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Abstract

Ecological Network Analysis (ENA) provides a framework for investigating the structure, function
and dynamics of ecological systems. This is used primarily for ecosystem models focused on food webs
or biogeochemical cycling, but the methods can be applied more broadly to any flow model that traces
a thermodynamically conserved unit. This paper documents the enaR package, which collects and
synthesizes the core ENA functions, including those developed by the Ulanowicz and Patten schools.
Further, the package connects users to additional network analysis tools available in R and beyond. This
document details how to use the primary functions for the analysis of single models. In addition, we
demonstrate a key strength of this package, which is that it enables a user to perform simultaneous,
synthetic analysis of multiple ecosystem models.

Introduction

Network models have provided insights into a variety of complex systems (Watts and Strogatz 1998; Newman
2001; Barabási 2012; Newman, Barabási, and Watts 2006; Wasserman and Faust 1994). Although the network
approach has deep roots (Newman, Barabási, and Watts 2006), its use has been expanding rapidly in a
variety of disciplines including ecology (Borrett, Moody, and Edelmann 2014; Ings et al. 2009). Investigators
are building a science of networks (National Research Council, Committee on Network Science for Army
Applications 2006; Brandes et al. 2013). This is due in part to the flexibility of the core representation, its
utility in answering relational questions, and its applicability to “Big Data” problems.

Ecosystem ecologists developed and have been using network modeling and analysis for several decades (Hannon
1973; Ulanowicz 1986; Fath and Patten 1999). The core network model maps transfers of thermodynamically
conserved energy or matter (represented by weighted, directed graph edges) between nodes that represent
species, groups of species, or non-living components (e.g., dead organic matter) of the ecosystem. These
analyses, collectively known as Ecosystem Network Analysis (ENA), have been used in a variety of ways
including to reveal the relative importance of indirect effects in ecosystems (Patten 1983; Higashi and Patten
1989; Salas and Borrett 2011) and their capacity to effectively transform the relations among organisms
(Ulanowicz and Puccia 1990; Patten 1991; Fath and Patten 1998; Bondavalli and Ulanowicz 1999; Borrett,
Hines, and Carter 2016). From these applications a new theoretical understanding of ecosystems has emerged
(Higashi and Burns 1991; Belgrano et al. 2005; Jørgensen et al. 2007). Recently, scientists have applied these
methods to understand trophic dynamics in the Sylt-Romo Bight (Baird, Asmus, and Asmus 2004; Baird,
Asmus, and Asmus 2008), biogeochemical cycling in lakes and estuaries (Christian and Thomas 2003; Small,
Sterner, and Finlay 2014; Hines et al. 2015), the impacts of human activities on ecosystems (Tecchio et al.
2016), and urban sustainability (Zhang, Yang, and Fath 2010; Chen and Chen 2012; Xia et al. 2016).

Two major schools of ENA have developed (Scharler and Fath 2009). The first is based on Dr. Robert E.
Ulanowicz’s work with a strong focus on trophic dynamics and a use of information theory (Ulanowicz 1986
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Ulanowicz (1997); Ulanowicz 2004). The second school has an environment focus and is built on the environ
concept introduced by Dr. Bernard C. Patten (Patten et al. 1976; Patten 1978; Fath and Patten 1999).
Patten’s approach has been collectively referred to separately as Network Environ Analysis. At the core
the two approaches are very similar; however, they make some different starting assumptions and follow
independent yet braided development tracks.

Disparate software packages have been created to support ENA. Initially algorithms were developed
and distributed as the DOS based NETWRK4 (Ulanowicz and Kay 1991), which is still available from
www.cbl.umces.edu/~ulan/ntwk/network.html. Some of these algorithms were re-implemented in a Microsoft
Excel based toolbox, WAND (Allesina and Bondavalli 2004). The popular Ecopath with Ecosim software
that assists with model construction (Christensen and Walters 2004) also provides multiple ENA algorithms.
The algorithms for flow analysis – one component of ENA – were collected into a stand-alone software tool
(Latham II 2006). Fath and Borrett (2006) published NEA.m that collects most of the Patten School ENA
algorithms together in a single MATLAB function. Similarly, the online tool EcoNet (Kazanci 2007) has
made many of the ENA algorithms available in an easy access framework. The NetIndicies is an alternative
R package that returns an impressive subset of the whole network metrics derived from ENA (Kones et
al. 2009). Although these packages collectively provide access to a large set of powerful analytic tools, the
fragmented distribution of the key algorithms among the software tools has inhibited the development of
theory and the further implementation of important algorithms.

The enaR package brings together the ENA algorithms into one common software framework that is readily
available and extensible. The package is written in the R language, which is free and open-source. Due
largely to this, R is now one of the most widely used analytic programming languages in the biological
sciences. enaR builds on existing R packages for network analysis. For example, it uses the network data
structure developed by (Butts 2008a) and the network analysis tools built into the network, sna (social
network analysis) (Butts 2008b), and statnet (Handcock et al. 2008) packages. While Borrett and Lau (2014)
introduced the enaR package, this document provides a richer documentation of the software and illustrate
its use.

Getting Started

In this section we describe the data necessary for Ecological Network Analysis and show how to build the
central network data object in R that contains the model data for subsequent analysis. To start, the current
stable version can be installed from CRAN:

install.packages('enaR')

The development version can be installed from GitHub:

require(devtools)

install_github('SEELab/enaR',ref='develop')

You can now load the package:

require(enaR)

Ecosystem Network Model

ENA is applied to a network model of energy–matter exchanges among system components. The system is
modeled as a set of n compartments or nodes that represent species, species-complexes (i.e., trophic guilds
or functional groups), or non-living components of the system in which energy–matter is stored. Nodes are
connected by L observed fluxes, termed directed edges or links. This analysis requires an estimate of the
energy–matter flowing from node i to j over a given period, Fn×n = [fij ], i, j = 1, 2, . . . , n. These fluxes
can be generated by any process such as feeding (like a food web), excretion, and death. As ecosystems are
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thermodynamically open, there must also be energy or matter inputs into the system z1×n = [zi], and output
losses from the system y1×n = [yi]. While the Patten School treats all outputs the same, the Ulanowicz School
typically partitions outputs into respiration r1×n = [ri] and export e1×n = [ei] to account for differences in
energetic quality. Note that yi = ri + ei, ∀i. Some analyses also require the amount of energy–matter stored
in each node (e.g., biomass), X1×n = [xi]. The final required information is a categorization of each node as
living or not, which is essential for algorithms from the Ulanowicz School. For our implementation, we have
created a logical vector Living1×n that indicates whether the ith node is living (TRUE) or not (FALSE).
This obviates the need to order the nodes in a specific way (i.e., living before non-living). Together, the
model data M can be summarized as M = {F, z, e, r, X, Living}.

Notice the row-to-column orientation of the flow matrix: F. This is consistent with the Ulanowicz School
of network analysis, as well as the orientation commonly used in Social Network Analysis and used in the
statnet packages. However, this is the opposite orientation typically used in the Patten School of analysis
that conceptually builds from a system of differential equations and thus uses the column-to-row orientation
common in this area of mathematics. Even though the difference is only a matrix transpose, this single
difference may be the source of much confusion in the literature and frustration on the part of users. We have
selected to use row-to-column orientation for our primary data structure, as it is the dominant form across
network analytics as evidenced by it use in the statnet packages. The package algorithms also return the
results in the row-to-column orientation by default; however, we have built in functionality with get.orient
and set.orient that allows users to return output in the Patten School row-to-column orientation (see the
Orientation Section for details).

Model Construction

There are multiple methods for constructing ecosystem network models and tools for assisting with this process
(Fath et al. 2007). One approach is to construct a dynamic, processes-based, mathematical model of the
system typically using ordinary differential equations. For example, the EcoPath with EcoSim (Christensen
and Pauly 1992; Christensen 1995) software assists scientists with constructing food-web focused ecosystem
models using an underlying bioenergetic approach. Alternatively, Ulanowicz (1986) has called for a more
phenomenological approach to the model construction. This modeling process starts with a conceptual
network model of the system and then the node and edge weights are estimated directly from observations. Its
phenomenological in the sense that it focuses on what the flows are, rather than the forms of the mechanistic
processes that generate the flows. As this approach is essentially an inverse problem, some have developed
inverse linear modeling methods to assist with inferring the network weights from data (Vézina and Platt 1988;
Oevelen et al. 2010). The limSolve R package can assist with this modeling approach (Soetaert, Van den
Meersche, and Oevelen 2009). Ulanowicz and Scharler (2008) also introduced two least-inference algorithms
to assist with this kind of model construction. These methods focus on constructing models to represent
specific empirical systems. Algorithms also exist for constructing simulated ecosystems, including the Cyber
Model algorithm that use a community assembly type approach (Fath 2004). Currently, the enaR software
focuses on the analysis of network models and assumes that the user has a network model to be analyzed.

Network Data Class

The enaR package stores the model data in the network class defined in the network package (Butts 2008a).
In this software, a complete ecosystem network model description includes:

• F is the n × n flow matrix, oriented row-to-column
• z a vector of inputs
• r a vector of respirations
• e a vector of exports
• y a vector of outputs, which are respirations plus exports
• X a vector of biomass or storage values
• Living = logical vector indicating if the node is living (TRUE) or non-living (FALSE)
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Figure 1:

Building a Network Object

At present, enaR assumes that the user has a model constructed. Thus, the first task is to get the model into
the software. One way to to this is to assemble the necessary data elements and then use the pack function
to create the network data object. Here is an example of doing this for the generic hypothetical ecosystem
model shown in the following Figure (modified from Borrett, Whipple, and Patten (2010)).

## Generate the flow matrix

flow.mat <- matrix( c(0,0,0,0,

10,0,2.026,1.4805,

0,6.7532,0,

0,1,0,2.7013,0), ncol = 4)

## Name the nodes

rownames(flow.mat) <- colnames(flow.mat) <- c("Primary Producer", "Detritus",

"Detritivore", "Consumer")

## Generate the inputs

inputs <- c(100, 0, 0, 0)

## Generate the exports

exports <- c(89, 6.7532, 2.026, 2.2208)

## "Pack" the model into a network object

fake.model <- pack(flow = flow.mat,

input = inputs,

export = exports,

living = c(TRUE,FALSE,TRUE,TRUE))
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## [1] "respiration" "storage"

When we pack this model, we receive a warning that reminds us that the model we have specified is missing
the respiration and storage components. This is not an error, as we did not specify these components. With
the information we have, we can still complete many of the analyses collected in enaR; however, some of them
will not work without the required information (i.e., enaStorage returns the storage information). Individual
enaR functions check to ensure the required information is present in the model before they are applied.

We can take a closer look at the network data object as follows:

## The model network object contents

fake.model

## Network attributes:

## vertices = 4

## directed = TRUE

## hyper = FALSE

## loops = TRUE

## multiple = FALSE

## bipartite = FALSE

## balanced = TRUE

## total edges= 6

## missing edges= 0

## non-missing edges= 6

##

## Vertex attribute names:

## export input living output respiration storage vertex.names

##

## Edge attribute names:

## flow

These results tell the user what the software has already inferred about the network from the initial data.
The network data object divides these initial properties into whole network attributes, vertex attributes,
and edge attributes. At the network level, the network has 4 vertices, it is a directed network, it is not a
hypergraph, it can contain self-loops (set by the pack function), it is not a bipartite matrix, it is balanced
(inputs = outputs), and it has 6 edges. The Vertices (nodes) have a set of attributes including the values for
export, input, living, output, respiration, storage, and vertex.names. Finally, the edge attributes are currently
limited to the flow weights.

The individual components can be extracted from the data object using the form specified in the network

package (network vignette).

For example, we can extract specific network attributes as follows:

# is the network directed?

fake.model%n%"directed"

## [1] TRUE

# how many nodes are in the network?

fake.model%n%"n"

## [1] 4

# alternatively, we can use a different network package function to find the number of nodes

network.size(fake.model)

## [1] 4

Similarly, we can pull out “vertex” (i.e. node) attributes as follows:
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fake.model%v%'output'

## [1] 89.0000 6.7532 2.0260 2.2208

fake.model%v%'input'

## [1] 100 0 0 0

fake.model%v%'living'

## [1] TRUE FALSE TRUE TRUE

The network flows are stored as edge weights in the network object, which lets users fully manipulate the
network object with the network functions. The flow matrix can be extracted from the object with:

as.matrix(fake.model, attrname="flow")

## Primary Producer Detritus Detritivore Consumer

## Primary Producer 0 10.0000 0.0000 1.0000

## Detritus 0 0.0000 6.7532 0.0000

## Detritivore 0 2.0260 0.0000 2.7013

## Consumer 0 1.4805 0.0000 0.0000

There are times that it is useful to extract all of the ecosystem model data elements from the network data
object. This can be accomplished using the unpack function. The unpack output is as follows:

unpack(fake.model)

## $F

## Primary Producer Detritus Detritivore Consumer

## Primary Producer 0 10.0000 0.0000 1.0000

## Detritus 0 0.0000 6.7532 0.0000

## Detritivore 0 2.0260 0.0000 2.7013

## Consumer 0 1.4805 0.0000 0.0000

##

## $z

## [1] 100 0 0 0

##

## $r

## [1] 0 0 0 0

##

## $e

## [1] 89.0000 6.7532 2.0260 2.2208

##

## $y

## [1] 89.0000 6.7532 2.0260 2.2208

##

## $X

## [1] NA NA NA NA

##

## $living

## [1] TRUE FALSE TRUE TRUE

Since we did not specify the storage values when we used pack, the storage values were set to NA values.
In contrast, pack generated zero values for the respiration values. The function assumes that if you don’t
specify respiration (or export) then the values must be zero. The output values are generated by adding the
respiration and export values together. Although the package is designed to help users navigate missing data
issues, you should check that you are providing the appropriate input for a given function.
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Model Library

enaR includes a library of 104 empirically-based, previously published ecosystem models that can be categorized
into three general classes: trophic, biogeochemical cycling, and urban metabolism (Christian et al. 1996;
Baird, Asmus, and Asmus 2008; Borrett, Whipple, and Patten 2010; Borrett, Hines, and Carter 2016).
First, 59 of the models are trophically-based models with food webs at their core and 43 models focused on
biogeochemical cycling in ecosystems (Network Model Information Table). These models were originally
published for a number of different types of ecosystems, though predominantly aquatic, by a number of
author teams. Models in the library range in size from 4 nodes to 125 nodes with connectance values ranging
from 7% to 45%.

This collection of models overlaps with other extant data sets. For example, twenty-four of the models are
included in the set of forty-eight models compiled and distributed by Dr. Ulanowicz (http://www.cbl.umces.
edu/~ulan/ntwk/network.html). All 50 of the models analyzed by (Borrett and Salas 2010) and (Salas and
Borrett 2011) and the 45 models analyzed in (Borrett 2013) are included in this model library.

The full set of models are collected into the enaModels object, and a list of information about the models
is stored as enaModelInfo. Further, the trophic models are grouped as the troModels object and the
biogeochemically-based models are available as the bgcModels object. Both data objects return a list of the
model network objects. To use these models simply use the R base data function. This will load the models
into the working memory as a named list of network objects:

## Import the model sets

data(enaModels)

data(bgcModels)

data(troModels)

## Find the names of the first few models

head(names(bgcModels))

## [1] "Hubbard Brook (Ca)(Waide)" "Hardwood Forest, NH (Ca)"

## [3] "Duglas Fir Forest, WA (Ca)" "Duglas Fir Forest, WA (K)"

## [5] "Puerto Rican Rain Forest (Ca)" "Puerto Rican Rain Forest (K)"

head(names(troModels))

## [1] "Marine Coprophagy (oyster)" "Lake Findley "

## [3] "Mirror Lake" "Lake Wingra"

## [5] "Marion Lake" "Cone Springs"

## Isolate a single model

x <- troModels[[1]]

x <- troModels$"Marine Coprophagy (oyster)"

## Check out the model

summary(x)

## Network attributes:

## vertices = 4

## directed = TRUE

## hyper = FALSE

## loops = TRUE

## multiple = FALSE

## bipartite = FALSE

## balanced = TRUE

## total edges = 4

## missing edges = 0

## non-missing edges = 4

## density = 0.25
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##

## Vertex attributes:

##

## export:

## logical valued attribute

## attribute summary:

## Mode NA's

## logical 4

##

## input:

## numeric valued attribute

## attribute summary:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00 0.00 62.05 94.90 157.00 255.50

##

## living:

## logical valued attribute

## attribute summary:

## Mode FALSE TRUE NA's

## logical 2 2 0

##

## output:

## numeric valued attribute

## attribute summary:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 6.60 21.67 64.45 94.90 137.70 244.10

##

## respiration:

## numeric valued attribute

## attribute summary:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 6.60 21.67 64.45 94.90 137.70 244.10

##

## storage:

## numeric valued attribute

## attribute summary:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1 1 1 1 1 1

## vertex.names:

## character valued attribute

## 4 valid vertex names

##

## Edge attributes:

##

## flow:

## numeric valued attribute

## attribute summary:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 15.30 20.25 37.40 42.42 59.58 79.60

##

## Network adjacency matrix:

## SHRIMP BENTHIC ORGANISMS SHRIMP FECES & BACTERIA

## SHRIMP 0 0 1

## BENTHIC ORGANISMS 0 0 0
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## SHRIMP FECES & BACTERIA 0 1 0

## BENTHIC FECES & BACTERIA 0 1 0

## BENTHIC FECES & BACTERIA

## SHRIMP 0

## BENTHIC ORGANISMS 1

## SHRIMP FECES & BACTERIA 0

## BENTHIC FECES & BACTERIA 0

Network Model Information

Table 1: Trophic ecosystem (n = 59), biogeochemical ecosystem
(n = 43), and Urban metabolism networks (n=2) included in the
enaR model library. n is the number of nodes in the network model.
(continued below)

Model Type Units n

Marine Coprophagy (oyster) Tro kcal m-2 yr-1 4
Lake Fndley Tro gC m-2 yr-1 4
Mirror Lake Tro gC m-2 yr-1 5
Lake Wngra Tro gC m-2 yr-1 5
MarionLake Tro gC m-2 yr-1 5
Cone Srings Tro kcal m-2 yr-1 5
SilverSprings Tro kcal m-2 yr-1 5
Englis Channel Tro kcal m-2 yr-1 6
OysterReef Tro kcal m-2 yr-1 6
Baie de Somme Tro mgC m-2 d-1 9
Bothnin Bay Tro gC m-2 yr-1 12
Bothnin Sea Tro gC m-2 yr-1 12
Ythan Estuary Tro gC m-2 yr-1 13
Sundarban Mangrove (virgin) Tro kcal m-2 yr-1 14
Sundarban Mangrove
(reclaimed)

Tro kcal m-2 yr-1 14

Baltic Sea Tro mg C m-2 d-1 15
Ems Estuary Tro mg C m-2 d-1 15
Swartkops Estuary 15 Tro mg C m-2 d-1 15
Southern Benguela Upwelling Tro mg C m-2 d-1 16
Peruvian Upwelling Tro mg C m-2 d-1 16
Crystal River (control) Tro mg C m-2 d-1 21
Crystal River (thermal) Tro mg C m-2 d-1 21
Charca de Maspalomas
Lagoon

Tro mg C m-2 d-1 21

Northern Benguela Upwelling Tro mg C m-2 d-1 24
Swartkops Estuary Tro mg C m-2 d-1 25
Sunday Estuary Tro mg C mˆ-2 d-1 25
Kromme Estuary Tro mg C m-2 d-1 25
Okefenokee Swamp Tro g dw m-2 y-1 26
Neuse Estuary (early summer
1997)

Tro mg C m-2 d-1 30

Neuse Estuary (late summer
1997)

Tro mg C m-2 d-1 30

Neuse Estuary (early summer
1998)

Tro mg C m-2 d-1 30
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Model Type Units n

Neuse Estuary (late summer
1998)

Tro mg C m-2 d-1 30

Gulf of Maine Tro g ww m-2 yr-1 31
Georges Bank Tro g ww m-2 yr-1 31
Middle Atlantic Bight Tro g ww m-2 yr-1 32
Narragansett Bay Tro mgC m-2 yr-1 32
Southern New England Bight Tro g ww m-2 yr-1 33
Chesapeake Bay Tro mg C m-2 yr-1 36
Mondego Estuary (Zostera
Meadows)

Tro g AFDW mˆ2 yr-1 43

Mdloti Estuary Tr mg C m-2 d-1 49
St. Marks Seagrass site 1
(Jan.)

Tro mg C m-2 d-1 51

St. Marks Seagrass site 1
(Feb.)

Tro mg C m-2 d-1 51

St. Marks Seagrass site 2
(Jan.)

Tro mg C m-2 d-1 51

St. Marks Seagrass site 2
(Feb.)

Tro mg C m-2 d-1 51

St. Marks Seagrass site 3
(Jan.)

Tro mg C m-2 d-1 51

St. Marks Seagrass site 4
(Feb.)

Tro mg C m-2 d-1 51

Sylt-Romo Bight Tro mg C m-2 d-1 59
Graminoids (wet) Tro g C m-2 yr-1 66
Graminoids (dry) Tro g C m-2 yr-1 66
Cypress (wet) Tro g C m-2 yr-1 68
Cypress (dry) Tro g C m-2 yr-1 68
Lake Oneida (pre-ZM) Tro g C m-2 yr-1 74
Lake Oneida (post-ZM) Tro g C m-2 yr-1 76
Bay of Quinte (pre-ZM) Tro g C m-2 yr-1 74
Bay of Quinte (post-ZM) Tro g C m-2 yr-1 80
Mangroves (wet) Tro g C m-2 yr-1 94
Mangroves (dry) Tro g C m-2 yr-1 94
Florida Bay (wet) Tro mg C m-2 yr-1 125
Florida Bay (dry) Tro mg C m-2 yr-1 125
Hubbard Brook (Waide) BGC kg Ca Ha-1 yr-1 4
Hardwood Forest NH BGC kg Ca Ha-1 yr-1 4
Douglas Fir Forest WA BGC kg Ca Ha-1 yr-1 4
Douglas Fir Forest WA BGC kg K Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg Ca Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg K Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg Mg Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg Cu Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg Fe Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg Mn Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg Na Ha-1 yr-1 4
Puerto Rican Rain Forest BGC kg Sr Ha-1 yr-1 4
Tropical Rain Forest BGC g N m-2 d-1 5
Neuse River Estuary (AVG) BGC mmol N m-2 season-1 7
Neuse River Estuary (Spring
1985)

BGC mmol N m-2 season-1 7
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Model Type Units n

Neuse River Estuary (Summer
1985)

BGC mmol N m-2 season-1 7

Neuse River Estuary Fall
1985)

BGC mmol N m-2 season-1 7

Neuse River Estuary Winter
1986)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Spring
1986)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Summer
1986)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Fall
1986)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Winter
1987)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Spring
1987)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Summer
1987)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Fall
1987)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Winter
1988)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Spring
1988)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Summer
1988)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Fall
1988)

BGC mmol N m-2 season-1 7

Neuse River Estuary (Winter
1989)

BGC mmol N m-2 season-1 7

Cape Fear River Estuary
(Oligohaline)

BGC nmol N cmˆ-3 d-1 8

Cape Fear River Estuary
(Polyhaline)

BGC nmol N cmˆ-3 d-1 8

Lake Lanier (AVG) BGC mg P m-2 day-1 11
Great Lakes (N) BG kg N lake-1 yr-1 12
Baltic Sea BGC mg N mˆ-3 day-1 16
Chesapeake Bay BGC mg N m-2 yr-1 36
Chesapeake Bay BGC mg P m-2 yr-1 36
Chesapeake Bay (Winter) BGC mg P m-2 season-1 36
Chesapeake Bay (Spring) BGC mg P m-2 season-1 36
Chesapeake Bay (Summer) BGC mg P m-2 season-1 36
Chesapeake Bay (Fall) BGC mg P m-2 season-1 36
Sylt-Romo Bight BGC mg N m-2 yr-1 59
Sylt-Romo Bight BGC mg P m-2 yr-1 59
Beijing Urban Metabolism Ur Mt C yr-1 9
Vienna Urban Metabolism Ur kg C capita-16 yr-1ˆ 7

Reference

Haven and Morales-Alamo (1966)
Richey et al. (1978)
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Network Visualization

Network plots are a useful tool to visualize patterns in complex datasets. Here, we present one example of
how to plot a network model using the plot tools in the network package. The figure scaling may need to be
adjusted depending on computer and the graphics devices. Also, note that the graph only shows internal
system flows.

## Load data

data(oyster)

m <- oyster

## Set the random seed to control plot output

set.seed(2)

## Plot network data object (uses plot.network)

plot(m)

We can use the powerful graphics capabilities of R to make a fancier plot of the same data.

## Set colors to use

my.col <- c('red','yellow',rgb(204,204,153,maxColorValue=255),'grey22')

## Extract flow information for later use.

F <- as.matrix(m,attrname='flow')

## Get indices of positive flows

f <- which(F!=0, arr.ind=T)

opar <- par(las=1,bg=my.col[4],xpd=TRUE,mai=c(1.02, 0.62, 0.82, 0.42))

## Set the random seed to control plot output
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set.seed(2)

plot(m,

## Scale nodes with storage

vertex.cex=log(m%v%'storage'),

## Add node labels

label= m%v%'vertex.names',

boxed.labels=FALSE,

label.cex=0.65,

## Make rounded nodes

vertex.sides=45,

## Scale arrows to flow magnitude

edge.lwd=log10(abs(F[f])),

edge.col=my.col[3],

vertex.col=my.col[1],

label.col='white',

vertex.border = my.col[3],

vertex.lty = 1,

xlim=c(-4,1),ylim=c(-2,-2))

## Lastly, remove changes to the plotting parameters

rm(opar)
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Filter Feeders

Microbiota

Meiofauna

Deposit Feeders

Predators

Deposited Detritus

Two networks for the Oyster Reef model (Dame and Patten 1981) showing a simple (left) and more elaborate
(right) implementation of the network plotting function.

Model Input/Output: Common Data File Formats

Several software packages exist in the literature for running ENA. We have written functions to read in a few
of the more common data formats used by them to help enaR users to import models formatted for these
other packages. Example data files can be found in the data folder here: https://github.com/SEELab/enaR_
development.

SCOR

The read.scor function reads in data stored in the Scientific Committee on Oceanic Research (SCOR) format
specified by (Ulanowicz and Kay 1991) that is the input to the NETWRK4 programs. This function can be
run as follows.

scor.model <- readLines('../../data/oyster.dat') # input is path to file

m <- read.scor(scor.model,from.file=FALSE)

This constructs the network data object from the SCOR file that stores the ecosystem model data for an
oyster reef model (Dame and Patten 1981). The individual model elements are

unpack(m)

## $F

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders 0 0.0000 0.0000 0.0000

## Microbiota 0 0.0000 1.2060 1.2060
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## Meiofauna 0 0.0000 0.0000 0.6609

## Deposit Feeders 0 0.0000 0.0000 0.0000

## Predators 0 0.0000 0.0000 0.0000

## Deposited Detritus 0 8.1721 7.2745 0.6431

## Predators Deposited Detritus

## Filter Feeders 0.5135 15.7910

## Microbiota 0.0000 0.0000

## Meiofauna 0.0000 4.2403

## Deposit Feeders 0.1721 1.9076

## Predators 0.0000 0.3262

## Deposited Detritus 0.0000 0.0000

##

## $z

## [1] 41.47 0.00 0.00 0.00 0.00 0.00

##

## $r

## [1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

##

## $e

## [1] 0 0 0 0 0 0

##

## $y

## [1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

##

## $X

## [1] 2000.0000 2.4121 24.1210 16.2740 69.2370 1000.0000

##

## $living

## [1] TRUE TRUE TRUE TRUE TRUE FALSE

This same data is stored as a network data object that is distributed with this package, which can be accessed
as:

data(oyster)

m <- oyster

WAND

In part to make ENA more accessible to biologists, Allesina and Bondavalli (2004) recoded some of Ulanowicz’s
NETWRK4 algorithms into a Microsoft Excel based tool called WAND. For this tool, the model data is
stored as a separate Excel file with two worksheets. The first contains many of the node attributes and the
second contains the flow matrix. The read.wand function will create an R network data object from a WAND
model file.

m <- read.wand('../../data/MDmar02_WAND.xls')

network.size(m) # check number of nodes in the model to check that the read worked

## [1] 49

This code creates a network data object for enaR from the WAND formatted Mdloti ecosystem model data
(Scharler 2012). This data is courtesy of U.M. Scharler.
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NEA

For their MATLAB function to perform network environ analysis (Patten School), Fath and Borrett (2006)
packaged the model flows, inputs, outputs, and storage values into what they called a system matrix

S =

[

F ~z ~X
~y 0 0

]

(n+1)×(n+2)

. (1)

Flows in the system matrix are oriented from column to row.

The enaR function read.nea reads in data with this format stored as a comma separated value file (CSV).
The function write.nea() will write any network model to a CSV file with this format.

While convenient, this data format does not enable inclusion of the full range of model information included
in the enaR network data object. This format does not partition outputs into exports and respiration values,
nor does it identify the node labels or their living status. This missing information will prevent the use of
some enaR functions.

Here is an example of using these functions:

data(oyster)

## Write oyster reef model to a CSV file

write.nea(oyster, file.name="oyster.csv")

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 41.47 2000.0000

## [2,] 0.0000 0.000 0.0000 0.0000 0.0000 8.1721 0.00 2.4121

## [3,] 0.0000 1.206 0.0000 0.0000 0.0000 7.2745 0.00 24.1210

## [4,] 0.0000 1.206 0.6609 0.0000 0.0000 0.6431 0.00 16.2740

## [5,] 0.5135 0.000 0.0000 0.1721 0.0000 0.0000 0.00 69.2370

## [6,] 15.7910 0.000 4.2403 1.9076 0.3262 0.0000 0.00 1000.0000

## [7,] 25.1650 5.760 3.5794 0.4303 0.3594 6.1759 0.00 0.0000

## Read in oyster reef model data from NEA.m formatted CSV file

m <- read.nea("oyster.csv")

## [1] "export" "living"

## Again, this model object does NOT contain all

## of the information in the "oyster" data object.

ENAM

Another commonly used data format stores the necessary model data in a CSV or Excel formatted file. We
include an example Excel file of the Mdloti estuary (Scharler 2012) stored in this format (“MDMAR02.xlsx”,
courtesy of U. M. Scharler). This format has not been described technically in the literature nor has it been
named. We refer to it as ENAM as it is the ENA model data stored primarily as a square matrix with
several preliminary rows that include meta-data, the number of nodes, and number of living nodes (similar to
SCOR). The data format is generally similar in concept, if not exact form, to the data system matrix used as
the input to the NEA.m function (Fath and Borrett 2006). However, the ENAM format includes information
on whether nodes are living and partitions output into respiration and exports.

Using an example data file, MDMAR02.xlsx, this data format can be read into the enaR package as:
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Figure 2:

m <- read.enam('../../data/MDMAR02.xlsx')

network.size(m) # check the model size (number of nodes) to determine if the load worked.

## [1] 49

The current read.enam function assumes the data are stored on the first worksheet of an Excel file. In the
future, we expect to expand this function’s capabilities to read the data from a CSV file.

EcoNet

The read.EcoNet lets users read in models that were originally formatted for the EcoNet software. For
example, the following model for a food web in a Purple Pitcher Plant is formatted for EcoNet

m <- read.EcoNet('../../data/pitcherCN.eco')

## [1] "export" "respiration" "living"

m%v%'vertex.names' # check the model node names to determine if the load worked.

## [1] "Pitcher" "Ants" "BacteriaC" "BacteriaN" "MosquitoC" "MosquitoN"

enaR also has a function to write out existing models input the EcoNet format. This function writes the
output to a separate plain text file.

m <- write.EcoNet(oyster, filename = "oyster.eco")

Analyzing an Ecosystem Model

ENA is often applied to investigate the structure and function of a single ecosystem model. Here, we walk
through an example of applying multiple ENA algorithms to the South Carolina oyster reef model (Dame
and Patten 1981). The table below summarizes the main ENA algorithms encoded in enaR.
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Table 3: Primary Ecosystem Network Analysis algorithms in enaR.

Analysis Function.Name School

Structure enaStructure foundational/Patten
Flow enaFlow foundational/Patten
Ascendency enaAscendency Ulanowicz
Storage enaStorage Patten
Utility enaUtility Patten
Mixed Trophic Impacts enaMTI Ulanowicz
Control enaControl Patten
Environ enaEnviron Patten
Cycle Basis enaCycle Ulanowicz
Canonical Trophic Aggregation enaTroAgg Ulanowicz

Again, in this package results are reported in the row-to-column orientation by default – including the
algorithms from the Patten school. Please see Orientation Section for how to change this default if needed.

Balancing to Steady-State

Many of the ENA functions assume that the network model is at steady-state (node inputs equal node outputs).
Thus, this package has functions for (1) checking to see if the assumption is met and (2) automatically
balancing the model so that input equal outputs.

To determine if the model is balanced and then balance it if necessary:

## Check to see if the model is balanced

ssCheck(oyster)

## [1] TRUE

## To BALANCE a model if needed

oyster <- balance(oyster,method="AVG2")

## [1] BALANCED

The automated balancing routines include Input, Output, AVG, and AVG2 following Allesina and Bondavalli
(2003). These authors compare the four alternative balancing algorithms and further discuss the implications
of using automated procedures. AVG2 is the default algorithm because Allesina and Bondavalli (2003) found
that it produced the smallest error in selected network metrics.

Unfortunately, sometimes a single application of the balancing routines does not sufficiently balance the
model. Thus, we include a function force.balance that runs the balancing algorithm selected multiple times
until the flow model is balanced.

## To FORCE BALANCE a model if needed

oyster <- force.balance(oyster)

Caution is warranted when using these techniques, as they tend to alter all of the model flows. A more
nuanced approach may be desired when the uncertainty in estimates of model fluxes are known.

Structural Network Analysis

Structural network analysis is common to many types of network analysis. The structural analyses applied
here are largely based on those presented in NEA.m (Fath and Borrett 2006) following the Patten School.
Output of the enaStructure function is summarized in following table.
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Table 4: Resultant matrices and network statistics returned by the
enaStructure function in enaR.

Code.Label Description

Matrices

A n × n binary adjacency matrix
Network Metrics

n number of nodes
L number of directed edges
C connectance (C = L/n2); the proportion of

possible directed edges connected. The network
science literature often refers to this as network
density.

LD Link Density (L/n); average number of edges per
nodes

ppr estimated rate of pathway proliferation (Borrett
and Patten 2003)

lam1A dominant eigenvalue of A (λ1(A)) (i.e. the
asymptotic rate of pathway proliferation)
(Borrett, Fath, and Patten 2007)

mlam1A multiplicity of the dominant eigenvalue (number
of times repeated)

rho damping ratio (how quickly [aij ](m)/[aij ](m−1)

goes to λ1(A)) (Caswell 2001)
R distance of λ1(A) from the bulk of the eigen

spectrum (Farkas et al. 2001)
d difference between dominant eigenvalue and link

density (expected value for random graph)
no.scc number of strongly connected components (SCC)
no.scc.big number of SCC with more than one node
pscc fraction of network nodes included in a big SCC

# data(oyster)

St <- enaStructure(oyster)

attributes(St)

## $names

## [1] "A" "ns"

St$ns

## n L C LD ppr lam1A mlam1A rho R

## [1,] 6 12 0.3333333 2 2.147899 2.147899 1 2.147899 0.4655712

## d no.scc no.scc.big pscc

## [1,] 0.147899 2 1 0.8333333

The number of nodes, number of links, link density, and connectance (density) are common statistics used to
describe networks like food webs (Martinez 1992; Dunne, Williams, and Martinez 2002; Eklöf and Ebenman
2006; Estrada 2007; Brandes and Erlebach 2005). The pathway proliferation rate quantifies if and how fast
the number of pathways increases with path length in the network (Borrett and Patten 2003; Borrett, Fath,
and Patten 2007). This rate is equivalent to the dominant eigenvalue of the adjacency matrix (λ1(A)) if the
network is comprised of a single strongly connected component (Borrett, Fath, and Patten 2007).

The structural network statistics for the oyster reef model shows that it has 6 nodes, a pathway proliferation
rate of 2.14 (ppr), and that the model is comprised of two strongly connected components (no.scc) but
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that only one has more than one node (no.scc.big). Thus, 83% of the nodes are participating in a strongly
connected component (pscc).

Flow Analysis

Flow analysis is one of the core ENA analyses for both the Ulanowicz and Patten Schools (Fath and
Patten 1999; Latham II 2006; Fath and Borrett 2006; Schramski, Kazanci, and Tollner 2011). The enaR

implementation enaFlow mostly follows the NEA.m function, with small updates (Borrett and Freeze 2011;
Borrett, Freeze, and Salas 2011). The function also returns matrices for what Szyrmer and Ulanowicz (1987)
refers to as the total contribution coefficients and total dependency coefficients (Kay, Graham, and Ulanowicz
1989). Results returned by enaFlow are summarized in following table.

To validly apply flow analysis, the network model must meet two analytical assumptions. First, the model
must trace a single, thermodynamically conserved currency, such as energy, carbon, or nitrogen. Second, the
model must be at steady-state for many of the analyses.

Flow analysis has been used in a variety of ways. For example, Finn (1980) used ENA flow analysis to
compare the cycling of multiple nutrients through the Hubbard Brook Ecosystem, New Hampshire, USA,
and Oevelen et al. (2009) used the technique to show how different marine canyon conditions change the flow
of carbon through the food webs in Nazaré Canyon. Gattie et al. (2006) applied the analysis to characterize
N cycling in the Neuse River Estuary (North Carolina, USA), and Zhang, Yang, and Fath (2010) used flow
analysis to help assess the sustainability of the urban water metabolism of Beijing, China. Borrett (2013)
showed that the throughflow vector T can be considered as a type of centrality measure that indicates the
relative importance of each node to the generation of the total system throughflow or activity.

Table 5: Matrices and network statistics returned by the enaFlow
function in enaR.

Code.Label Description Common.Symbols

Vectors &

Matrices

T n × 1 vector of node throughflows (M L-2 or

-3 T-1)
T

G output-oriented direct throughflow
intensity matrix

G or B

GP input-oriented direct throughflow intensity
matrix

G′ or B′

N output-oriented integral throughflow
intensity matrix

N

NP input-oriented integral throughflow
intensity matrix

N′

TCC n × n matrix of total contribution
coefficients (Szyrmer and Ulanowicz 1987)

TDC n × n matrix of total dependency
coefficients total diet (Szyrmer and
Ulanowicz 1987)

Network

Metrics

Input Total input boundary flow Input or Boundary or z•

TST Total System ThroughFLOW TST
TSTp Total System ThroughPUT TST or TSTp
APL Average Path Length (Finn 1976) APL or AGG
FCI Finn Cycling Index (Finn 1980) FCI
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Code.Label Description Common.Symbols

BFI Boundary Flow Intensity (Borrett et al.
2006)

Boundary/TST or BFI

DFI Direct Flow Intensity (Borrett et al. 2006) Direct/TST or DFI
IFI Indirect Flow Intensity (Borrett et al.

2006)
Indirect/TST or IFI

ID.F Ratio of Indirect to Direct Flow (Borrett
and Freeze 2011; Borrett, Freeze, and Salas
2011)

Indirect/Direct or I/DF

ID.F.I Input oriented ratio of indirect to direct
flow intensity (Fath and Patten 1999)

I/D
[unit input]
F or i/d

IF.F.O output oriented ratio of indirect to direct
flow intensity (Fath and Patten 1999)

I/D
[unit output]
F or I/D or i/d

HMG.F.I input oriented network homogenization to
direct flow intensity

HMG
[input]
F

HMG.F.O output oriented network homogenization to
direct flow intensity

HMG
[output]
F

AMP.F.I input oriented network amplification AMP
[input]
F

AMP.F.O output oriented network amplification AMP
[output]
F

mode0.F Boundary Flow (Higashi, Patten, and
Burns 1993; Fath, Patten, and Choi 2001)

Mode0F

mode1.F Internal First Passage Flow (Higashi,
Patten, and Burns 1993; Fath, Patten, and
Choi 2001)

Mode1F

mode2.F Cycled Flow (Higashi, Patten, and Burns
1993; Fath, Patten, and Choi 2001)

Mode2F

mode3.F Dissipative Equivalent to mode1.F (Fath,
Patten, and Choi 2001)

Mode3F

mode4.F Dissipative Equivalent to mode0.F (Fath,
Patten, and Choi 2001)

Mode4F

Here, we extract the flow statistics and then isolate and remove the output-oriented direct flow intensity (G)
matrix. Recall that ENA is partially derived from Input–Output analysis; the input and output orientations
provide different information about the system. We also show the input-oriented integral flow matrix N′.

F <- enaFlow(oyster)

attributes(F)

## $names

## [1] "T" "G" "GP" "N" "NP" "TCC" "TDC" "ns"

F$ns

## Boundary TST TSTp APL FCI BFI DFI

## [1,] 41.47 83.5833 125.0533 2.015512 0.1101686 0.4961517 0.1950689

## IFI ID.F ID.F.I ID.F.O HMG.I HMG.O AMP.I AMP.O

## [1,] 0.3087794 1.582925 1.716607 1.534181 2.051826 1.891638 3 1

## mode0.F mode1.F mode2.F mode3.F mode4.F

## [1,] 41.47 32.90504 9.208256 32.90504 41.47

## Output-oriented direct flow matrix

F$G

## Filter Feeders Microbiota Meiofauna Deposit Feeders
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## Filter Feeders 0 0.0000000 0.0000000 0.00000000

## Microbiota 0 0.0000000 0.1475753 0.14757529

## Meiofauna 0 0.0000000 0.0000000 0.07793173

## Deposit Feeders 0 0.0000000 0.0000000 0.00000000

## Predators 0 0.0000000 0.0000000 0.00000000

## Deposited Detritus 0 0.3670363 0.3267221 0.02888377

## Predators Deposited Detritus

## Filter Feeders 0.01238245 0.3807813

## Microbiota 0.00000000 0.0000000

## Meiofauna 0.00000000 0.5000059

## Deposit Feeders 0.06856574 0.7600000

## Predators 0.00000000 0.4757876

## Deposited Detritus 0.00000000 0.0000000

## Input-oriented integral flow matrix

F$NP

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders 1 1.0000000 1.0000000 1.0000000

## Microbiota 0 1.1018630 0.2440716 0.6197856

## Meiofauna 0 0.2971032 1.2971032 0.5604100

## Deposit Feeders 0 0.1240688 0.1240688 1.1240688

## Predators 0 0.0203426 0.0203426 0.0203426

## Deposited Detritus 0 1.3885039 1.3885039 1.3885039

## Predators Deposited Detritus

## Filter Feeders 1.0000000 1.0000000

## Microbiota 0.1555792 0.1018630

## Meiofauna 0.1406747 0.2971032

## Deposit Feeders 0.2821649 0.1240688

## Predators 1.0051064 0.0203426

## Deposited Detritus 0.3485436 1.3885039

Ascendency

A key contribution of the Ulanowicz School to ENA is the Ascendency concept and the development of several
information based network-level statistics (Ulanowicz 1986; Ulanowicz 1997). This analysis is based on all of
the flows in the system and does not assume the modeled system is at steady-state. The enaAscendency
function returns several of these information based measures. The function also returns the tetra-partite
division of the Ascendency metrics into the components for the inputs, internal flows, exports, and respirations
(Ulanowicz and Norden 1990). This is run as follows:

enaAscendency(oyster)

## H AMI Hr CAP ASC OH ASC.CAP

## [1,] 3.018275 1.330211 1.688063 377.4452 166.3473 211.0979 0.4407191

## OH.CAP robustness ELD TD A.input A.internal A.export

## [1,] 0.5592809 0.3611021 1.79506 2.514395 66.03696 72.62476 0

## A.respiration OH.input OH.internal OH.export OH.respiration CAP.input

## [1,] 27.68558 0 103.2914 0 107.8065 66.03696

## CAP.internal CAP.export CAP.respiration

## [1,] 175.9162 0 135.492
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Table 6: Graph-level network statistics returned by the enaR inter-
pretations (Ulanowicz 1986; Ulanowicz 1997).

Label Description Common.Symbols

H total flow diversity (Shannon Diversity or
entropy) where H = AMI + Hr

H

AMI average mutual information AMI
Hr residual mutual information Hr

CAP Capacity (CAP = H × TSTp and CAP =
ASC + OH)

C

ACS ascendency (AMI × TSTp) A or ASC
OH overhead (Hr × TSTp) Φ or OH
ASC.CAP relative ascendency (dimensionless) A/C
OH.CAP relative overhead (dimensionless) Φ/C
Robustness robustness of the network (Goerner, Lietaer,

and Ulanowicz 2009; Fath 2014)
ELD effective link density of the network

(Ulanowicz, Holt, and Barfield 2014)
TD trophic depth of the network (Ulanowicz,

Holt, and Barfield 2014)
Tetrapartite Partition of Ascendency

Metrics

A.input Ascendency of just the imports Aimport

A.internal Ascendnecy of just the internal flows Ai

A.export Ascendnecy of just the export flows Ae

A.respiration Ascendnecy of just the respiration flows Ar

OH.input Overhead of the imports alone Oimport or Φinput

OH.internal Overhead of the internal flows Φi

OH.export Overhead of the exports alone Φe

OH.respiration Respiration portion of system overhead Φr

CAP.input Input portion of system capacity Cinput

CAP.internal Internal portion of system capacity Ci

CAP.export Export portion of system capacity Ce

CAP.respiration Respiration portion of system capacity Cr

Storage Analysis

Storage ENA was developed in the Patten School (Barber 1978b; Barber 1978a; Barber 1979). It is similar to
flow ENA, but divides the flows by storage (e.g., biomass) instead of throughflow. Several papers provide an
overview of this methodology (Kay, Graham, and Ulanowicz 1989; Fath and Patten 1999; Gattie et al. 2006;
Schramski, Kazanci, and Tollner 2011). Output of this function is summarized in Table~(tab:storage). What
follows is an example of applying the storage analysis to the oyster reef model.

S <- enaStorage(oyster)

attributes(S)

## $names

## [1] "X" "C" "P" "S" "VS" "Q" "CP" "PP" "SP" "VSP" "QP"

## [12] "dt" "ns"

S$ns

## TSS CIS BSI DSI ISI ID.S ID.S.I

## [1,] 3112.044 0.9940252 0.003331412 0.003320932 0.9933477 299.1171 454.227
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## ID.S.O HMG.S.O HMG.S.I NAS NASP mode0.S mode1.S mode2.S mode3.S

## [1,] 294.1527 1.115985 1.464503 20 21 10.3675 8.226261 3093.45 8.226261

## mode4.S

## [1,] 10.3675

Table 7: Matrices and graph-level network statistics returned by
the enaR enaStorage function.

Label Description Common.Symbols

Matrices

X n × 1 vector of storage values [M L-2];
storage is commonly referred to as biomss
in ecosystems

X or B

C n × n donor-storage normalized
output-oriented direct flow intensity matrix
(T−1)

C

P n × n storage-normalized output-oriented
direct flow matrix (dimensionless)

P or P′′

S n × n donor-storage normalized
output-oriented integralflow intensity
matrix (T−1)

VS variance in expected output-oriented
residance times (Barber 1979)

VS or VS′′

Q n × n output-oriented integral flow
intensity matrix (dimensionless)

Q or Q′′

CP n × n recipient-storage normalized
input-oriented direct flow intensity matrix
(T−1)

C′

PP n × n storage-normalized input-oriented
direct flow matrix (dimensionless)

P′

SP n × n donor-storage normalized
input-oriented integral flow intensity
matrix (T−1)

S′

VSP variance in expected input-oriented
residance times (Barber 1979)

VS′

QP n × n input-oriented integral flow intensity
matrix (dimensionless)

Q′

dt discrete time step
Network Statistics

TSS Total System Storage TSS or X•

CIS Storage Cycling Index CIS
BSI Boundary Storage Intensity BSI
DSI Direct Storage Intensity DSI
ISI Indirect Storage Intensity ISI
ID.S Ratio of Indirect-to-Direct storage

(realized)
I/Ds or Indirect/Directs

ID.S.I storage-based input-oriented
indirect-to-direct ratio (Fath and Borrett
2006)

I/D
[unit input]
S or I/D or i/d

ID.S.O storage-based input-oriented
indirect-to-direct ratio (Fath and Borrett
2006)

I/D
[unit output]
S
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Label Description Common.Symbols

HMG.S.I input-oriented storage network
homogenization

HMG
[input]
S

HMG.S.O output-oriented storage network
homogenization

HMG
[output]
S

AMP.S.I input-oriented storage network
amplification

AMP
[input]
S

AMP.S.O output-oriented storage network
amplification

AMP
[output]
S

mode0.S Storage from Boundary Flow Mode0S

mode1.S Storage from Internal First Passage Flow Mode1S

mode2.S Storage from Cycled Flow Mode2S

mode3.S Dissipative Equivalent to mode1.S Mode3S

mode4.S Dissipative Equivalent to mode0.S Mode4S

This storage analysis of the oyster reef model indicates that the total energy stored in the system on an
average day is 3,112 kcal m-2, and that 99.3% of this storage is generated by energy flowing over indirect
pathways (ISI).

Whipple, Patten, and Borrett (2014) provides a detailed example of applying storage analysis to characterize
the dynamic organization of an ecosystem. They investigated how the storage analysis properties changed
across sixteen consecutive seasonal N cycling models of the Neuse River Estuary. They found that from
this storage perspective NOx was the dominant compartment, and thus a primary controller of the system
dynamics. Note that this work provides an example of applying this analysis at multiple levels of analysis
(Hines and Borrett 2014).

Environ Analysis

Environ Analysis finds the n unit input and output environs for the model (Patten 1978; Fath and Patten
1999). These unit environs are returned by the environ function as in NEA.m. They indicate the flow activity
in each subnetwork generated by pulling a unit out of a node (input environs) or pushing a unit into a node
(output environ). These unit environs can be converted into “realized” environs by multiplying each by the
relevant observed input or output (Borrett and Freeze 2011; Whipple et al. 2007; Whipple, Patten, and
Borrett 2014).

E <- enaEnviron(oyster)

attributes(E)

## $names

## [1] "input" "output"

E$output[1]

## $`Filter Feeders`

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders -1 0.0000000 0.00000000 0.00000000

## Microbiota 0 -0.1970605 0.02908126 0.02908126

## Meiofauna 0 0.0000000 -0.20449723 0.01593682

## Deposit Feeders 0 0.0000000 0.00000000 -0.06052568

## Predators 0 0.0000000 0.00000000 0.00000000

## Deposited Detritus 0 0.1970605 0.17541596 0.01550760

## z 1 0.0000000 0.00000000 0.00000000

## Predators Deposited Detritus y
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## Filter Feeders 0.012382445 0.380781288 0.606836267

## Microbiota 0.000000000 0.000000000 0.138897999

## Meiofauna 0.000000000 0.102249819 0.086310586

## Deposit Feeders 0.004149988 0.045999518 0.010376176

## Predators -0.016532433 0.007865927 0.008666506

## Deposited Detritus 0.000000000 -0.536896552 0.148912467

## z 0.000000000 0.000000000 0.000000000

The TET function returns vectors of the unit and realized input and output total environ throughflow. The
realized total environ throughflow is an environ based partition of the total system throughflow (Whipple et
al. 2007).

tet <- TET(oyster)

show(tet)

## $realized.input

## [1] 25.165000 22.647638 14.582798 2.028052 1.053786 18.107007

##

## $realized.output

## [1] 83.5833 0.0000 0.0000 0.0000 0.0000 0.0000

##

## $unit.input

## [1] 1.000000 3.931882 4.074090 4.713111 2.932069 2.931882

##

## $unit.output

## [1] 2.015512 1.836089 2.540670 3.124836 2.234317 2.594261

The TES functions returns the both the realized and unit total environ storage for the input and output
environs. Again, the realized TES is a partition of the total system storage (TSS).

tes <- TES(oyster)

show(tes)

## $realized.input

## Filter Feeders Microbiota Meiofauna

## 2000.00000 2.41209 24.12171

## Deposit Feeders Predators Deposited Detritus

## 16.27440 69.23803 1000.03118

##

## $realized.output

## [1] 3112.044 0.000 0.000 0.000 0.000 0.000

##

## $unit.input

## Filter Feeders Microbiota Meiofauna

## 289.3658066 0.6561948 7.3735209

## Deposit Feeders Predators Deposited Detritus

## 11.5308112 109.7205293 265.1036470

##

## $unit.output

## Filter Feeders Microbiota Meiofauna

## 75.04326 16.06273 41.03146

## Deposit Feeders Predators Deposited Detritus

## 65.81279 132.44451 66.11575

Realized TET and TES might be considered network centrality measures that indicate the relative importance
of the environs in generating the observed flow or storage, respectively.
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Utility Analysis

Utility analysis describes the relationship between node pairs in the ecosystem model when considering both
direct and indirect interactions. It developed in the Patten School (Patten 1991; Fath and Patten 1999)
and is similar to yet distinct from the Ulanowicz School mixed trophic impacts analysis (Ulanowicz and
Puccia 1990). Utility analysis can be conducted from both the flow and storage perspectives, so the “type”
argument needs to be set to suit the user’s needs. This is again implemented as in NEA.m. The following
table summarizes the function output for the flow and storage versions. These analyses are executed as:

UF <- enaUtility(oyster, type = "flow")

US <- enaUtility(oyster, type = "storage")

attributes(UF)

## $names

## [1] "D" "SD" "U" "Y"

## [5] "SY" "Relations.Table" "ns"

Table 8: Matrices and graph-level network statistics returned by
the enaR enaUtility function.

Label Description Common.Symbols

Matrices

Dn×n throughflow-normalized direct utility
intensity (dimensionless)

D

Un×n integral flow utility (dimensionless) U

Yn×n integral flow utility scaled by original
throughflow (M L−2 or −3 T−1)

Y

DSn×n storage-normalized direct utility intensity
(dimensionless)

DS

USn×n integral storage utility (dimensionless) US

YSn×n integral storage utility scaled by original
throughflow (M L−2 or −3 T−1)

YS

Other Objects

Relations.Table a table listing the pairwise relationships
derived from both the direct and integral
perspective.

Network Statistics

lam1D dominant eigenvalue of D
relation.change.F Percent of relatinoships that changed

between the direct and integral flow utility
analysis

synergism.F benefit-cost ratio or network synergism
(flow)

SY NF

mutualism.F positive to negative interaction ratio or
network mutualism (flow)

MUTF

lam1DS dominant eigenvalue of DS
relation.change.S Percent of relatinoships that changed

between the direct and integral storage
utility analysis

synergism.S benefit-cost ratio or network synergism
(storage)

SY NS

mutualism.S positive to negative interaction ratio or
network mutualism (storage)

MUTS
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While this function returns a number of results, the Relations.Table summarizes a number of the critical
results. It shows the character of the pairwise relationships between each node combination when considering
the direct and the integral relations. Thus, it shows the power of the network to transform the nature of
the ecological relationships among the system components. This change is reflected in the synergism and
mutualism whole-network metrics.

UF$Relations.Table

From To Direct Integral changed

Filter Feeders Filter Feeders (0,0) (+,+) *
Filter Feeders Microbiota (0,0) (+,+) *
Filter Feeders Meiofauna (0,0) (+,+) *
Filter Feeders Deposit Feeders (0,0) (+,-) *
Filter Feeders Predators (+,-) (+,-) -
Filter Feeders Deposited Detritus (+,-) (+,-) -
Microbiota Microbiota (0,0) (+,+) *
Microbiota Meiofauna (+,-) (+,-) -
Microbiota Deposit Feeders (+,-) (+,-) -
Microbiota Predators (0,0) (+,+) *
Microbiota Deposited Detritus (-,+) (-,+) -
Meiofauna Meiofauna (0,0) (+,+) *
Meiofauna Deposit Feeders (+,-) (+,-) -
Meiofauna Predators (0,0) (+,+) *
Meiofauna Deposited Detritus (-,+) (-,+) -
Deposit Feeders Deposit Feeders (0,0) (+,+) *
Deposit Feeders Predators (+,-) (+,-) -
Deposit Feeders Deposited Detritus (+,-) (+,+) *
Predators Predators (0,0) (+,+) *
Predators Deposited Detritus (+,-) (-,-) *
Deposited Detritus Deposited Detritus (0,0) (+,+) *

UF$ns

## lam1D relation.change.F synergism.F mutualism.F

## r.change 0.8991676 61.9 4.915298 2.272727

Mixed Trophic Impacts

Mixed Trophic Impacts is a popular analysis from the Ulanowicz School of ENA (Ulanowicz and Puccia
1990). The enaMTI function generates comparable results to the calculations in (Ulanowicz and Puccia 1990).
These are implemented as follows:

mti <- enaMTI(oyster)

attributes(mti)

## $names

## [1] "G" "FP" "Q" "M"

## [5] "Relations.Table"

mti$M

## [1] NA
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Table 10: Matrices returned by the enaR enaMTI function, which
are based on Ulanowicz and Puccia (1990).

Label Description Common.Symbols

Matrices

Gn×n positive effect of prey on its predator;
identical to the input-oriented direct flow
matrix

G′ or B′

FPn×n negative impact of the predator on its prey F′ or B̌

Qn×n direct net impact of one node on another Q or Ď

Mn×n total impact of i on j (direct and indirect) M or Ǔ

The mixed trophic impacts analysis has been usefully applied to discover interesting and sometimes unexpected
ecological relationships. For example, although alligators directly eat frogs in the Florida Everglades (USA),
it appears that their net relationship when considering the whole food web is actually mutualistic (Bondavalli
and Ulanowicz 1999). This is in part because the alligators also eat other key predators of the frogs such as
snakes.

As with enaUtility, enaMTI returns a summary table of the pairwise relationships between each node pair
(Relations.Table). This table includes the relationship when only the direct connection are considered, and
the relationships when the mixed or integral connections are considered.

mti$Relations.Table

## [1] NA

In the exemplar Oyster Reef model, we see that the Filter Feeder compartment has no direct relationship
with the Microbiota. However, when the Mixed or integral relationships are considered in the MTI framework,
the relationship changes such that the Microbiota appear to be functionally predators of the Filter Feeders.

Control Analysis

Control analysis was implemented as in the NEA.m function, but we also include recent updates to control
analysis (Schramski et al. 2006; Schramski et al. 2007). In general, these analyses determine the pairwise
control relationships between the nodes in the network.

C <- enaControl(oyster)

attributes(C)

## $names

## [1] "CN" "CQ" "CD" "CR" "CA" "CDep" "sc" "psc" "ns"

C$sc

## Filter Feeders Microbiota Meiofauna

## 0.120569086 -0.063400232 -0.042706068

## Deposit Feeders Predators Deposited Detritus

## 0.002634493 -0.069125297 0.052028018

# plot system control vector

opar <- par(las = 1, mfrow = c(1,2), mar = c(7,5,1,1),

xpd = TRUE, bg = "white")

bp = barplot(C$sc,

names.arg = NA, # turn off label names

col = "black",
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ylab = "Control on System", xlab = "",

ylim = c(-0.15, 0.15))

## Adding labels

text(bp,-0.2,

labels=names(C$sc),

srt = 35, adj = 1, cex = 1)
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The elements of the sc vector indicate the relative control exerted by each node on the system functioning.

Table 11: Matrices returned by the enaR enaControl function,
which are based on (Dame and Patten 1981; Patten and Auble 1981;
Schramski et al. 2006; Schramski et al. 2007).

Label Description

Matrices

CNn×n Control matrix using flow values
CQn×n Control matrix using storage values
CRn×n Schramski’s Control Ratio Matrix
CDn×n Schramski’s Control Difference Matrix
CAn×n Control Allocation Matrix (Chen, Fath, and

Chen 2011)
CDepn×n Control Dependency Matrix (Chen, Fath, and

Chen 2011)
scn×1 Schramski’s System Control vector
pscn×1 Schramski’s system control vector as percent

of total control
ns Network Statistics
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Label Description

TSC total system control

Cycle Analysis

The Cycle Analysis provides the detailed account of the cycling present in the network. It follows the
algorithm by the DOS-based NETWRK 4.2b software by Ulanowicz (Ulanowicz and Kay 1991; Ulanowicz
1983) and provides results similar to NETWRK’s ‘Full Cycle Analysis’. Cycles in a network are grouped
together into disjoint nexuses and each nexus is characterized by a weak arc. This function gives details of
the individual cycles along with the disjoint nexuses present in the network. Note that this analysis does not
require the

cyc <- enaCycle(oyster)

attributes(cyc)

## $names

## [1] "Table.cycle" "Table.nexus" "CycleDist"

## [4] "NormDist" "ResidualFlows" "AggregatedCycles"

## [7] "ns"

## The individual cycles

names(cyc$Table.cycle)

## [1] "CYCLE" "NEXUS" "NODES"

## The disjoint nexuses

names(cyc$Table.nexus)

## [1] "NEXUS" "CYCLES" "W.arc.From" "W.arc.To" "W.arc.Flow"

[1] “1” “2” “3” “4” “5” “6” “7” “8” “9” “10” “11” “12”

Table 12: Data frames, matrices and graph-level network statis-
tics returned by the enaR enaCycle function, which is based on
Ulanowicz (1983).

Label Description

Data frames

Table.cycle Data frame of cycles in the network. Up to 50
cycles are returned per nexus

Table.nexus Data frame with details of the disjoint
nexuses present in the network

Matrices

CycleDistn×1 Vector of flows cycling in loops of increasing
length

NormDistn×1 Vector of Cycle Distributions normalized by
the total system throughput

ResidualFlowsn×n Matrix of straight-through flows or the
underlying acyclic graph

AggregatedCyclesn×n Matrix of all the cycled flows or the
underlying cyclic graph

Network Statistics

NCYCS Number of cycles detected in the network
NNEX Number of disjoint nexuses detected in the

network
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Label Description

CI Cycling index of the network based on flow
matrix

Trophic Analysis

The Trophic Aggregation algorithm (enaTroAgg) assumes that the network being analyzed is a food web
and performs a number of trophic-based analyses. Specifically, it identifies the trophic structure of the given
network based on the Lindeman’s trophic concepts (Lindeman 1942). This includes identifying the effective
trophic level of each network node, and building the ‘Lindeman Trophic Spine’.

The algorithm is implemented as in NETWRK 4.2b by Ulanowicz (Ulanowicz and Kemp 1979) and provides
similar results as NETWRK’s ‘Lindeman Trophic Aggregations’ (Ulanowicz and Kay 1991). It apportions
the nodes into integer trophic levels and estimates the corresponding inputs, exports, respirations and the
grazing chain and trophic spine which represent the transfers between integer trophic levels.

It is crucial for this algorithm that the cycles among the living nodes of the network (Feeding Cycles) be
removed beforehand to assign trophic levels to nodes. Thus, the output for this function contains the Cycle
Analysis for the Feeding Cycles in the network.

Following (Ulanowicz and Kay 1991), the non-living nodes are grouped together for this analysis and referred
to as the detrital pool.

The following table summarizes the function output except the outputs for the feeding cycles which are
similar to the enaCycle outputs.

trop <- enaTroAgg(oyster)

attributes(trop)

## $names

## [1] "Feeding_Cycles" "A" "ETL" "CE"

## [5] "CR" "GC" "RDP" "LS"

## [9] "TE" "ns"

## Cycle analysis output for Feeding Cycles

trop$Feeding_Cycles

## $ResidualFlows

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders 0 0 0.000 0.0000

## Microbiota 0 0 1.206 1.2060

## Meiofauna 0 0 0.000 0.6609

## Deposit Feeders 0 0 0.000 0.0000

## Predators 0 0 0.000 0.0000

## Predators

## Filter Feeders 0.5135

## Microbiota 0.0000

## Meiofauna 0.0000

## Deposit Feeders 0.1721

## Predators 0.0000

[1] “1” “2” “3” “4” “5” “6” “7” “8” “9” “10” “11” “12” “13” “14” [15] “15” “16” “17” “18”
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Table 13: Matrices and graph-level network statistics returned by
the enaR enaTroAgg function, which are based on Ulanowicz and
Kemp (1979).

Label Description

Matrices

Anl×nl Lindeman transformation matrix that
apportions nodes to integer trophic levels

ETLn×1 Vector of the effective trophic levels of
different nodes

M.Flownl×1 Migratory flows in living nodes (if present)
CIn×1 Vector of canonical inputs to integer trophic

levels (if migratory flows present)
CEn×1 Canonical Exports. Vector of exports from

Integer trophic levels
CRn×1 Canonical Respirations. Vector of respiration

from Integer trophic levels
GCnl×1 Grazing Chain. Vector of inputs to Integer

trophic levels from preceding level
RDPnl×1 Vector of returns from each level to the

detrital pool
LSnl×1 Vector representing the Lindeman Spine
TEnl×1 Vector of the trophic efficiencies for integer

trophic levels
Network Statistics

Detritivory Flow from the detrital pool (non-living nodes)
to the second trophic level

DetritalInput Exogenous inputs to the detrital pool
DetritalCirc internal circulation within the detrital pool
NCYCS number of feeding cycles removed from the

network
NNEX number of disjoint nexuses detected for the

feeding cycles
CI cycling index of the living component of the

network based on flow matrix

Additional Analyses

There are a number of additional analyses available in the package. These additions extended the enaR

functionality.

Centrality

Centrality analysis is a large topic in network science (Brandes and Erlebach 2005; Wasserman and Faust
1994). In general the goal is to describe the relative importance of parts of the networks (nodes, edges,
environs). Many different types of centrality measures exist in network science (Freeman 1979; Freeman,
Borgatti, and White 1991; Borgatti and Everett 2006; Brandes and Erlebach 2005). Environ centrality
is unique to ENA (Fann and Borrett 2012), but like eigenvector centrality, it is a degree-based centrality
measure that considers the equilibrium effect of all pathways of all lengths in the system and as such can be
classified as a global centrality measure. Both of these centralities can be calculated in enaR as follows:
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F <- enaFlow(oyster)

ec <- environCentrality(F$N)

show(ec)

## $ECin

## Filter Feeders Microbiota Meiofauna

## 0.1404961 0.1279889 0.1771034

## Deposit Feeders Predators Deposited Detritus

## 0.2178241 0.1557484 0.1808391

##

## $ECout

## Filter Feeders Microbiota Meiofauna

## 0.06970737 0.19108709 0.20595483

## Deposit Feeders Predators Deposited Detritus

## 0.12350944 0.07903903 0.33070223

##

## $AEC

## Filter Feeders Microbiota Meiofauna

## 0.1051017 0.1595380 0.1915291

## Deposit Feeders Predators Deposited Detritus

## 0.1706668 0.1173937 0.2557707

eigenCentrality(F$G)

## $EVCin

## [1] 0.1207568 0.1093625 0.1876329 0.2518905 0.1470501 0.1833072

##

## $EVCout

## [1] 0.00000000 0.23325048 0.26566843 0.11130122 0.01286707 0.37691280

##

## $AEVC

## [1] 0.06037842 0.17130647 0.22665067 0.18159586 0.07995858 0.28011000

These centrality values have been normalized to sum to one. In addition, the throughflow vector from
flow analysis (Borrett 2013), the total environ throughflow, and total environ storage vectors might also be
considered centrality metrics (Whipple et al. 2007; Whipple, Patten, and Borrett 2014). The following code
and figure demonstrates how the Average Environ Centrality can be quantified and visualized.

## Set plotting parameters

opar <- par(las=1,mfrow=c(1,2),mar=c(7,5,1,1),xpd=TRUE,bg="white")

## Find centrality order

o <- order(ec$AEC,decreasing=TRUE)

## Creating a barplot

bp <- barplot(ec$AEC[o],

names.arg=NA,

ylab="Average Environ Centrality",

col="black",border=NA)

## Adding labels

text(bp,-0.008,

labels=names(ec$AEC)[o],

srt=35,adj=1,cex=1)

# throughflow centrality
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T <- enaFlow(oyster)$T

o <- order(T,decreasing=TRUE)

bp2 <- barplot(T[o],

names.arg=NA,

ylab=expression(paste("Throughflow (kcal m"^-2, " y"^-1,")")),

col="black", border=NA)

text(bp2,-1,

labels=names(T)[o],

srt=35,adj=1,cex=1)
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## Remove the plotting parameters

rm(opar)

Shannon Diversity

Biodiversity is a critical concept in ecology and conservation biology. For example, it is hypothesized to
contribute to the stability, productivity, and broad ecosystem functioning of these complex dynamic systems
(Tilman, Wedin, and Knops 1996; Hooper et al. 2005). Ecologists often use Shannon’s measure of information
entropy (H) as an indicator of biodiversity because it captures the effects of richness (number of species) and
the evenness of the distribution of individuals among the species (Shannon and Weaver 1949).

Shannon’s entropy based metric of diversity is

H = −1

n
∑

i=1

pi log(pi) (2)

where pi is the relative abundance or quantity and n is the number of species (nodes in this context).
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This metrics can be applied in a number of ways within the context of ENA. For example, we can find the
diversity of storage (biomass) by letting pi = Xi/X• = Xi/

∑

Xi, or we can find the throughflow diversity by
letting pi = Ti/T•. In fact, this can be applied to nearly any node Centrality metrics.

For any given input vector, the maximum possible value of H is Hmax = log(n). Thus, we can focus on the
evenness component of biodiversity by calculating the relative entropy 0 ≤ (Hr = H/Hmax) ≤ 1. The closer
Hr gets to 1, the more evenly distributed the stuff is among the n nodes. From this we can derive a metric of
centralization (Hcentralization = 1 − Hr or how concentrated the elements are in a smaller number of nodes.
This is a useful metric because it ties back to concepts in Social Network Analysis (Wasserman and Faust
1994). We can recover the effective number of nodes based on the evenness as s = eH (Ulanowicz, Holt, and
Barfield 2014).

The ShannonDiversity function in enaR returns each of these metrics for any vector input. For example,

ShannonDiversity(F$T) # throughflow diversity

## H Hmax Hr Hcentral n effective.n

## 1.3042705 1.7917595 0.7279272 0.2720728 6.0000000 3.6849998

ShannonDiversity(S$X) # storage (biomass) diversity

## H Hmax Hr Hcentral n effective.n

## 0.8043025 1.7917595 0.4488898 0.5511102 6.0000000 2.2351370

The results for the Oyster Reef model indicate that throughflow diversity is greater than the diversity from
the storage perspective. This is because the throughflow values are more evenly distributed (less centralized)
than the storage values. This is perhaps most clear when we determine the effective richness in the system.
From the throughflow perspective there are 3.7 nodes acting, while from the storage perspective the effective
number of nodes is estimated to be 2.2.

Quickly Return Multiple Analyses

There are two functions that aggregate multiple analyses and report selected results. A quick way to get a
list of the global network statistics reported in Structure, Flow, Ascendency, Storage, and Utility analysis is
to use the get.ns function.

ns <- get.ns(oyster)

## Examine the whole-network statistics (metrics)

show(ns)

## n L C LD ppr lam1A mlam1A rho R d

## 6 12 0.3333333 2 2.147899 2.147899 1 2.147899 0.4655712 0.147899

## no.scc no.scc.big pscc Boundary TST TSTp APL FCI

## 2 1 0.8333333 41.47 83.5833 125.0533 2.015512 0.1101686

## BFI DFI IFI ID.F ID.F.I ID.F.O HMG.I

## 0.4961517 0.1950689 0.3087794 1.582925 1.716607 1.534181 2.051826

## HMG.O AMP.I AMP.O mode0.F mode1.F mode2.F mode3.F mode4.F H

## 1.891638 3 1 41.47 32.90504 9.208256 32.90504 41.47 3.018275

## AMI Hr CAP ASC OH ASC.CAP OH.CAP

## 1.330211 1.688063 377.4452 166.3473 211.0979 0.4407191 0.5592809

## robustness ELD TD A.input A.internal A.export A.respiration

## 0.3611021 1.79506 2.514395 66.03696 72.62476 0 27.68558

## OH.input OH.internal OH.export OH.respiration CAP.input CAP.internal

## 0 103.2914 0 107.8065 66.03696 175.9162

## CAP.export CAP.respiration TSS CIS BSI DSI

## 0 135.492 3112.044 0.9940252 0.003331412 0.003320932

## ISI ID.S ID.S.I ID.S.O HMG.S.O HMG.S.I NAS NASP mode0.S
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## 0.9933477 299.1171 454.227 294.1527 1.115985 1.464503 20 21 10.3675

## mode1.S mode2.S mode3.S mode4.S lam1D relation.change.F synergism.F

## 8.226261 3093.45 8.226261 10.3675 0.8991676 61.9 4.915298

## mutualism.F lam1DS relation.change.S synergism.S mutualism.S

## 2.272727 0.3022958 61.9 13.08994 2.6

It is also possible to instantly return most of the main ENA output with enaAll:

oyster.ena <- enaAll(oyster)

names(oyster.ena)

## [1] "ascendency" "control" "environ" "flow" "mti"

## [6] "storage" "structure" "utility"

The enaCycle and enaTroAgg analyses are not yet included in this function because they can be computationally
intensive for large models.

findPathLength

The findPathLength function builds on Flow Analyses and explores how the proportion of throughflow is
generated as walk length increases. Specifically, it finds the walk lengths by which 50%, 80%, 90%, and 95%
of the total system throughflow is recovered, as well as the walk length at which indirect flow exceeds direct
flows (if I/DF > 1). It also returns vectors of the total flow generated by all the pathways of each length and
a vector of the proportion of total cumulative flow. This is the basis for the analyses presented in Borrett
(2013).

p <- findPathLength(oyster, maxPath = 20, plot.sw = TRUE)
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attributes(p)

## $names

## [1] "thresholds" "tf" "ctf"

p$thresholds
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## mID m50 m80 m95

## 3 1 2 5

meanTrophicLevel

This function calculates a mean trophic level. It weights the effective torphic levels returned by enaTroAgg
by the relative biomass, and calculates the mean for all of the species above some minimum trophic level.
The default minimum trophic level is 2.

Uncertainty Analysis

The data estimates used to build network models has some inherent variability due to both natural variation
and sampling issues. The enaUncertainty function lets the user explore the impact of this uncertainty in the
model parameters on the ENA results. Specifically, the function uses Linear Inverse Modeling to generate a
set of plausible model parameterizations given some estimate of the parameter uncertainty. In the current
instantiation of the function, this uncertainty can be specified in one of three ways: 1. specify a single percent
error that will be applied to all model parameters. 2. specify a percent error value for each model parameter.
The function will then explore the symmetric parameter space above and below this value. 3. specify a lower
limit and upper limit for each parameter in the model.

The function will return a set of models as list data object. The user can then use lapply() to apply selected
network analyses to each of the plausible parameterizations, which will generate a distribution of results.

Utility Functions

The enaR library contains several utility functions that designed to help the user and other functions with
common actions.

ssCheck

The ssCheck function is applied to an ecological network model to determine if the model is at steady state.
Specifically, it compares T input

i to T output
i for all i. For practical reasons, this function returns the logical

value TRUE if

(|T input
i − T output

j |)/T output
i ∗ 100 ≤ 5%, ∀i. (3)

This effectively lets each node throughflow to be off by 5% .

ssCheck(oyster)

## [1] TRUE

data(enaModels)

ssCheck(enaModels[[11]])

## [1] FALSE

While users and other enaR functions most often simply need to know if the system is at steady state, the
function can also return the input and output throughflow vectors and a vector of the percent differences.

ssCheck(enaModels[[11]], more = TRUE)
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## $ss

## [1] FALSE

##

## $Tin

## Pelagic Producers Bacteria Microzooplakton Mesozooplakton

## 27.90 8.00 6.00 12.00

## Inv. Carnivores Pelagic Fish Benthis Producers Dem. Fish

## 1.70 1.57 3.90 0.22

## Macrofauna Meiofauna Sedim. C DOM

## 2.02 4.32 14.57 31.35

##

## $Tout

## Pelagic Producers Bacteria Microzooplakton Mesozooplakton

## 24.90 8.00 6.00 12.00

## Inv. Carnivores Pelagic Fish Benthis Producers Dem. Fish

## 1.70 1.57 3.90 0.21

## Macrofauna Meiofauna Sedim. C DOM

## 2.02 4.32 5.47 9.05

##

## $perror

## Pelagic Producers Bacteria Microzooplakton Mesozooplakton

## 12.048193 0.000000 0.000000 0.000000

## Inv. Carnivores Pelagic Fish Benthis Producers Dem. Fish

## 0.000000 0.000000 0.000000 4.761905

## Macrofauna Meiofauna Sedim. C DOM

## 0.000000 0.000000 166.361974 246.408840

Knowing which nodes are not at steady state and how far off they are can help model construction and
manual balancing steps. It is also a handy tool to ensure that models are imported correctly into the package.

Output Orientation

To facilitate package use by the existing ENA community, some of which use the column-to-row orientation
(e.g. the Patten School), we have created orientation functions that enable the user to set the expected output
orientation for functions written in a particular “school” of analysis. Thus, functions from either school will
receive network models with the standard row-to-column, but will return output with flow matrices oriented
in the column-to-row orientation when appropriate (i.e. Patten school functions) and return them in that
same orientation.

Here is an example of how to use the model orientation functions to re-orient the output from enaFlow:

## Check the current orientation

get.orient()

## [1] "rc"

## enaFlow output in row-column

flow.rc <- enaFlow(oyster)$G

## Set the global orientation to school

set.orient('school')

## Warning in set.orient("school"): NOTE: output of functions from a

## particular analytical school will be returned in the standard orientation

## of that school.
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## Check that it worked

get.orient()

## [1] "school"

## enaFlow output in column-row

flow.cr <- enaFlow(oyster)$G

## Check. Outputs should be transposed from each other.

all(flow.rc == flow.cr)

## [1] FALSE

all(flow.rc == t(flow.cr))

## [1] TRUE

## Now change back to the default orientation ('rc')

set.orient('rc')

Matrix Exponentiation

Matrix powers – raising a matrix to a power is not a native operation in R. Thus, the enaR package includes
a function mExp to facilitate this matrix operation commonly used in ENA. Here we illustrate raising the
oyster reef output-oriented direct flow intensity matrix to the power 2, G2:

mExp(F$G,2)

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders 0 0.1397606 0.12440966 0.01099840

## Microbiota 0 0.0000000 0.00000000 0.01150080

## Meiofauna 0 0.1835203 0.16336297 0.01444205

## Deposit Feeders 0 0.2789476 0.24830879 0.02195166

## Predators 0 0.1746313 0.15545033 0.01374254

## Deposited Detritus 0 0.0000000 0.05416549 0.07962750

## Predators Deposited Detritus

## Filter Feeders 0.000000000 0.005891414

## Microbiota 0.010118608 0.185945731

## Meiofauna 0.005343446 0.059228112

## Deposit Feeders 0.000000000 0.032622730

## Predators 0.000000000 0.000000000

## Deposited Detritus 0.001980437 0.185314635

netOrder

Sometimes it is helpful to reorder the nodes in a network. While a simple re-ordering should not change
the linear algebra based enaR results, it can be helpful to present results or for the construction of some
algorithms. Thus, the netOrder function lets the user reorder the nodes in a network to any specified vector.

troModels[[6]]%v%'vertex.names' # original node name order

## [1] "PLANTS" "BACTERIA" "DETRITUS FEEDERS"

## [4] "CARNIVORES" "DETRITUS"

new.network <- netOrder(troModels[[6]], c(1, 3, 2, 5, 4))

# new.network is the rearranged network with nodes in the desired order.
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new.network%v%'vertex.names' # new node name order

## [1] "PLANTS" "DETRITUS FEEDERS" "BACTERIA"

## [4] "DETRITUS" "CARNIVORES"

as.matrix(new.network, attr="flow")

## PLANTS DETRITUS FEEDERS BACTERIA DETRITUS CARNIVORES

## PLANTS 0 0 0 200 0

## DETRITUS FEEDERS 0 0 0 167 8881

## BACTERIA 0 2309 0 1600 0

## DETRITUS 0 5205 75 0 0

## CARNIVORES 0 0 0 370 0

Note that this will also change the order for the model flows, as the whole network data object has been
reordered.

as.extended

The as.extended function returns the extended flow matrix. This matrix builds a composite matrix for the
internal flows and the boundary fluxes. Ulanowicz’s often denotes this as the T(n+3)×(n+3) matrix, though it

has also been called the fat flow matrix and denoted as F̂(n+3)×(n+3). This is defined as follows.

F̂ =









F export respiration 0
0 0 0 0
0 0 0 0

imports 0 0 0









(4)

For example, we can get the F̂ for the oyster model as

fat <- as.extended(oyster)

fat

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders 0.00 0.0000 0.0000 0.0000

## Microbiota 0.00 0.0000 1.2060 1.2060

## Meiofauna 0.00 0.0000 0.0000 0.6609

## Deposit Feeders 0.00 0.0000 0.0000 0.0000

## Predators 0.00 0.0000 0.0000 0.0000

## Deposited Detritus 0.00 8.1721 7.2745 0.6431

## 0.00 0.0000 0.0000 0.0000

## 0.00 0.0000 0.0000 0.0000

## import 41.47 0.0000 0.0000 0.0000

## Predators Deposited Detritus export respiration

## Filter Feeders 0.5135 15.7910 0 25.1650 0

## Microbiota 0.0000 0.0000 0 5.7600 0

## Meiofauna 0.0000 4.2403 0 3.5794 0

## Deposit Feeders 0.1721 1.9076 0 0.4303 0

## Predators 0.0000 0.3262 0 0.3594 0

## Deposited Detritus 0.0000 0.0000 0 6.1759 0

## 0.0000 0.0000 0 0.0000 0

## 0.0000 0.0000 0 0.0000 0

## import 0.0000 0.0000 0 0.0000 0
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dim(fat)

## [1] 9 9

network.size(oyster)

## [1] 6

signs

The signs function can be applied to any square matrix to determine a number qualitative features. The
function returns:

• a sign matrix in which the elements indicate whether the elements were positive (+), negative (-), or
neutral (0).

• a relations matrix showing the pairwise qualitative relationships among the matrix elements.
• the rs.tab that summarizes the pairwise relationships in tabular form. This also provides the common

ecological interpretation of the relationship (e.g., (+,+) is a mutualism).
• relationships.counts summarizes the number of the different qualitative relationships found in the

matrix.

mti <- enaMTI(oyster) # calculate Mixed Trophic Impacts

signs(mti$M) # find the signs for the integral utility matrix

## $sign

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders "-" "+" "+" "+"

## Microbiota "-" "-" "-" "+"

## Meiofauna "-" "-" "-" "+"

## Deposit Feeders "-" "-" "-" "-"

## Predators "-" "+" "-" "-"

## Deposited Detritus "-" "+" "+" "+"

## Predators Deposited Detritus

## Filter Feeders "+" "+"

## Microbiota "+" "-"

## Meiofauna "+" "-"

## Deposit Feeders "+" "+"

## Predators "-" "-"

## Deposited Detritus "+" "-"

##

## $relations

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders "(-,-)" "(-,+)" "(-,+)" "(-,+)"

## Microbiota "0" "(-,-)" "(-,-)" "(-,+)"

## Meiofauna "0" "0" "(-,-)" "(-,+)"

## Deposit Feeders "0" "0" "0" "(-,-)"

## Predators "0" "0" "0" "0"

## Deposited Detritus "0" "0" "0" "0"

## Predators Deposited Detritus

## Filter Feeders "(-,+)" "(-,+)"

## Microbiota "(+,+)" "(+,-)"

## Meiofauna "(-,+)" "(+,-)"

## Deposit Feeders "(-,+)" "(+,+)"

## Predators "(-,-)" "(+,-)"

## Deposited Detritus "0" "(-,-)"
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##

## $rs.tab

## From To Relationship R.name

## 1 Filter Feeders Filter Feeders (-,-) competition

## 2 Filter Feeders Microbiota (-,+) predation

## 3 Filter Feeders Meiofauna (-,+) predation

## 4 Filter Feeders Deposit Feeders (-,+) predation

## 5 Filter Feeders Predators (-,+) predation

## 6 Filter Feeders Deposited Detritus (-,+) predation

## 7 Microbiota Microbiota (-,-) competition

## 8 Microbiota Meiofauna (-,-) competition

## 9 Microbiota Deposit Feeders (-,+) predation

## 10 Microbiota Predators (+,+) mutualism

## 11 Microbiota Deposited Detritus (+,-) altruism

## 12 Meiofauna Meiofauna (-,-) competition

## 13 Meiofauna Deposit Feeders (-,+) predation

## 14 Meiofauna Predators (-,+) predation

## 15 Meiofauna Deposited Detritus (+,-) altruism

## 16 Deposit Feeders Deposit Feeders (-,-) competition

## 17 Deposit Feeders Predators (-,+) predation

## 18 Deposit Feeders Deposited Detritus (+,+) mutualism

## 19 Predators Predators (-,-) competition

## 20 Predators Deposited Detritus (+,-) altruism

## 21 Deposited Detritus Deposited Detritus (-,-) competition

##

## $relationship.counts

##

## (-,-) (-,+) (+,-) (+,+)

## 7 9 3 2

Multi-Model Analyses (Batch Processing)

While many investigators analyze single models, much of ENA is used to compare ecosystem models (Baird,
McGlade, and Ulanowicz 1991; Oevelen et al. 2006; Christian and Thomas 2003; Niquil et al. 2012; Hines et
al. 2015). Investigators have also analyzed large sets of models to determine the generality of hypothesized
ecosystem properties (Christensen 1995; Borrett and Salas 2010; Salas and Borrett 2011). For both of these
applications, investigators need to analyze multiple models. One advantage of the enaR R package is that it
simplifies this batch processing. Here we illustrate how to batch analyze a selection of models.

Our first step is to build an R list data object with ecosystem network models to batch analyze as the
elements of the list. To illustrate batch processing, we will use a subset of the trophic models distributed
with enaR, which are already stored as a list.

data(troModels)

Now that we have the models loaded, we can start to manipulate them. Once we have balanced the models,
we can run the flow analysis on them. We are using the lapply function to iterate the analysis across the list
of models stored in model.list. This approach is more compact and computationally efficient than a using
for-loop.

# balance models as necessary

m.list <- lapply(troModels[1:10],balance) # selected first 10 models in the list

## [1] BALANCED

## [1] BALANCED
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## [1] BALANCED

## [1] BALANCED

## [1] BALANCED

## [1] BALANCED

## [1] BALANCED

## [1] BALANCED

## [1] BALANCED

## [1] BALANCED

# check that models are balanced

unlist(lapply(m.list,ssCheck))

## Marine Coprophagy (oyster) Lake Findley

## TRUE TRUE

## Mirror Lake Lake Wingra

## TRUE TRUE

## Marion Lake Cone Springs

## TRUE TRUE

## Silver Springs English Channel

## TRUE TRUE

## Oyster Reef Baie de Somme

## TRUE TRUE

## If balancing fails, you can use force.balance

## to repeatedly apply the balancing procedure

## although this is not the case with our model set

m.list <- lapply(m.list,force.balance)

## Check that all the models are balanced

all(unlist(lapply(m.list,ssCheck)))

## [1] TRUE

## Example Flow Analysis

F.list <- lapply(m.list, enaFlow)

## The full results of the flow analysis is now stored in the elements

## of the F.list. To get the results for just the first model:

F.list[[1]]

## $T

## SHRIMP BENTHIC ORGANISMS SHRIMP FECES & BACTERIA

## 124.1 323.7 21.9

## BENTHIC FECES & BACTERIA

## 79.6

##

## $G

## SHRIMP BENTHIC ORGANISMS SHRIMP FECES & BACTERIA

## SHRIMP 0 0.0000000 0.1764706

## BENTHIC ORGANISMS 0 0.0000000 0.0000000

## SHRIMP FECES & BACTERIA 0 0.6986301 0.0000000

## BENTHIC FECES & BACTERIA 0 0.6645729 0.0000000

## BENTHIC FECES & BACTERIA

## SHRIMP 0.0000000

## BENTHIC ORGANISMS 0.2459067

## SHRIMP FECES & BACTERIA 0.0000000
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## BENTHIC FECES & BACTERIA 0.0000000

##

## $GP

## SHRIMP BENTHIC ORGANISMS SHRIMP FECES & BACTERIA

## SHRIMP 0 0.00000000 1

## BENTHIC ORGANISMS 0 0.00000000 0

## SHRIMP FECES & BACTERIA 0 0.04726599 0

## BENTHIC FECES & BACTERIA 0 0.16342292 0

## BENTHIC FECES & BACTERIA

## SHRIMP 0

## BENTHIC ORGANISMS 1

## SHRIMP FECES & BACTERIA 0

## BENTHIC FECES & BACTERIA 0

##

## $N

## SHRIMP BENTHIC ORGANISMS SHRIMP FECES & BACTERIA

## SHRIMP 1 0.1473716 0.1764706

## BENTHIC ORGANISMS 0 1.1953471 0.0000000

## SHRIMP FECES & BACTERIA 0 0.8351055 1.0000000

## BENTHIC FECES & BACTERIA 0 0.7943953 0.0000000

## BENTHIC FECES & BACTERIA

## SHRIMP 0.03623966

## BENTHIC ORGANISMS 0.29394387

## SHRIMP FECES & BACTERIA 0.20535805

## BENTHIC FECES & BACTERIA 1.19534712

##

## $NP

## SHRIMP BENTHIC ORGANISMS SHRIMP FECES & BACTERIA

## SHRIMP 1 0.05649926 1

## BENTHIC ORGANISMS 0 1.19534712 0

## SHRIMP FECES & BACTERIA 0 0.05649926 1

## BENTHIC FECES & BACTERIA 0 0.19534712 0

## BENTHIC FECES & BACTERIA

## SHRIMP 0.05649926

## BENTHIC ORGANISMS 1.19534712

## SHRIMP FECES & BACTERIA 0.05649926

## BENTHIC FECES & BACTERIA 1.19534712

##

## $TCC

## [,1] [,2] [,3] [,4]

## [1,] 0 0.1232877 0.1764706 0.03031726

## [2,] 0 0.1634229 0.0000000 0.24590670

## [3,] 0 0.6986301 0.0000000 0.17179783

## [4,] 0 0.6645729 0.0000000 0.16342292

##

## $TDC

## [,1] [,2] [,3] [,4]

## [1,] 0 0.05649926 1 0.05649926

## [2,] 0 0.16342292 0 1.00000000

## [3,] 0 0.05649926 0 0.05649926

## [4,] 0 0.16342292 0 0.16342292

##

## $ns

## Boundary TST TSTp APL FCI BFI DFI IFI
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## [1,] 379.6 549.3 928.9 1.44705 0.1199863 0.6910614 0.1542493 0.1546893

## ID.F ID.F.I ID.F.O HMG.I HMG.O AMP.I AMP.O mode0.F

## [1,] 1.002852 0.3603839 0.6126851 2.014161 1.891504 1 0 379.6

## mode1.F mode2.F mode3.F mode4.F

## [1,] 103.7915 65.90846 103.7915 379.6

We can use the same technique to extract specific information, like just the ratio of Indirect-to-Direct flow for
each model.

## Example of extracting just specific information - Indirect Effects Ratio

IDs <- unlist(lapply(m.list, function(x) enaFlow(x)$ns[9]))

## Look at the first few ID's

head(IDs)

## Marine Coprophagy (oyster) Lake Findley

## 1.002852 1.723221

## Mirror Lake Lake Wingra

## 1.861121 1.861719

## Marion Lake Cone Springs

## 2.175878 1.023016

We can also collect the set of output-oriented integral flow matrices.

## Here is a list containing only the

## output-oriented integral flow matrices

N.list <- lapply(m.list,function(x) enaFlow(x)$N)

We can also apply the get.ns function to extract all of the network statistics for each model. We then use the
do.call function to reshape the network statistics into a single data frame.

## Collecting and combining all network statistics

ns.list <- lapply(m.list,get.ns) # returns as list

ns <- do.call(rbind,ns.list) # ns as a data.frame

## Let's take a quick look at some of the output

colnames(ns) # return network statistic names.

## [1] "n" "L" "C"

## [4] "LD" "ppr" "lam1A"

## [7] "mlam1A" "rho" "R"

## [10] "d" "no.scc" "no.scc.big"

## [13] "pscc" "Boundary" "TST"

## [16] "TSTp" "APL" "FCI"

## [19] "BFI" "DFI" "IFI"

## [22] "ID.F" "ID.F.I" "ID.F.O"

## [25] "HMG.I" "HMG.O" "AMP.I"

## [28] "AMP.O" "mode0.F" "mode1.F"

## [31] "mode2.F" "mode3.F" "mode4.F"

## [34] "H" "AMI" "Hr"

## [37] "CAP" "ASC" "OH"

## [40] "ASC.CAP" "OH.CAP" "robustness"

## [43] "ELD" "TD" "A.input"

## [46] "A.internal" "A.export" "A.respiration"

## [49] "OH.input" "OH.internal" "OH.export"

## [52] "OH.respiration" "CAP.input" "CAP.internal"

## [55] "CAP.export" "CAP.respiration" "TSS"

## [58] "CIS" "BSI" "DSI"

## [61] "ISI" "ID.S" "ID.S.I"

## [64] "ID.S.O" "HMG.S.O" "HMG.S.I"
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## [67] "NAS" "NASP" "mode0.S"

## [70] "mode1.S" "mode2.S" "mode3.S"

## [73] "mode4.S" "lam1D" "relation.change.F"

## [76] "synergism.F" "mutualism.F" "lam1DS"

## [79] "relation.change.S" "synergism.S" "mutualism.S"

dim(ns) # show dimensions of ns matrix

## [1] 78 81

ns[1:5,1:5] # show selected results

n L C LD ppr

Marine Coprophagy (oyster) 4 4 0.250 1.0 1.000000
Lake Findley 4 6 0.375 1.5 1.004975
Mirror Lake 5 9 0.360 1.8 1.324718
Lake Wingra 5 10 0.400 2.0 2.000000
Marion Lake 5 9 0.360 1.8 1.324718

Given this data frame of network statistics, we can construct interesting plots for further analysis. Here we
focus on results of the St. Marks Seagrass ecosystem (Baird, Luczkovich, and Christian 1998).

opar <- par(las=1,mar=c(9,7,2,1),xpd=TRUE,mfrow=c(1,2),oma=c(1,1,0,0))

## Number of models

x=dim(ns)[1]

m.select <- 26:31

bp=barplot(ns$ID.F[m.select],ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

col="darkgreen",border=NA,ylim=c(0,2))

## Add labels

text(bp,-0.05,

labels=rownames(ns)[m.select],

srt=45,adj=1,cex=0.85)

opar <- par(xpd=FALSE)

abline(h=1,col="orange",lwd=2)

#

plot(ns$FCI,ns$ID.F,pch=20,col="blue",cex=2,

ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

xlab="Finn Cycling Index (FCI)",

xlim=c(0,0.8),ylim=c(0,8))
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## Remove the plotting parameters

rm(opar)

A strength of this software is the ease with which users can apply ENA to multiple models. We expect that
this will simplify users’ analytic workflows and reduce the time required to conduct the work.

Connecting to Other Useful Software

Another advantage of building the enaR package in R is that it lets ecologists take advantage of other types
of network analysis and statistical tools that already exist in R. We highlight three examples here.

network

enaR uses the network data object introduced in the network package (Butts 2008a). One advantage of
using this data object is that analysts can then use the tools for network construction and manipulation
that are part of the network package. For example, network can import network models from Pajek project
files, which is another widely used network modeling and analysis software (Batagelj and Mrvar 2007). The
package also includes functions to seamlessly add and delete nodes (edges). It also provides the capability to
visualize the network shown previously.

sna: Social Network Analysis

The sna package for Social Network Analysis is bundled in the statnet package and uses the same network
data object defined in network. Thus, the design decision to use the network data object gives users direct
access to sna tools.
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Figure 3: Ratio of Indirect-to-Direct Flow for six ecosystem models (left) and relationship between the Finn
Cycling Index and the ratio of Indirect-to-Direct flow in the 74 ecosystem models.

As an example, the sna package provides a way of calculating several common centrality measures. Thus,
ecologists can now use the sna algorithms to determine different types of centrality for their models. This
includes betweenness and closeness centrality as follows:

sna::betweenness(oyster)

## [1] 0.0 0.0 0.5 3.5 0.0 9.0

sna::closeness(oyster)

## [1] 0.625 0.000 0.000 0.000 0.000 0.000

The sna package introduced new graphical capabilities as well. For example, it will create a target diagram
to visualize the centralities.

m <- m.list[[17]] # Okefenokee Food Web

## Calculate betweenness centrality

b <- sna::betweenness(m)

## Get vertex names

nms <- m%v%'vertex.names'

show(nms)

## [1] "Peat decomposers"

## [2] "Detritus decomposers"

## [3] "Nitrogen fixing and nitrifying bacteria"

## [4] "Autotrophic macrophytes"

## [5] "Carnivorous macrophytes"

## [6] "Phytoplankton"
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## [7] "Periphyton"

## [8] "Filamentous algae"

## [9] "Herbivorous microinvertebrates"

## [10] "Predaceaous microinvertebrates"

## [11] "Saprotrophic microinvertebrates"

## [12] "Algae-eating macroinvertebrates"

## [13] "Macrophyte-eating macroinvertebrates"

## [14] "Microinvertebrate-eating macroinvertebrates"

## [15] "Macroinvertebrate-eating macroinvertebrates"

## [16] "Vertebrate-eating macroinvertebrates"

## [17] "Saprotrophic macroinvertebrates"

## [18] "Algae-eating vertebrates"

## [19] "Macrophyte-eating vertebrates"

## [20] "Microinvertebrate-eating vertebrates"

## [21] "Macroinvertebrate-eating vertebrates"

## [22] "Vertebrate-eating vertebrates"

## [23] "Saprotrophic vertebrates"

## [24] "Superficial peat"

## [25] "Non-peat detritus"

## [26] "Nutrients"

## Exclude less central node names

nms[b<=(0.1*max(b))] <- NA

set.seed(2)

opar <- par(xpd=TRUE,mfrow=c(1,1))

## Create target plot showing only

## labels of most central nodes

sna::gplot.target(m,b,

edge.col="grey",

label=nms)

Nitrogen fixing and nitrifying bacteria

Carnivorous macrophytes

Herbivorous microinvertebrates

Saprotrophic microinvertebrates

Macroinvertebrate−eating vertebrates

Non−peat detritus
Nutrients

169.3150.5131.7112.994.175.356.437.618.80

## Remove plot settings

rm(opar)

{r, fig=TRUE,echo=FALSE,eval=TRUE,fig.cap="Target plot of node betweenness centrality

for the Okefenokee Swamp trophic model."} <<target>>

In addition to the node-level measures, sna includes graph-level indices.
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Filter Feeders

Microbiota
Meiofauna

Deposit Feeders

Predators

Deposited Detritus

Figure 4: Plot of Oyster reef model using iGraph

iGraph

The iGraph package can also be useful for analyzing network data. Here are a few examples of using the
package. Note that some functions in iGraph conflict with other functions already defined, so care is required
when using iGraph.

## The adjacency matrix

A <- St$A

## Creating an iGraph graph

g <- igraph::graph.adjacency(A)

plot(g)

Filter Feeders

Microbiota

Meiofauna

Deposit Feeders

Predators

Deposited Detritus

iGraph has a different set of visualization tools and generates a different looking plot.

## Betweenness centrality (calculated by iGraph and sna)

igraph::betweenness(g)

## Filter Feeders Microbiota Meiofauna

## 0.0 0.0 0.5

## Deposit Feeders Predators Deposited Detritus

## 3.5 0.0 9.0
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## Shortest path between any two nodes

igraph::shortest.paths(g)

## Filter Feeders Microbiota Meiofauna Deposit Feeders

## Filter Feeders 0 2 2 2

## Microbiota 2 0 1 1

## Meiofauna 2 1 0 1

## Deposit Feeders 2 1 1 0

## Predators 1 2 2 1

## Deposited Detritus 1 1 1 1

## Predators Deposited Detritus

## Filter Feeders 1 1

## Microbiota 2 1

## Meiofauna 2 1

## Deposit Feeders 1 1

## Predators 0 1

## Deposited Detritus 1 0

## Average path length in the network (graph theory sense)

igraph::average.path.length(g,directed=TRUE)

## [1] 1.52

## Diameter of the graph

igraph::diameter(g)

## [1] 2

## Connectivity of the group and sub-components

igraph::vertex.connectivity(g) # connectivity of a graph (group cohesion)

## [1] 0

igraph::subcomponent(g,1,'in') # subcomponent reachable from 1 along inputs

## + 1/6 vertex, named, from 60df8c7:

## [1] Filter Feeders

igraph::subcomponent(g,2,'in') # subcomponent reachable from 2 along inputs

## + 6/6 vertices, named, from 60df8c7:

## [1] Microbiota Deposited Detritus Filter Feeders

## [4] Meiofauna Deposit Feeders Predators

igraph::subcomponent(g,1,'out') # subcomponent reachable from 1 along outputs

## + 6/6 vertices, named, from 60df8c7:

## [1] Filter Feeders Predators Deposited Detritus

## [4] Microbiota Meiofauna Deposit Feeders

igraph::subcomponent(g,2,'out') # subcomponent reachable from 2 along output

## + 5/6 vertices, named, from 60df8c7:

## [1] Microbiota Meiofauna Deposit Feeders

## [4] Deposited Detritus Predators

igraph::edge.connectivity(g)

## [1] 0
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bipartite

The bipartite package provides as set of functions largely developed directly from community ecology for the
analysis of two-mode networks (e.g. plant-pollinator, plant-disperser, predator-prey). To facilitate analysis
of ecosystem networks using the bipartite toolbox, we created a simple function for converting ecosystem
models in the network format to a bipartite matrix. Here’s a quick example using the Oyster Reef model
(Dame and Patten 1981) where we create a vector of “membership” to divide the ecosystem compartments to
create a bipartite network.

as.bipartite(x = oyster, y = gl(2, 3))

## Deposit Feeders Predators Deposited Detritus

## Filter Feeders 0.0000 0.5135 15.7910

## Microbiota 1.2060 0.0000 0.0000

## Meiofauna 0.6609 0.0000 4.2403

EcoNet

The EcoNet software is an online, web-interface that provides a tool box for dynamic modeling and ENA
analytics (Kazanci 2007). We have provided a write function that enables enaR users to output models for
easy input into the EcoNet interface. The EcoNet package and details on the model input syntax can be
found at http://eco.engr.uga.edu. Here is an example of how to use the write.EcoNet function in enaR in
your current working directory:

data(oyster)

write.EcoNet(oyster, file = 'oyster.txt', mn = 'oyster_model')

oyster <- read.EcoNet(file = 'oyster.txt')

Models can also be read from the set hosted on the EcoNet website. If you know the name of the model that
you want, you can request it directly. If not, you can leave the input empty to receive a prompt detailing the
list of models:

EcoNetWeb(model.name = "Intertidal Oyster Reef Ecosystem Model")

EcoNetWeb()

Conclusion

These examples show how to use the key features of the enaR package that enables scientists to perform
Ecosystem Network Analysis in R. The vision for this package is that it provides access to ENA algorithms
from both the Ulanowicz and Patten Schools to facilitate theoretical synthesis and broader application. In its
current form it replicates, updates, and extends the functionality of the NEA.m function (Fath and Borrett
2006) and replicates much of the main analyses in NETWRK (Ulanowicz and Kay 1991). Through the
connections that enaR provides to other R packages users can connect to other network analyses provided by
packages, such as sna and iGraph. There are other R packages that have graph and network analysis tools,
like Bioconductor, WGCNA, tnet and rmangal, that might also be useful for ecologists. Our aim is for enaR

to serve as a nexus for the introduction of analyses from the broader field of network theory into ecology. In
addition, we would like to invite users to connect, collaborate and contribute to development of ENA theory
and enaR. Programmers that are interested can visit https://github.com/SEELab/enaR_development for
more information on how to contribute to development of the enaR package.
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