminal nodes and a classification accuracy of 49.9%. In
contrast, evtree classifies 93.2% of the instances correctly and requires 14.4 terminal nodes.
In the presence of 5% and 10% noise, evtree classifies 89.0% and 84.5% of the data correctly.

20 evtree: Evolutionary Learning of Globally Optimal Trees in R

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

0 1 2 3 4

0
1

2
3

4

X1

X
2

Figure 5: Class distribution of the simulated 4 × 4 chessboard problem with zero noise,
plotted on the (X1, X2)-plane. The two classes are indicated by black circles and gray crosses,
respectively.

Noise (%) Accuracy Terminal nodes
evtree rpart ctree evtree rpart ctree

0 93.2(7.4) 69.1(18.3) 49.9(1.1) 14.4(2.2) 16.6(8.2) 1.1(0.3)
5 89.0(6.8) 65.7(17.4) 50.1(1.6) 14.4(2.2) 14.6(8.0) 1.1(0.7)

10 84.5(5.6) 62.8(14.1) 50.1(1.3) 14.6(2.0) 14.3(7.3) 1.1(0.4)

Table 4: Mean (and standard deviation) of accuracy and number of terminal nodes for simu-
lated 4× 4 chessboard examples.

6. Conclusions

In this paper, we presented the evtree package, which implements classification and regression
trees that are grown by an evolutionary algorithm. The package uses standard print(),
summary(), and plot() functions to display trees and a predict() function to predict the
class labels of new data from the partykit package. As evolutionary learning of trees is
computationally demanding, most calculations are conducted in C++. At the moment our
algorithm does not support parallelism. However, we intend to extend evtree to parallel
computing.

The comparisons with recursive partitioning methods rpart and ctree in Sections 4 and 5
shows that evtree performs very well in a wide variety of settings, often balancing predictive
accuracy and complexity better than the forward-search methods.

However, the goal of evtree is not to replace the well-established algorithms like rpart and
ctree but rather to complement the tree toolbox with an alternative method which may
perform better given sufficient amounts of time and main memory. By the nature of the

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 21

algorithm it is able to discover patterns which cannot be modeled by a greedy forward-search
algorithm. As evtree models can be substantially different to recursively fitted models, it
can be beneficial to use both approaches, as this may reveal additional relationships in the
data.

References

Bäck T (1996). Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York.

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and Regression Trees.
Wadsworth, Belmont.

Bundesministerium für Gesundheit (2010). “The Austrian DRG System.” URL: http:

//www.bmg.gv.at/home/EN/Topics/The_Austrian_DRG_system_brochure_ (accessed on
2011-09-27).

Cano JR, Herrera F, Lozano M (2003). “Using Evolutionary Algorithms as Instance Selection
for Data Reduction in KDD: An Experimental Study.” IEEE Transactions on Evolutionary
Computation, 7(6), 561–575.

Cantu-Paz E, Kamath C (2003). “Inducing Oblique Decision Trees with Evolutionary Algo-
rithms.” IEEE Transactions on Evolutionary Computation, 7(1), 54–68.

Chambers JM (2008). Software for Data Analysis: Programming with R. Springer-Verlag,
New York.

de Mazancourt C, Calcagno V (2010). “glmulti: An R Package for Easy Automated Model
Selection with (Generalized) Linear Models.” Journal of Statistical Software, 34(12), 1–29.
URL http://www.jstatsoft.org/v34/i12/.

Denison DGT, Mallick BK, Smith AFM (1998). “A Bayesian CART Algorithm.” Biometrika,
85(2), 363–377.

Eiben AE, Smith JE (2007). Introduction to Evolutionary Computing. Springer-Verlag, New
York.

Esmeir S, Markovitch S (2007). “Anytime Learning of Decision Trees.” Journal of Machine
Learning Research, 8, 891–933.

Fan G, Gray JB (2005). “Regression Tree Analysis Using TARGET.” Journal of Computa-
tional and Graphical Statistics, 14(1), 206–218.

Fogel LJ, Owens AJ, Walsh MJ (1966). Artificial Intelligence Through Simulated Evolution.
John Wiley & Sons, New York.

Frank A, Asuncion A (2010). “UCI Machine Learning Repository.” URL http://archive.

ics.uci.edu/ml/.

http://www.bmg.gv.at/home/EN/Topics/The_Austrian_DRG_system_brochure_
http://www.bmg.gv.at/home/EN/Topics/The_Austrian_DRG_system_brochure_
http://www.jstatsoft.org/v34/i12/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

22 evtree: Evolutionary Learning of Globally Optimal Trees in R

Freitas AA (2003). “A Survey of Evolutionary Algorithms for Data Mining and Knowledge
Discovery.” pp. 819–845. Springer-Verlag, New York.

Gray JB, Fan G (2008). “Classification Tree Analysis Using TARGET.” Computational
Statistics & Data Analysis, 52(3), 1362–1372.

Grubinger T, Kobel C, Pfeiffer KP (2010). “Regression Tree Construction by Bootstrap:
Model Search for DRG-Systems Applied to Austrian Health-Data.” BMC Medical Infor-
matics and Decision Making, 10(9). doi:10.1186/1472-6947-10-9.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2nd edition. Springer-Verlag, New York.

Holland JH (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge.

Hornik K, Buchta C, Zeileis A (2009). “Open-Source Machine Learning: R Meets Weka.”
Computational Statistics, 24(2), 225–232.

Hothorn T (2011). “CRAN Task View: Machine Learning.” Version 2011-05-20, URL http:

//CRAN.R-project.org/view=MachineLearning.

Hothorn T, Bretz F, Westfall P (2008). “Simultaneous Inference in General Parametric Mod-
els.” Biometrical Journal, 50(3), 346–363.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional
Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674.

Hothorn T, Leisch F, Zeileis A, Hornik K (2005). “The Design and Analysis of Benchmark
Experiments.” Journal of Computational and Graphical Statistics, 14(3), 675–699.

Hothorn T, Zeileis A (2011). “partykit: A Toolkit for Recursive Partytioning.” R package
version 0.1-1, URL http://CRAN.R-project.org/package=partykit.

Hyafil L, Rivest RL (1976). “Constructing Optimal Binary Decision Trees Is NP-Complete.”
Information Processing Letters, 5(1), 15–17.

Jensen MT (2003). “Generating Robust and Flexible Job Shop Schedules Using Genetic
Algorithms.” IEEE Transactions on Evolutionary Computation, 7(3), 275–288.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab – An S4 Package for Kernel
Methods in R.” Journal of Statistical Software, 11(9), 1–20. URL http://www.jstatsoft.

org/v11/i09/.

Kooperberg C, Ruczinski I (2011). LogicReg: Logic Regression. R package version 1.4.10,
URL http://CRAN.R-project.org/package=LogicReg.

Koza JR (1991). “Concept Formation and Decision Tree Induction Using the Genetic Pro-
gramming Paradigm.” In Proceedings of the 1st Workshop on Parallel Problem Solving from
Nature, pp. 124–128. Springer-Verlag, London.

Koza JR (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA.

http://dx.doi.org/10.1186/1472-6947-10-9
http://CRAN.R-project.org/view=MachineLearning
http://CRAN.R-project.org/view=MachineLearning
http://CRAN.R-project.org/package=partykit
http://www.jstatsoft.org/v11/i09/
http://www.jstatsoft.org/v11/i09/
http://CRAN.R-project.org/package=LogicReg

Thomas Grubinger, Achim Zeileis, Karl-Peter Pfeiffer 23

Leisch F, Dimitriadou E (2010). mlbench: Machine Learning Benchmark Problems. R pack-
age version 2.1-0, URL http://CRAN.R-project.org/package=mlbench.

Lilien GL, Rangaswamy A (2004). Marketing Engineering: Computer-Assisted Marketing
Analysis and Planning. 2nd edition. Trafford Publishing, Victoria, BC.

Loh WY (2009). “Improving the Precision of Classification Trees.” Annals of Applied Statistics,
3(4), 1710–1737.

Man KF, Tang KS, Kwong S, Halang WA (1997). Genetic Algorithms for Control and Signal
Processing. Springer-Verlag, New York.

Michalewicz Z (1994). Genetic Algorithms Plus Data Structures Equals Evolution Programs.
Springer-Verlag, New York.

Murthy SK, Salzberg S (1995). “Decision Tree Induction: How Effective Is the Greedy Heuris-
tic?” In UM Fayyad, R Uthurusamy (eds.), Proceedings of the First International Confer-
ence on Knowledge Discovery and Data Mining, pp. 222–227. AAAI Press, San Mateo.

Papagelis A, Kalles D (2001). “Breeding Decision Trees Using Evolutionary Techniques.” In
CE Brodley, AP Danyluk (eds.), Proceedings of the Eighteenth International Conference on
Machine Learning, pp. 393–400. Morgan Kaufmann Publishers, San Mateo.

Quinlan JR (1992). “Learning with Continuous Classes.” In Proceedings of the 5th Australian
Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific.

Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo.

Quinlan JR, Rivest RL (1989). “Inferring Decision Trees Using the Minimum Description
Length Principle.” Information and Computation, 80(3), 227–248.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Rechenberg I (1973). Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien
der Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart.

Ripley BD (2008). Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge.

Sutton CD (1991). “Improving Classification Trees with Simulated Annealing.” In EM Kerami-
das, SM Kaufman (eds.), Computing Science and Statistics: Proceedings of the 23rd Sympo-
sium on the Interface, pp. 333–344. Interface Foundation of North America, Fairfax Station.

Therneau TM, Atkinson EJ (1997). “An Introduction to Recursive Partitioning Using the
rpart Routines.” Technical Report 61. URL http://www.mayo.edu/hsr/techrpt/61.pdf.

Witten IH, Frank E (2011). Data Mining: Practical Machine Learning Tools and Techniques.
3rd edition. Morgan Kaufmann Publishers, San Francisco.

http://CRAN.R-project.org/package=mlbench
http://www.R-project.org/
http://www.R-project.org/
http://www.mayo.edu/hsr/techrpt/61.pdf

24 evtree: Evolutionary Learning of Globally Optimal Trees in R

Zantema H (2000). “Finding Small Equivalent Decision Trees Is Hard.” International Journal
of Foundations of Computer Science, 11(2), 343–354.

Zeileis A, Hothorn T, Hornik K (2008). “Model-Based Recursive Partitioning.” Journal of
Computational and Graphical Statistics, 17(2), 492–514.

Affiliation:

Thomas Grubinger, Karl-Peter Pfeiffer
Innsbruck Medical University
Department for Medical Statistics, Informatics and Health Economics
6020, Innsbruck, Austria
E-mail: Thomas.Grubinger@i-med.ac.at, Karl-Peter.Pfeiffer@i-med.ac.at
URL: http://www.i-med.ac.at/msig/mitarbeiter/grubinger/

http://www.i-med.ac.at/msig/mitarbeiter/pfeiffer/

Achim Zeileis
Universität Innsbruck
Department of Statistics
6020, Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org
URL: http://eeecon.uibk.ac.at/~zeileis/

mailto:Thomas.Grubinger@i-med.ac.at
mailto:Karl-Peter.Pfeiffer@i-med.ac.at
http://www.i-med.ac.at/msig/mitarbeiter/grubinger/
http://www.i-med.ac.at/msig/mitarbeiter/pfeiffer/
mailto:Achim.Zeileis@R-project.org
http://eeecon.uibk.ac.at/~zeileis/

	Introduction
	Globally and locally optimal decision trees
	The parameter space of globally optimal decision trees
	The parameter space of locally optimal decision trees
	An illustration of the limitations of locally optimal decision trees
	Approaches for learning globally optimal decision trees

	The evtree algorithm
	Initialization
	Parent selection
	Variation operators
	Split
	Prune
	Major split rule mutation
	Minor split rule mutation
	Crossover

	Evaluation function
	Classification
	Regression

	Survivor selection
	Termination

	Implementation and application in practice
	User interface
	Case study: Customer targeting

	Performance comparison
	Benchmark and real-world problems
	Artificial problem

	Conclusions

