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Abstract

The R package equate (Albano 2013) contains functions for statistical equating un-
der equivalent and nonequivalent groups designs. This paper introduces these designs
and provides an overview of equating with details about each of the supported methods.
Examples demonstrate the basic functionality of the package.
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1. Introduction

Equating is a statistical procedure commonly used in testing programs where administrations
across more than one occasion and more than one examinee group can lead to overexposure of
items, threatening the security of the test. Another somewhat less common use is in progress
monitoring and growth modeling, where administrations occur across multiple time points for
the same individuals, and using the same test form may lead to practice effects. In each of
these contexts item exposure can be limited by using alternate test forms; however, multiple
forms require multiple score scales for a single test. Despite being designed based on the same
specifications, to cover the same content at the same level of difficulty, these scales cannot be
considered identical. Instead, they are assumed to differ in difficulty.

Difficulty differences across forms complicate the comparison of ability estimates, whether
across individuals taking different forms, or across time points for an individual. In each case,
ability differences are confounded by differences in form difficulty. The goal of equating is
to adjust for these differences in difficulty across alternate forms of a test, so as to produce
comparable score scales and thereby improve the estimation of ability.

The equate package focuses on statistical or observed-score equating, as opposed to item
response theory (IRT) equating (for IRT equating in R, see Weeks 2010). Most of the equate
procedures fit under what is called traditional equating, or non-IRT equating. IRT equating
is based on a measurement model, the IRT model, whereas most traditional methods are not.
For this reason, the equating described here is referred to as statistical equating. Although
there are many benefits of equating forms using IRT, statistical equating can often be a
simpler and more practical alternative, one involving fewer and less stringent assumptions
(for further discussion, see Kolen and Brennan 2004; Livingston 2004).

Equating defines a functional relationship between multiple test score distributions and thereby
between multiple score scales. When the test forms have been created according to the same
specifications and are similar in statistical characteristics, this functional relationship is re-
ferred to as an equating function which serves to translate scores from one scale directly to
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their equivalent values on another. Whether score distributions are based on samples from a
single examinee population or different examinee populations, if the appropriate assumptions
are met the equating function can then be generalized to other examinees (for more details,
see Holland and Dorans 2006). The generalizability of an equating function depends, in part,
on the equating design.

2. Equating Designs

An equating design refers to the basic structure of an equating study, just as a research design
refers to the structure of a research study. The equating study organizes all the stages which
are essential to and which lead up to the equating process. These stages include creation
of test forms, sampling of examinees, and administration of the test. The equating design
specifies the test administration procedures, i.e., data collection, and just as the control of
variables in a research study depends on the design, control of examinee ability in an equating
study depends on the equating design.

An equating study can take place in a variety of situations, depending on the needs and
resources of a testing program. As a result, numerous equating designs have been documented
in the literature. For simplicity, in this vignette and in the equate package, equating designs
are categorized as either involving equivalent groups or nonequivalent groups.

2.1. Equivalent Groups

The equivalent groups design consists of either a single group of examinees taking both forms
of a test, or two groups sampled randomly from a single population and considered to be
randomly equivalent. In either case it is assumed that the two groups are equivalent in
ability, and that any differences in scores across forms can be attributed entirely to form
difficulty. When forms are administered to a single group, administration procedures can be
complicated by order and fatigue effects. Thus, the single group design is often not a practical
option. However, because it involves only the examinee population of interest, referred to as
the target population, the equivalent groups design is the most efficient, as examinee ability
is controlled directly.

2.2. Nonequivalent Groups

Without equivalent examinee groups two related problems arise: the target population must
be defined indirectly using samples from two different examinee populations, and the ability
of these groups must then be controlled. In the nonequivalent groups design' these issues
are both addressed through the use of what is referred to as an anchor test, a subset of
items appearing on both test forms. All non-equivalence in ability is assumed to be removed
via these anchor items or common items. Though this design is often more practical, as
nonequivalent groups are more easily obtained than equivalent ones, it also involves additional
assumptions, as discussed in the next section (for details see Holland and Dorans 2006).

As noted above, the equivalent groups is the simpler equating design. The traditional equat-
ing types applied with this design are the mean, linear, and equipercentile. More complex

!The nonequivalent groups design is also referred to as the nonequivalent groups with anchor test design,
the common-item nonequivalent groups design, or simply the anchor- or common-item design.
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extensions of these have been developed for use with the nonequivalent groups design, each
of which handles the issues inherent with nonequivalent groups in a slightly different way.
These methods are described briefly below, followed by examples of their implementation in
the equate package.

3. Equating Types and Methods

3.1. Types of Equating

Equating procedures used with the equivalent groups design are referred to here and in the
equate package as equating types. These types are categorized as either linear, including
mean and linear equating, or nonlinear, including equipercentile and circle-arc equating. The
functional definition of each equating type is presented below.

Identity equating

The identity equating function simply reproduces the original score value unchanged, and
thus un-equated:

Zdy(xz) = T;. (1)

Here, id abbreviates the identity function, where the Y subscript indicates that the function
produces equated scores on form Y and (x;) refers to a raw score on form X. The identity
conversion of x; to form Y is simply x;.

With small samples, and especially when test forms are believed to be parallel, identity
equating, or no equating, has been recommended over other types (Kolen and Brennan 2004).
The identity function can also be combined with any of the functions described below to
obtain the synthetic equating function (Kim, von Davier, and Haberman 2008):

sy (zi) = (1 — wiq) gy (i) + wigidy (x;), (2)

where sy (z;) is a weighted combination of any generic equating function gy (z;) with the
identity, and w;q is a value between zero and one.

Linear equating

Linear equating defines a linear relationship between scores from forms X and Y, based on
the mean and standard deviation of each. In other words, the standardized deviation scores,
or z-scores, are set equal for all score points i:

3)

A(X) + 4(Y). (4)

ly(ac,) = €Tr; —
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Mean equating

Mean equating is a simplification of linear where the slope, or ratio of standard deviations, is
not estimated but is instead assumed to be 1. Deviation scores across forms are set equal:

zi — (X)) = yi — f(Y), (5)
and the resulting mean function my (z;) for equating X to Y is
my (2;) = @ — ((X) + A(Y). (6)

Equipercentile equating

Equipercentile equating defines a nonlinear relationship between score scales by setting equal
the percentile ranks for each score point. Specifically, the equipercentile equivalent of a form-
X score on the Y scale is calculated by finding the percentile rank in X of score 7, and then
the form-Y score associated with that form-Y percentile rank:

ey (;) = Q7 [P(ay)). (7)

Here, P(x) is the percentile rank function in X and Q~!(z) is the inverse percentile rank
function in Y. The process is complicated by the fact that scores are typically discrete, and
must be made continuous (for a detailed description see Kolen and Brennan 2004, ch. 2).

Because it involves estimation at each score point, equipercentile equating is especially sus-
ceptible to sampling error. Smoothing methods are typically used to reduce irregularities
due to sampling error in either the score distributions or the equating function itself. Two
commonly used smoothing methods include polynomial loglinear presmoothing (Holland and
Thayer 2000) and cubic-spline postsmoothing (Kolen 1984). The equate package supports
loglinear presmoothing via the glm function (see Appendix A.2 for details).

Circle-arc equating

Circle-arc equating also defines a nonlinear relationship between score scales, but it utilizes
only three score points in X and Y: the lowest meaningful score (1, 1), which for a multiple-
choice test could be the lowest score expected by chance; a midpoint based on the center (e.g.,
means) of each form (z2,y2); and the maximum possible score on each form (x3,ys3). Only
the midpoint requires estimation. The low and high points define the linear component of the

function:
Ys — Y1 (
€r3 — X1

liny(:ﬂi) =y + T; — l‘l)- (8)

This linear function is combined with a curvilinear one, a circle-arc that is based on g9, the
distance in Y units of the point (x2,y2) from the line liny (). The center (z.,y.) and radius
r of the circle define the curvilinear component:

arcy (z;) = ye £ /1% — (x; — xc)?, (9)

where the second quantity, under the square root, is added to y. if y2. is positive (i.e., above
the linear function) and subtracted if it is negative (i.e., below the linear function). The
circle-arc function cy (z;) combines the linear and curvilinear components:

ey (x;) = ling(x;) + arcy(w;). (10)
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Equations for the center points and radius of the circle are included in Appendix A.3. Liv-
ingston and Kim (2009) provide a complete description of the circle-arc equating process.

3.2. Equating Methods

The equating functions presented above are defined in terms of a single examinee population,
and are assumed to generalize to this examinee population. In the nonequivalent groups
design, scores come from two distinct populations, referred to here as populations 1 and
2. As a result, the equating functions are redefined in terms of a hypothetical population
of examinees. This population is referred to as the synthetic population (Braun and Holland
1982). As described by Kolen and Brennan (2004), the linear equating function from equation
(4) can be rewritten in terms of the synthetic population as follows:
oY) as(V) . o

lyg(zi) = Go(X) " T &S(X)MS(X) + s (Y). (11)
Since population S did not take forms X or Y, all of the terms fig and &g in this equation
must be estimated indirectly using: for the means,

fs(X) = p1(X) —wayi [ (V) — (V)] (12)
fus(Y) = f2(Y) +wiye[in (V) — p2(V)]; (13)
and for the variances,
6%(X) = 61(X) —wnil6 (V) — 65(V)] + wiwayi [ (V) — fia(V)?, (14)
55(Y) = 63(Y) + wi13[61(V) — 63(V)] + wiwz3 [ (V) — (V)] (15)

In these equations the weights w; and wy sum to 1, and are used to specify the desired influence
of populations 1 and 2 in the estimation. They are typically chosen to be proportional to
sample size. The v terms represent the relationship between total scores on X and Y and
the respective anchor test scores on V' (described further below). As is clear, v; and 7o
are used along with the weights to adjust the 4 and 62 terms for X and Y in order to
obtain corresponding estimates for the synthetic population. For example, setting w; = 0
and wy = 1 will force fig(Y) to equal fia(Y'), and conversely fi2(X) will be adjusted the
maximum amount to obtain fig(X). The same would occur with the estimation of synthetic
variances. Furthermore, the adjustments would be completely removed if ji1 (V') = fi2(V') and
G1(V) = 63(V).

A variety of techniques have been developed for estimating the v terms required by equations
(12)-(15). These techniques are referred to here as equating methods. The equate package
currently supports the Tucker, nominal weights, Levine observed score, Levine true score,
Braun/Holland, frequency estimation, and chained equating methods. Table 1 shows the
supported methods that apply to each equating type.

Tucker equating

In Tucker equating the relationship between total and anchor test scores is defined in terms of
regression slopes, where ; is the slope resulting from the regression of X on V for population
1, and 79 the slope from a regression of Y on V for population 2:

o1 (X7 V) 02 (Y> V)

[ R o
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The Tucker method assumes that across populations 1 and 2: 1) the coefficients resulting
form a regression of X on V are the same, and 2) the conditional variance of X given V' is the
same. These assumptions apply to the regression of Y on V and the covariance of Y given V
as well.

Table 1: Applicable Equating Types and Methods

nominal tucker levine braun frequency chained

mean Vv Vv v v
linear Vv v vV

equipercentile V

circle-arc vV V Vv vV

LK

Nominal weights equating

Nominal weights equating is a simplified version of the Tucker method where the total and
anchor tests are assumed to have similar statistical properties and to correlate perfectly within

populations 1 and 2. In this case the v terms can be approximated by the ratios
K(X) K(Y)

= - d = —

=KW o RERWY

where K is the number of items on the test. See Babcock, Albano, and Raymond (2012) for
a description and examples.

(17)

Levine equating

Assumptions for the Levine observed score method are stated in terms of true scores (though
only observed scores are used), where, across both populations: 1) the correlation between
true scores on X and V is 1, as is the correlation between true scores on Y and V; 2) the
coeflicients resulting form a regression of true scores for X on V are the same, as with true
scores for Y on V; and 3) measurement error variance is the same (across populations) for
X, Y, and V. These assumptions make possible the estimation of v as
M= LICIN and Y2 = 1) (18)
51(X,V) Go(Y, V)’
which are the inverses of the respective regression slopes for V on X and V on Y. The Levine
true score method is based on the same assumptions as the observed score method; however,

it uses a slightly different linear equating function:
V2 N N N N
by(@:) = 22 (X = jn (X)) + fa(Y) - 92ljin(V) = in(V)] (19)

Hanson (1991) and Kolen and Brennan (2004) provide justifications for using this approach.

Frequency estimation equating

The frequency estimation method is used in equipercentile equating under the nonequivalent
groups design. It is similar to the methods described above in that it involves a synthetic
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population. However, in this case score distributions (i.e., percentile ranks) for the synthetic
population taking forms X and Y are required:

ey (i) = Qg ' [Ps(x)]. (20)

When the assumption is made that the conditional distribution of total scores on X for a
given score point in V' is the same across populations 1 and 2 (as with Y and V') the synthetic
distributions can be obtained:

Fs(ws) = wifi(wi) + w2 Y fi(wlv)ha(v), (21)
gs(yi) = waga(yi) + w1 Y _ ga(ylv)ha (v) (22)

Here, f, g, and h denote the distribution functions for forms X, Y, and V respectively. As
before, wy and we specify the amount of adjustment to be made to each observed distribution
in the estimation of the corresponding synthetic distribution.

Braun/Holland equating

As a kind of extension of the frequency estimation method, the Braun/Holland method defines
a linear function relating X and Y that is based on the estimates fig(X), i1s(Y), 6s(X), and
65(Y) for the synthetic distributions fg(z) and gg(y) obtained via frequency estimation. Thus
the full synthetic distributions are estimated, as with frequency estimation, but only in order
to obtain the means and standard deviations of each. Though not often used in practice, the
method provides an interesting combination of the linear and nonlinear procedures (Braun
and Holland 1982).

Chained equating

Finally, chained equating (Livingston, Dorans, and Wright 1990) can be applied to both
linear and equipercentile equating under the nonequivalent groups with anchor test design.
It differs from all other methods discussed here in that it does not reference a synthetic
population. Instead, it introduces an additional equating function in the process of estimating
score equivalents (see Appendix A.1 for details). For both linear and equipercentile equating
the steps are as follows:

1. Define the function relating X to V for population 1, ly1(z) or ey1(z)
2. Define the function relating V' to Y for population 2, lyo(v) or eya(v)

3. Equate X (population 1) to the scale of Y using both equating functions, where

lchainy (z) = ly2[ly1(x)] and echainy (x) = eysley1(x)]

Methods for circle-arc equating

As discussed above, the circle-arc equating function combines a linear with a curvilinear com-
ponent based on three points in the X and Y score distributions. The first and third of these
points are determined by the score scale, whereas the midpoint must be estimated. Thus,
equating methods used with circle-arc equating apply only to estimation of this midpoint.
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Livingston and Kim (2009) demonstrate chained linear equating of means, under a nonequiv-
alent groups design. The midpoint could also be estimated using other linear methods, such
as Tucker or Levine.

Note that circle-arc equating is defined here as an equating type, and equating methods are
used to estimate the midpoint, which implies a nonequivalent groups design. When groups
are considered equivalent (i.e., an anchor test is not used) equating at the midpoint is simply
mean equating, as mentioned above (replace x; with fi(X) in equation 4 to see why this is
the case). With scores on an anchor test, both Tucker and Levine equating at the midpoint
also reduce to mean equating. However, chained linear equating at the midpoint differs from
chained mean (see Appendix A.1).

4. Application Using the equate Package

4.1. Sample Test Scores

The examples below rely on three data sets, all of which are provided in the equate package.
The first, ACTmath, is used throughout Kolen and Brennan (2004), and comes from two
administrations of the ACT mathematics test. The test scores are based on a random groups
design and are contained in a three-column matrix where column one is the 40-point score
scale and columns two and three the number of examinees for forms x and y obtaining each
score point.

> library(equate)

[1] "equate" "stats" "graphics" ‘"grDevices" "utils" "datasets"
[7] "methods"  "base"

> head (ACTmath)

scale xcount ycount

[1,] 0 0 0
[2,] 1 1 1
[3,] 2 1 3
[4,] 3 3 13
(5,1 4 9 42
(6,] 5 18 59

The second data set, KBneat, is also referenced in Kolen and Brennan (2004). It contains
scores for two forms of a 36-item test administered under a nonequivalent groups with anchor
test design. The 12-item anchor test is internal, that is, the total-test score for an examinee
includes the score on the anchor items. Thus, the number of non-anchor items, items unique
to each form, is 24, and the highest possible score is 36. Unlike the first data set, KBneat
contains a separate total-test and anchor-test score for each examinee, as is required by the
nonequivalent groups equating methods described above. It is a list of length two where the
list elements x and y each consist of a two-column matrix of scores on the total test, and
scores on the anchor test v.
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> head (KBneat$x)

X XV
[1,] 8 3
[2,] 21 6
[3,] 31 10
4,1 7 2
[5,] 18 5
[6,] 36 12

The third data set, PISA, contains scored cognitive item response data from the 2009 ad-
ministration of the Programme for International Assessment (PISA). Four data.frames are
included in PISA: PISA$students contains scores on the cognitive assessment items in math,
reading, and science for all 5233 students in the USA cohort; PISA$booklets contains in-
formation about the structure of the test design, where multiple item sets, or clusters, were
administered across 13 test booklets; and PISA$items contains the cluster, subject, and max-
imum possible score for each item; and PISA$totals contains a list of cluster total scores for
each booklet, calculated using PISA$students and PISA$booklets. For additional details,
see 7PISA.

> attach(PISA)
> head(booklets)

bookid clusterid itemid order

1 1 ml m033q01 1
2 1 ml m034q01t 1
3 1 ml mi155q01 1
4 1 ml m155q02d 1
5 1 ml m155q03d 1
6 1 ml m155q04t 1

> head(items)

itemid clusterid max subject

1 m033q01 ml 1 m
2 m034q01t ml 1 m
3 ml155q01 ml 1 m
4 m155902d ml 2 m
5 m155q03d ml 2 m
6 m155q04t ml 1 m

> head(totals$bl)

ml rl r3a m3
4 11 10 10 2
10 7 b5 6 7
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3r 7 4 2 5
38 6 4 4 3
656 910 9 5
68 3 8 6 2

4.2. Preparing the Score Distributions

The equate package handles score distributions primarily as frequency tables, as described
by the freqtab function, which is used to create them. The ACTmath data set is an example
of a frequency table; scores for over 8,000 examinees (Ny = 4,329, Ny = 4,152) are stored
compactly in three columns and 41 rows. The trade-off is that there is no record of scores
at the individual level, but this information is not required under the random groups design,
as is evident in equations (3)-(10). Frequency tables of class "freqtab" are created for the 2
ACTmath forms as follows:

> act.x <- as.freqtab(cbind (ACTmath[, 1], ACTmath[, 2]))
> act.y <- as.freqtab(cbind (ACTmath[, 1], ACTmath[, 3]1))
> act.x[1:4,]

X count
[1,1 0 0
[2,] 1 1
[3,1 2 1
(4,1 3 3

Here, the command as.freqtab is used because the vectors for the score scale and counts
are already tabulated, thus they are simply combined and the class changed. The tables can
be summarized with the descript function:

> rbind(descript(act.x), descript(act.y))

mean sd skew kurt n
[1,] 19.85239 8.212585 0.3752283 2.301911 4329
[2,] 18.97977 8.940397 0.3526516 2.145847 4152

The function freqtab creates a frequency table from scratch, using a vector of scores and the
corresponding score scale. With an anchor test this becomes a bivariate frequency table for
forms x and y, and the arguments sent to freqtab are the vectors of total scores and anchor
scores, and the total and anchor score scales:

0:12)
0:12)

> neat.x <- freqtab(KBneat$x[, 1], KBneat$x[, 2], xscale
> neat.y <- freqtab(KBneat$y[, 1], KBneat$y[, 2], xscale
> neat.x[50:55,]

0:36, vscale
0:36, vscale

X Vv count
[(1,] 3 10 0
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[2,] 3 11 0
[3,] 3 12 0
(4,1 4 0 0
[5,] 4 1 4
(6,1 4 2 3

These bivariate tables contain all possible score combinations in columns 1 and 2, along with
the number of examinees obtaining each combination in column 3. For example, rows 50
through 55 are displayed above for form X, where counts for 6 X and V score combinations
are shown. Based on the scale lengths, tables for neat.x and neat.y contain 37 x 13 = 481
rows of scores, many of which have counts of zero.

The freqtab function can also be used to tabulate scored item responses, where the arguments
xitems and vitems contain the columns over which total scores will be calculated. For
example, the following code creates a frequency table for the reading clusters in PISA booklet
1, with clusters R1 containing unique items and R3A the anchor items:

> rlitems <- paste(items$itemid[items$clusterid == "ri"])
> r3aitems <- paste(items$itemid[items$clusterid == "r3a"])
> rir3a <- freqtab(students[students$book == 1, ],

+ xitems = c(rlitems, r3aitems), vitems = r3aitems)
> descript (rir3a)

mean sd skew kurt n
[1,] 17.05172 6.429468 -0.3052625 2.080696 406

Total scores could also be used to obtain the same result:

> descript(freqtab(totals$bl$rl + totals$bil$r3a, totals$bl$r3a))

mean sd skew kurt n
[1,] 17.05172 6.429468 -0.3052625 2.080696 406

The equate package provides a basic plot method for tables of class "freqtab". Univariate
frequency tables (up to two) are plotted together as lines with type = "h". For a single
bivariate frequency table a scatter plot with marginal barplots is produced (see Figures 1 and
2).

> plot(x = act.x, y = act.y, 1lwd = 2, xlab = "Score", ylab = "Count")
> plot(neat.x)

Finally, presmoothing options are available for equipercentile equating. Three methods are
currently supported, all of which can be requested from within the equate function. Two
of the methods are designed to adjust (i.e., increase) frequencies falling below a specified
threshold. Frequency averaging (described by Moses and Holland 2008), using freqavg,
replaces scores falling below jmin with averages based on adjacent scores:
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> cbind(act.x, avg = freqavg(act.x, jmin = 2))[1:5,]

X count avg
[1,1 0 01.25
[2,] 1 11.25
(3,1 2 11.25
[4,] 3 31.25
(5,1 4 9 9.00

In columns 1 and 2 are the scale and original counts for act.x. Column three contains the
adjusted counts which are averaged based on any score points with counts below 2 (scores of
0, 1, and 2), along with the next adjacent value (score of 3, with count of 3). The function
freqbump simply adds a small relative frequency (jmin) to each score point while adjusting
the probabilities to sum to one (as described by Kolen and Brennan 2004, p. 48).

As described above and in Appendix A.2, polynomial loglinear smoothing is a flexible option
for reducing irregularities throughout the score distribution. In the equate package a loglinear
model is fit using the function loglinear, which calls on glm. Model terms are specified with
either a set of score functions (see example (loglinear)), or simply by including the degree of
the highest desired polynomial term. Here, the bivariate distribution of X and V' is smoothed
with degree = 3, and a frequency table is created from the fitted values. The smoothed
distributions in Figure 3 can be compared to the unsmoothed ones in Figure 2. Descriptive
statistics show that the smoothed distributions match the unsmoothed in the first three
moments.

> neat.x.smoothout <- loglinear(neat.x, degree = 3)
> neat.xs <- as.freqtab(cbind(neat.x[, 1:2], neat.x.smoothout))
> rbind(descript(neat.x), descript(neat.xs))

mean sd skew kurt n
[1,] 15.82054 6.529799 0.5797331 2.720015 1655
[2,] 15.82054 6.529799 0.5797331 3.270636 1655

> rbind(descript(neat.x[, -1]), descript(neat.xs[, -1]1))

mean sd skew kurt n
[1,] 5.106344 2.376742 0.4115535 2.766619 1655
[2,] 5.106344 2.376742 0.4115535 2.976297 1655

> plot(neat.xs)
The loglinear function can also be used to compare model fit for a sequence of nested models.

With the argument compare = TRUE, an ANOVA table of deviance statistics is returned with
likelihood ratio x2 tests.

> loglinear(neat.x, degree = 3, compare = TRUE)
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Table

V3

V3 + V4

V3 + V4 + Vb

V3 + V4 + V5 + V6

+ o+ + o+

Dev Df Deviance Pr(>Chi)

0

3 1 1002.73 < 2.2e-16 *x*x*
9 1 106.41 < 2.2e-16 **x*
9 1 94.96 < 2.2e-16 **x
3 1 871.64 < 2.2e-16 **x
9 1 41.38 1.256e-10 *x*x

0 aAY***3l7Z 0.001 aA¥**aA7 0.01 sAY*3AZ 0.05 aAY.3aAZ 0.1 sAY aA7 1

4.3. The equate Function

Most of the functionality of the equate package can be accessed via equate, which integrates
the equating types and methods described above into a single function. The equivalent groups
design provides a simple example, where, besides the frequency tables, only the equating type
need be specified:

> equate(act.x, act.y, type = "mean")

Mean Equating: Equivalent Groups

Summary Statistics:

mean
x 19.8524 8.2126 0.3752 2.3019 4329
y 18.9798 8.9404 0.3527 2.1458 4152
yx 18.9798 8.2126 0.3752 2.3019 4329

Coefficients:

intercept
-0.8726

sd

slope
1.0000

skew kurt n

Summary statistics and the intercept and slope are printed (for a full description of available
output see 7equate). The nonequivalent groups design is requested by specifying an equating

method:
> neat <- equate(neat.x, neat.y, type = "equip",
+ method = "chained")
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Figure 1: Univariate Plot of ACTmath forms X (dark) and Y (light)
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Figure 2: Bivariate Plot of KBneat Total (X) and Anchor (V) Distributions
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Figure 3: Bivariate Plot of Smoothed KBneat Total (X) and Anchor (V) Distributions
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Chained Equipercentile Equating: Nonequivalent Groups

Summary Statistics:
mean sd skew kurt n

x 15.8205 6.5298 0.5797 2.7200 1655
y 18.6728 6.8805 0.2051 2.3014 1638
yx 16.5556 6.5909 0.5439 2.6925 1655
xv 5.1063 2.3767 0.4116 2.7666 1655
yv 5.8626 2.4522 0.1072 2.5089 1638

Table 1 above summarizes the equating methods that apply to each equating type in the
nonequivalent groups design. For convenience, these may all be specified in the equate
function using only the first letter, as in type="c" for circle-arc equating. Levine true-score
equating (1ts) is requested by including the additional argument 1ts=TRUE.

The equate function can also be used to convert scores from one scale to another based on
the function from a previous equating. For example, scores on Y for a few more examinees
taking KBneat form X could be obtained:

> cbind(newx = c(3, 29, 8, 7, 13),
+ yx = equate(x = c(3, 29, 8, 7, 13), y = neat))

newx yX
[1,] 3 4.375000
[2,] 29 30.722689
(3,] 8 9.492958
[4,] 7 7.580986
[5,] 13 14.729046

Here, the argument y passed to equate is the chained equipercentile equating from above,
which is an object of class "equate". The equate function recognizes it as such and attempts
to perform the conversion. Note that since the equating function from neat relates scores on
X to the scale of Y, anchor test scores are not needed for the examinees newx.

4.4. Comparing Equatings

There are many considerations involved in choosing a type and method for equating two test
forms (see Kolen and Brennan 2004, ch. 8). Sample size is a major concern, as statistical
equating involves the estimation of different numbers of parameters, and accurate estimation
depends on adequate and representative samples. As shown above, each equating type and
method creates an equating function using different estimates of the score distributions. The
equated equivalent at a given score point can vary substantially across equating methods, and
within a single equating method across examinee samples.

When samples are small? or inadequate for a specific method, random sampling error can
become problematic. Random error can be indexed by the standard error of equating (SEE),

?Kolen and Brennan (2004) refer to “small” as less than 100. Other literature discusses small-sample
equating with 20-30 examinees per form, for example Livingston (1993) and Skaggs (2005)
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which is defined as the standard deviation of equated scores for a given x; over multiple
repeated equatings (systematic error is an important consideration, but is not as easily esti-
mated; see Appendix A.4). The equate package provides estimates of linear and equipercentile
SEE under the random groups design, based on equations derived by Braun and Holland
(1982) and (Lord 1982, p. 168). Additionally, bootstrap standard errors are obtained through
the equate function using the argument bootse:

> boots <- equate(act.x, act.y, type = "lin", bootse = TRUE)$bootse
> round(boots, 4)

[1] 0.2916 0.2819 0.2725 0.2635 0.2549 0.2467 0.2391 0.2320 0.2256 0.2198
[11] 0.2147 0.2104 0.2069 0.2042 0.2025 0.2016 0.2017 0.2027 0.2047 0.2075
[21] 0.2112 0.2156 0.2209 0.2268 0.2334 0.2406 0.2483 0.2565 0.2652 0.2743
[31] 0.2838 0.2936 0.3036 0.3140 0.3246 0.3355 0.3465 0.3577 0.3691 0.3806
[41] 0.3923

The sample size taken with each bootstrap replication is specified via xn and yn, the number
of replications via reps, and the matrix of equated scores (one column per replication) is
requested by setting returnboots=TRUE (see ?se.boot for details).

The example below compares mean and linear Tucker and Levine equating, frequency estima-
tion and chained equipercentile equating, and circle-arc chained (linear) and Tucker (mean)
equating of the forms neat.x and neat.y. Thus there are eight separate nonequivalent
groups equatings (see Appendix B.1 for R code). Table 2 contains Y equivalents of scores on
X for each (R code in Appendix B.2). The conversion table reveals that equated scores vary
somewhat by method. Equipercentile equating with frequency estimation (e.f) produced the
highest scores of any method between X = 5 and X = 32. The largest difference between
equated scores was between e.f and mean Levine (m.l) at X = 21, a difference of 3.25 points
on Y. Across methods the smallest equated scores came from circle-arc Tucker equating (c.t)
at score points X < 3, X > 31, linear Levine (1.1) at points 2 < X < 16, and mean Levine
(m.]) at scores of 15 > X < 32.

In Figure 4 are plotted the bootstrap standard errors (code for this plot is found in Appendix
B.3). The four equating types exhibit a clear trend in SEE across the score scale. As expected,
SFEE for both mean equatings do not vary by score point, since the scores are equated by a
constant amount. Also as expected, random error for linear equating is lowest in the center
(slightly lower than estimates for mean) and increases in the tails of the distribution. Overall
SEE for equipercentile equating appear to be the largest, despite the fact that the raw score
distributions were smoothed. Finally, random error for circle-arc equating is lowest overall,
though values increase toward the center of the distribution.

Since equating methods do not extend across all types, they are most easily compared within
equating type. Tucker mean outperforms Levine mean; however, the opposite is true for linear
equating where Levine SEE are smaller than Tucker across the scale. Until a score on X of
10, values for the two equipercentile methods are comparable. Beyond X = 10 random error
for chained equating is much lower. Finally, circle-arc equating using the Tucker method to
obtain the midpoint results in the lowest SEFE of all, values about half as large as those of
the chained circle-arc.

Again, it is important to note that random sampling error paints only half the picture when
describing equating accuracy. Though a method such as Tucker circle-arc results in some
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Figure 4: Bootstrap Standard Errors for Eight Nonequivalent Groups Equatings

SEE of nearly zero, it may very well be that the estimates are stable (i.e., not varying)
around a point that is far from the true equated score. Nevertheless, this example serves to
demonstrate the ease with which multiple equatings can be conducted and compared using
the equate function.
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Table 2: Form Y Equivalents for Eight Nonequivalent Groups Equatings

scale m.t m.] Lt L1 e.f e.c c.c c.t

0 0.995 0.428 0.537 0.251 0.191  0.038 0.000  0.000
1 1.995 1.428 1.566 1.263 1.486 1.142 1.233 1.109
2 2.995 2428 2595 2274 2.677 2295 2451 2.212
3 3.995 3.428 3.624 3.285 3.879 3472 3.656  3.309
4 4.995  4.428 4.653 4.296  5.097 4.535  4.847  4.400
5 5.995 5428 5.682 5307 6.326 5.554 6.025 5.484
6 6.995 6.428 6.710 6.318 7.546 6.593 7.189  6.562
7 7.995 7.428 7.739 7.330 8731 7.610 8339 7.633
8 8.995 8.428 8.768 8341 9.925 8.620 9477  8.699
9 9.995 9.428 9.797 9.352 11.123 9.631 10.601 9.758
10 10.995 10.428 10.826 10.363 12.320 10.661 11.711 10.811
11 11.995 11.428 11.855 11.374 13.511 11.659 12.809 11.857
12 12.995 12.428 12.884 12.385 14.682 12.692 13.893 12.898
13 13.995 13.428 13.913 13.396 15.850 13.722 14.965 13.932
14 14.995 14.428 14.942 14.408 17.010 14.696 16.023 14.960
15 15.995 15.428 15.971 15.419 18.159 15.781 17.068 15.982
16 16.995 16.428 17.000 16.430 19.294 16.797 18.101 16.997
17 17.995 17.428 18.029 17.441 20.411 17.808 19.120 18.006
18 18.995 18.428 19.058 18.452 21.509 18.881 20.127 19.010
19 19.995 19.428 20.087 19.463 22.591 19.878 21.120 20.006
20 20.995 20.428 21.116 20.475 23.647 20.918 22.101 20.997
21 21.995 21.428 22.145 21.486 24.675 21.967 23.068 21.982
22 22.995 22.428 23.174 22.497 25.669 22.948 24.023 22.960
23 23.995 23.428 24.203 23.508 26.626 23.980 24.965 23.932
24 24.995 24.428 25.232 24.519 27.542 24.998 25.893 24.898
25 25.995 25.428 26.260 25.530 28.425 25.963 26.809 25.857
26 26.995 26.428 27.289 26.542 29.272 26.947 27.711 26.811
27 27.995 27.428 28.318 27.553 30.075 27.921 28.601 27.758
28 28.995 28.428 29.347 28.564 30.829 28.864 29.477 28.699
29 29.995 29.428 30.376 29.575 31.534 29.788 30.339 29.633
30 30.995 30.428 31.405 30.586 32.235 30.705 31.189 30.562
31 31.995 31.428 32.434 31.597 32.898 31.621 32.025 31.484
32 32.995 32428 33.463 32.609 33.522 32.524 32.847 32.400
33 33.995 33.428 34.492 33.620 34.171 33.402 33.656 33.309
34 34.995 34.428 35.521 34.631 34.805 34.323 34.451 34.212
35 35.995 35.428 36.550 35.642 35.445 35.205 35.233 35.109
36 36.995 36.428 37.579 36.653 36.150 36.057 36.000 36.000
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A. Additional Equations

A.1. Chained Linear Equating

Chained linear equating involves two separate linear functions. In the equations below the
anchor test V' is distinguished by population (1 taking form X and 2 taking form Y'), though
the items on V' do not change. The first linear function in slope-intercept form converts X to
the scale of Vi:

o) oW, R
The second function converts V5 to the scale of Y:
oY) oY) . N
l i) = = P — = Y). 24
v(on) = Soon = S lVa) 4 i(Y) (24)

These functions are combined, where the first, Iy, (x;), takes the place of v9; in the second to
obtain:

. a(Y) [a(Vh) (V1) . . . N
lch i) = i — = X )| — = V Y), 25
or, in slope-intercept form, after some rearranging:
: oY) 6(V1) oY) [ c(V) . - .
lch i) = i+ = ) — = X) — a(V: Y). 26
Finally, for chained mean equating this reduces to:
mchainy (z;) = z; + (V1) — p(X) — @(Ve) + a(Y). (27)

When used to obtain the midpoint coordinates in circle-arc equating, the chained method
reduces even further, since z; is fi(X). Here, the linear and mean functions simplify to

lchainy ((X)) = Z((‘Z))ﬂ(vl) - gé‘}/;))ﬂ(vz) + a(Y), (28)
and
mchainy ((X)) = (V1) — (Va) + 4(Y). (29)

A.2. Loglinear Presmoothing

Polynomial loglinear modeling is a flexible procedure for smoothing distributions of various
shapes to varying degrees. The structure of a distribution can either be maintained or ignored
depending on the complexity of the model, where the degree of the polynomial term included
determines the moment of the raw score distribution to be preserved. For example, a model
with terms to the first, second, and third powers would create a smoothed distribution which
matches the raw in mean, variance, and skewness. In the model below, the log of the expected
relative frequency p; at score point i is expressed in terms of a normalizing constant (8y) and
three weighted score functions (x1, x2, x3) of the possible score values of test X:

log(p:) = Bo + Prx} + Box? + B3zl (30)
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Indicator variables may also be included to preserve specific moments for subsets of score
points. In the next model the mean and variance of a sub-distribution are preserved, in
addition to the first three moments of the full distribution. When S; = 1, score point i is
included in this sub-distribution, and when S; = 0, it is ignored:

log(pi) = Bo + Brx; + Box? + B3x + BsoS; + Bs17;Si + BsaxiSi. (31)

An acceptable degree of smoothing is typically achieved by comparing multiple models with
different numbers of polynomial terms based on their fit to the data (Kolen and Brennan
2004). The loglinear function in equate is a wrapper for the glm function in the stats
package. It can be used to fit and compare nested models up to a maximum polynomial term.
For details, see ?loglinear.

A.3. Circle-Arc Equating

The circle-arc in circle-arc equating is a section of the circle that is defined by the vertical
distance of the three points (x1,y1), (22, y2), and (3, y3) from the line liny (z). Since the low
and high points define the line liny (x), they reduce to (z1,0) and (z3,0). The new midpoint
is identified as (x2,y2.). These three points are used to determine the coordinates z. and y.

for the center of the circle:
¢ 2($3 — .1‘1) ’

(@) (w3 — 22) — (23 + 43.) (23 — 21) + (23) (22 — 21)
e 2[y2«(z1 — 73)] ' (33)

These center points are then used to obtain the radius

r? = (581 - $0)2 + (yl* - yc)Q' (34)
Since y1« = 0 (z3 and ys3. could also be used) this reduces to

r= \/(xl —2c)? + (ye)% (35)

A.4. Error in Equating

In the literature, equatings are typically compared based on both random and systematic
error, where the first is estimated by the standard error of equating (SEFE or simply SE) and
the second by the Bias. As demonstrated above, estimates of SEFE can be obtained through
bootstrap resampling from the sample score distributions. However, both the SE and Bias
are defined in terms of the population equating function. Using a generic equating function
gy (x;) to represent a score on X equated to Y, the systematic error is calculated as

Bias = gy (z;) — gy (i), (36)

where gy (z;) is the population equating equivalent and

1 R
gy (i) = 55 D> dve(wi) (37)
r=1
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is the average estimated equivalent over R samples. The random error is defined as

R
1 . A
SE = 5| S lave(w) — ()2 (39)
r=1
And combining both systematic error and random error, the root mean squared error (RM SE)
is defined as

RMSE = \/{Bias}? + {SE}2. (39)
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B. Additional R Code

B.1. Eight Equatings

of the eight equatings

two equipercentile runs may be slow

equate (neat.
equate (neat.
equate (neat.
equate (neat.
equate (neat.

neat.y,
neat.y,
neat.y,
neat.y,
neat.y,

c.t <- equate(neat.x,

smooth="loglin", degree=3)

.e.c <- equate(neat.x, neat.y,

smooth="loglin", degree=3)
c.c <- equate(neat.x, neat.y,

> # Save each
> # Note: the
> neat.m.t <-
> neat.m.1 <-
> neat.l.t <-
> neat.l1l.1 <-
> neat.e.f <-
+

> neat

+

> neat.

> neat.

neat.y,

B.2. Concordance Table

>
+
+
+
+
+
+
+
+
>
+

m
neat.m
neat.1
1.
e
e
c

neat

neat.
neat.
neat.
neat.

concordance <-
neat.

C

cbind(

.t$conc,

.1$conc[,2],
.t$conc[,2],
1$conc/[, 2],
.f$concl,2],
.c$concl,2],
.c$conc/[,2],
.t$conc[,2])

colnames (concordance) [-1] <-

type = "m", method = "t",
type="m", method="1",
type="1", method="t",
type="1", method="1",
type="e", method="f",
type="e", method="c",
type="c", method="c",
type="c", method="t",

bootse=TRUE)
bootse=TRUE)
bootse=TRUE)
bootse=TRUE,

bootse=TRUE,

bootse=TRUE)
bootse=TRUE)

C(”m.t”, "m‘lll’ Ill‘tﬂ, Ill‘lﬂ, He‘f", Ile.cll, ”C.C“, ”C.t”)

B.3. Plotting Bootstrap SEE

points(neat.
points(neat.
points(neat.
points(neat.

# Plot comparing bootstrap SEE
plot(c(1, 37), c(0,
points(neat.m.t$bootsee,
points (neat
points(neat.
points(neat.

.6), type = "n",

col =1, type
.m.1$bootsee, col = 1, type
1.t$bootsee, col = 2, type
1.1$bootsee, col = 2, type
e.f$bootsee, col = 3, type
e.c$bootsee, col = 3, type
c.c$bootsee, col = 4, type
c.t$bootsee, col = 4, type

"1 n)
"] ")
"l n)
"] n)
"l n)
"] n)
"1 n)
"] n)

xlab = "Score on X", ylab = "SEE")

bootse=TRUE)
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.t$bootsee, col = pch = 1)
.1$bootsee, col = 1, type = pch = 2)
.t$bootsee, col = 2, type = pch = 3)

points(neat. 1 "p",
1 Hp",
2 "p",
.1$bootsee, col = 2, type = "p", pch = 4)
3 "p",
3 Ilp"’
4 "p",
Ilp"

points(neat.
points(neat.
points(neat.
points(neat.

, type =

.f$bootsee, col = 3, type = pch = 5)

points (neat.e.c$bootsee, col = 3, type = pch = 6)

points(neat.c.c$bootsee, col = 4, type = pch = 7)

points(neat.c.t$bootsee, col = 4, type = , pch = 8)

legend ("topright", legend = c("Tucker Mean", "Tucker Linear", "Levine Mean",
"Levine Linear", "Equip FE", "Equip Chain", "Circle Chain", "Circle Tucker"),
col = rep(1:4, each = 2), pch = 1:8, 1ty = 1, bty = "n", ncol = 2)

O o O ~k~B§8 B
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