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Abstract

The R package econet provides methods for estimating parameter-dependent network
centrality measures with linear-in-means models. Both nonlinear least squares and max-
imum likelihood estimators are implemented. The methods allow for both link and node
heterogeneity in network effects, endogenous network formation and the presence of uncon-
nected nodes. The routines also compare the explanatory power of parameter-dependent
network centrality measures with those of standard measures of network centrality. Ben-
efits and features of the econet package are illustrated using data from Battaglini and
Patacchini (2018), which examine the determinants of US campaign contributions when
legislators care about the behavior of other legislators to whom they are socially connected.

Keywords: network econometrics, heterogeneous peer effects, endogenous network formation,
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1. Introduction

Since its inception, network analysis has mostly focused on the discovery of topological prop-
erties of network structures. This has changed dramatically over the past ten years. An
emerging literature in economics has shown that network centrality measures, which were tra-
ditionally viewed as descriptive, have an interpretation within equilibrium models of behavior.
The pioneer paper is Ballester, Calv6-Armengol, and Zenou (2006). This paper considers a
model in which an agent’s effort is triggered by the effort of his/her socially connected peers. It
shows that the equilibrium outcome is a linear function of the agent’s position in the network
as measured by an indicator within the family of Katz-Bonacich centralities. Katz-Bonacich
centralities (Katz 1953; Bonacich 1972, 1987) are network centrality measures that count all
nodes that can be reached through a direct or indirect path, penalizing in different ways the
contributions of distant nodes in determining a given node’s centrality. The discount factor
is captured by a parameter, thus making the measures of centrality parameter-dependent.
The sociological literature has been treating this parameter as a nuisance parameter, and
arbitrarily setting it to any value smaller than one. However, the contribution of Ballester
et al. (2006) is to show that this parameter captures the strength of peer effects or social
interactions that stem from the aggregation of dyadic peer influences. More specifically, the
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empirical counterpart of the Ballester et al. (2006) equilibrium condition is a linear model of
social interactions, where the individual outcome is a linear function of the outcomes of the
connected agents. The parameter capturing this influence is then used to measure the indi-
vidual’s importance in the network. Since then, a burgeoning empirical literature has used
the linear-in-means model to prove that peer effects and the individual position in the social
network play an important role in explaining many social and economic outcomes, including
consumer behavior, voting patterns, job search, information diffusion, innovation adoption,
international trade and risk sharing (see e.g. Jackson, Rogers, and Zenou 2017; Zenou 2016,
for recent reviews)

Very recently Battaglini and Patacchini (2018) present a new theory of competitive vote-
buying to study how interest groups allocate campaign contributions when legislators care
about the behavior of other legislators to whom they are socially connected. The model
provides an alternative microfoundation for network measures within the family of Katz-
Bonacich centralities. This theory predicts that, in equilibrium, campaign contributions are
proportional to a parameter-dependent measure of network centrality, similar to the one
proposed by Ballester et al. (2006). While Ballester et al. (2006) is a purely theoretical paper,
Battaglini and Patacchini (2018) test the theory with data from five recent U.S. Congresses.
In doing so, it confronts a variety of empirical challenges. For example, the theories described
above show the importance of combining the information on network centrality with additional
information on characteristics of the agents, since these characteristics can magnify or reduce
the role played by a central agent. Moreover, the theories provide a framework to study the
role of network endogeneity. In fact, when agents are strategic in choosing their peers, and
omitted variables (such as social skills) drive both agent’s behavior and social connectedness,
the estimation of the peer effects parameter might be flawed (Manski 1993).

The routines contains in the package econet for R (R Core Team 2017) allow for implemen-
tation of a number of variations of the linear-in-means model to obtain alternative centrality
measures within the family of Katz-Bonacich centrality. Both nonlinear least squares (NLLS)
and maximum likelihood (ML) estimators are provided. Several methods for dealing with the
identification of network effects are implemented. Moreover, the econet package allows for
comparison of the explanatory power of parameter-dependent network centrality measures
with those of standard measures of network centrality (Wasserman and Faust 1994). As a
result, econet expands the large set of tools available to R users interested in network analysis.
Specifically, it has at least four merits. First, it complements the R packages implementing tra-
ditional centrality measures for binary networks, igraph (Csardi 2018) and sna (Butts 2016),
and weighted networks, tnet (Opsahl 2015), by introducing new eigensolutions-based tech-
niques to rank agents’ centrality. Second, whereas previous packages, such as btergm (Leifeld,
Cranmer, and Desmarais 2018a), hergm (Schweinberger, Handcock, and Luna 2018), the stat-
net suite (Handcock et al. 2016), and xergm (Leifeld, Cranmer, and Desmarais 2018b), created
environments for modeling the statistical processes underlying network formation, econet pro-
vides the first framework to investigate the socio-economic processes operating on networks
(i.e. peer effects). Third, it completes the collection of functions for modeling spatial depen-
dence in cross-sectional data provided by spdep (Bivand et al. 2018) and splm (Millo and
Piras 2017), by allowing the users to: i) consider the presence of unconnected nodes, and ii)
address network endogeneity. Finally, it equips the R archive with routines still unavailable
in other commonly used software for the investigation of relational data, such as Matlab (The
MathWorks Inc 2007), Pajek (Batagelj and Mrvar 2003), Python (Python Software Foundation
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2018) and Stata (StataCorp. 2017). The example we use to showcase the functionality of our
R package is taken from Battaglini and Patacchini (2018) and Battaglini, Leone Sciabolazza,
and Patacchini (2018).

The rest of the paper is organized as follows. Section 2 briefly reviews the key elements for
the estimation of parameter-dependent centralities, and presents a general taxonomy of the
different approaches used to model the socio-economic processes operating on the network.
Section 3 lays out various models and methods to deal with network endogeneity. Section
4 demonstrates the use of the main functions of the package econet to determine agent’s
centrality with examples. Section 5 concludes.

2. Network models of peer effects

Let N = {1,...,n} be a finite set of agents in a network g = gn. We keep track of connections
in the network ¢ through its adjacency matrix G = [g;j], where g;; = 1 if ¢ is connected to
J (j #1) and g;; = 0 otherwise. We set g;; = 0. For each network g with adjacency matrix
G = [gij], the kth power of G given by GF = GG keeps track of direct and indirect
connections in g. More precisely, the (i, j)th cell of G* gives the number of paths of length &
in g between i and j. In particular, G0 = I.

Definition 1 (Katz, 1953; Bonacich, 1987) Given a vector w € R, and ¢ > 0 a small
enough scalar, the vector of Katz-Bonacich centralities of parameter ¢ in network g is defined
as:

blg,d) = (I —6G) ' u=3 #GPu. W
p=0

The first order necessary and sufficient condition for optimality in the behavioral model
developed by Battaglini and Patacchini (2018), BP henceforth, can be written as:

ye=a (I -¢G) " +XIB+e, (2)

where y, is the vector of outcomes for the n players in network r, X, is a matrix collecting
the characteristics of the agents and ¢, is a random error term. The coefficients «, ¢ and 3
are the parameters to estimate. Model 2 can be written as

yr=a-bi(g,¢)+ X B +er, (3)
where by (g,¢) = b(g, ¢) from equation 1 when u = 1.
For a sample with 7 networks, one can stack up the data by defining y = (y{, e ,y?)T, €=

T
(6{7 T ,E?)T, b((b) = (b (ga ¢)T ooy b (97 ¢)T) ) G = dia‘g{GT}rf*zlv and X = (X1T7 7XFT)
For the entire sample, the model is:

y=a-b(g)+ X3 +e (4)

We extend model 4 by accounting for heterogeneity in network spillovers. Specifically, model 4
becomes:

=a[l —G(pI +yN)] "1+ XB+e¢ (5)

where A = I ® z is a matrix with the values in the vector z on the diagonal, and all other
values are 0. The vector z represents a given characteristic of the agents. Consistently, the
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term ~ allows for the possibility that agents with different characteristics may be more or less
susceptible to social spillovers.

The first order necessary and sufficient condition for optimality in the behavioral model
developed by (Battaglini et al. 2018), BLP henceforth, is:

yr = (I - ¢G)_1 (a + Xfﬁ) + e (6)

which can be rewritten as:
yr =bs(g,0) + € (7)

where bz (g, ¢) = b(g, ¢) from (1) when u = (o + X/ 3). Equation 7 shows that, in this case
as well, the optimal behavior is proportional to a centrality measure within the Family 1.
When we consider the case where the parameter ¢ associated with network externalities is
not constant across agents, model 7 in matrix formulation becomes:

y=(I—-0AG) H(a+XB)+e¢ (8)

y=T—-nGA) Ha+ XpB)+e (9)

In equations 8 and 9, A is a diagonal matrix of ones. In equation 8, 8 = 0y + 01z, where 6
is a rescaling factor, and #; quantifies the interaction between the adjacency matrix G and
the vector z. Consequently, #; measures the extent to which the peers of an agent with a
given characteristic are susceptible to her/his influence. Similarly, in equation 9, n = no+mn:2,
where 79 is a rescaling factor, and 7; measures the extent to which an agent with a given
characteristic z is more susceptible to the influence of her/his peers.

In addition, BLP also consider the possibility of heterogeneous links (rather than nodes). We
consider the case in which agents belong to two different groups and interactions are different
between and within groups. To allow for group effects, one can reorder the matrix GG so that
the first n1 columns refer to agents in the first group, and the other ny = n —n; columns refer
to agents in the second group. The matrix G' can now be divided into four submatrices. The
submatrices in the main diagonal (of dimensions n; - n; and ng - ng) collect the interactions
within groups, whereas the remaining two submatrices (of dimensions nj - ny and ng - ng)
collect interactions between groups. G can thus be decomposed in two n-n matrices G+ and
Gptw, With G = Gyt + Gppw- Guit i1s a matrix that has the same top left and bottom right
components as GG and it is zero otherwise, and Gy, iS a matrix that has the same bottom
left and top right components as G and it is zero otherwise. As a result, model 7 becomes

y = (I — ¢1Guit — 92Gt) o+ XB) + € (10)

where ¢; captures within-group spillovers, and ¢2 between-group spillovers. The taxonomy of
models outlined above shows that centrality measures should be calculated according to the
most appropriate behavioral model describing the agents’ behaviors and the requested level
of heterogeneity of agents and network links. In BP and BLP we bring these theories to the
data and find support for their predictions in different contexts.
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2.1. Estimation

Models 4 and 7 cannot be estimated by a simple OLS regression in which y represents the
dependent variables and b(¢) and X are the independent variables because b(¢) is a nonlinear
function of a parameter to be estimated, ¢. We can, however, obtain estimates for o, ¢ and
5 using NLLS or ML.

The NLLS requests solving the nonlinear least-squares problem for equation 4 and 7. This
task is performed by econet using the Levenberg-Marquardt algorithm implemented in the R
package minpack.lm developed by Elzhov, Mullen, Spiess, and Bolker (2016).

The ML estimation requests ML functions that can be derived as follows, by assuming & ~
N(0,02I). For equation 4, assume ¢ ~ N(0,0%1), the log likelihood function is

In(L) = —% In (2@-% anQ—% ly—(1—6G) "1 - Xﬂ]/ ly— (1 —6G)"1= Xp] jo* (11)

where n is the total sample size. Equation 5 will have the same form as equation 4, except
substituting ¢G with G(¢I + vA).

In a similar fashion, we consider the following maximum likelihood functions for equation 7,
8, 9 and 10. For equation 7, the log likelihood function corresponding to 12 is:

y="mn) - 3ol -3 [y— (- 66) X @t [y— (1-66) X5 (12)

where Q = 02(I —¢G) (I —¢G") L. Equation 8, 9 and 10 have the same likelihood function
as above except substituting ¢G with AG or nGA or ¢1Gwit — p2Gpi- When the network is
sparse, isolates (i.e. individuals with no neighbors) will exist.In this case, we can modify the
likelihood function to expedite the process. Rewrite

G= ( Cixna - Onaxens ) (13)

0n2 Xn1 0n2 Xn1

where nq is the size of all connected individuals and ng is the sizes of isolates.

(I— CbG)_l = < (I_ (ﬁG%le)_l 01y 5y ) (14)

Ongxnl In2><7l1

/ / / / ! /
Define y = (yc , Yy ) and X = (X c.Xt ) . The likelihood function 12 can be transformed
into:

y= "l (2m) — S0y — = v —(1- ¢G°)—1X05]'91—1 lv° = (1 - 6G*) 71 x°8] +
5 e 1 (15)
+ 5 In@2m) = o’ — [y — XA [y~ X5

Where Q1 = 02(I — ¢G¢) (I — ¢G°) L.

Our package allows the adjacency matrix to be used as a direct input. This setting simplifies
the data processing procedure compared with other R packages like spdep when dealing with
social network data. Packages like spdep are designed for spatial data. In this environment,
the network data is required to be imported as neighbor pairs. However, social network data
differs from spatial data since isolates may exists (nodes that have no connection with all
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other nodes). Networks containing isolates are not compatible with the data structure for
packages like spdep.

Our package not only provides a way to get around this problem but also proposes an efficient
algorithm when including those isolates. Instead of inverting the entire adjacency matrix, we
show in the algebra above that one only needs to invert the adjacency matrix for connected
nodes. The likelihood function can be written as a sum of the spatial auto-regressive (SAR)
likelihood function for connected nodes and a standard linear likelihood function of isolates
(see equation 15).

3. Addressing network endogeneity

An important difference between the analysis of cross-sectional data dependence in social
science and in other disciplines (such as geography, physics, statistics and computer science)
is that in the social sciences the agents’ cross-sectional allocations are the result of the choices
of the agents as much as their behavior over the observed topologies. As a result, the data
structure (network topology) can be endogenous, and inference neglecting this issue would
be invalid. The simplest way to tackle the problem is to model network formation using a
homophily model (see e.g. Fafchamps and Gubert 2007; Mayer and Puller 2008; Lai and Reiter
2017; Apicella, Marlowe, Fowler, and Christakis 2012; Attanasio, Barr, Cardenas, Genicot,
and Meghir 2012) where the existence of a link between ¢ and j, g;j, is explained by the
distance between ¢ and j in terms of characteristics, according to the model

9ij =00+ Y _ O]zl — ab| + i (16)
l

where ! for [ = 1,...L are 4’s characteristics. As standard in the literature on dyadic link
formation, the main assumption underlying model 16 is dyadic independence, i.e., the as-
sumption that each agent’s choices are not influenced by others’ decisions, and therefore each
link in the network occurs with the same probability.

Fafchamps, Leij, and Goyal (2010) and Graham (2015) suggest a variation of this model
where this assumption can be tested. They suggest to include in the model the length of the
shortest distance between i and j Fafchamps et al. (2010), or the number of shared friends
between i and j Graham (2015).

Let us denote this additional variable, x; ;:

Gij =00 + Oakij + > Srrwlwh — ab + ui (17)
l

A statistically significant estimate of the parameter do would suggest that the presence of a
link depends on the presence of links at path lengths higher than 2 (or on the number of
shared friends), thus indicating a violation of the hypothesis of dyadic independence.

A different variation of model 16 is proposed by Graham (2016). The model in Graham
(2016) accounts for agents’ unobserved heterogeneity by adding fixed effects for agents i and

j:
Gij = 0o + 01wij + Z Syt — xé-l + &+ &5+ ui g, (18)

l
These models of network formation can help mitigate concerns about network endogeneity in
linear models of peer effects, such as models 4 and 7, in one of two ways:i) they can be used
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to predict network connections on the basis of exogenous agents’ characteristics and then use
the predicted network topology as an instrument for the actual network structure, or ii) they
can be used as a first step selection equation to derive a correction for network endogeneity
a la Heckman.

BLP follow approach ii). Under the assumption that e, = (g1, ...,en) and 9, = (U1 ooy Uinr)
are jointly normal with E(ei,,) =02, E(eiyuijr) = oen forall i # j, E(n; jrNikyr) = 0727 Vi=k,
and E(n;jrnikr) = 0Vj # k, the expected value of the error term conditional on the link
formation is E(€r|ni 103 Nin-1,) = ¢ - > j#i Mijrs Where ¥ = 067,/072]. It follows that
model 7 can be written as:

yr = [I - ¢G]_1 ’ [a -1+ XT’B+¢£T+ET‘] (19)

where &, = 3, uijr With § = (&irs --fn,r)/- The term &, now captures the selection
bias. The model can then be estimated with NLLS (see Section 2). Under these assumptions,
approach i) and approach ii) should produce similar results since both deliver consistent
estimators.

Under approach i), however, inference is complicated because the selectivity term ¢ is a gen-
erated regressor from a previous estimation and no closed form solution is available for the
NLLS standard errors estimates in a network context. For this reason, BLP use bootstrapped
standard errors. Because of the inherent structural dependency of network data, the design of
the resampling scheme for this bootstrap procedure needs special consideration. The residual
vector in equation 19 does not contain i.i.d. elements, and one cannot sample with replace-
ment from this vector. Then, BLP use the residual bootstrap procedure, which is common
in spatial econometrics (see Anselin 1990), where resampling is performed on the structural
errors, under the assumption that they are i.i.d. In practice, by having in hand the residual
vector, w, the vector of structural errors are derived from e = [I — ¢Gu.

An important challenge in using the two step procedures for both approach i) and ii) is finding
exclusion restrictions, that is factors that affect network formation only." This is notoriously
a difficult task. BLP use an original instrument: connections between agents which are made
during adolescence. Those connections are powerful predictors of social contacts later on in
life, but clearly predetermined to decisions taken in the adulthood.

4. Implementing econet

We now turn the discussion to the implementation of the functions contained in econet.
Econet implements the set of linear models of social interactions introduced in Section 2,
where an agent’s outcome is a function of the outcomes of the connected agents in the network.
The routines provide both NLLS and ML estimators. The possible sources of endogeneity that
could hinder the identification of a causal effect in the model can be addressed by implementing
the two-step correction procedures described in Section 3. The estimated parameter capturing
the impact of the social network on agent’s performance is then used to measure the individual

! Technically, the two step model is identified even using exactly the same set of regressors in both stages
since the dyad-specific repressors used in the first stage (the network formation stage) are expressed in absolute
values of differences. These differences do not appear in the outcome equation. Identification is thus achieved
by exploiting non-linearities specific to the network structure of our model. While this strategy has been used
in the applied network literature (see e.g. Goldsmith-Pinkham and Imbens 2013; Hsieh and Fei 2016), it may
be a tenous source of identification in some cases.
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Model | Hypothesis | Equation Centrality measure b (g, @)
Model A lim 4 ¢: homogeneous b(g,0)=(I—-¢G) 1
het 5 ¢: heterogenous by node type b(g,¢) = [I —G(oI +~A)]711
lim 7 ¢: homogeneous b(g.0)=(I—¢G) "1
Model B het_1 8 ¢: heterogenous outgoing influence b (g, ¢) = (I — IAG)~'1
by node type
het_r 9 ¢: heterogenous ingoing influence b(g,¢) = (I — nGA)~'1
by node type
par 10 ¢: heterogenous by link type b(g,0) = (I — ¢1Gwit2Gptw) 1

Table 1: Field specification in net_dep

importance in the network, obtaining a weighted version of Katz-Bonacich centrality. Finally,
the explanatory power of the parameter-dependent centrality can be compared with those
of standard measures of network centrality. It is worth emphasizing that econet allows the
inclusion of unconnected agents, for whom the Katz-Bonacich centrality is constant.

Specifically, econet provides four functions. The first one is net_dep, which allows one to
estimate a model of social interactions and compute the relative weighted Katz-Bonacich
centralities of the agents. Different behavioral models can be chosen (i.e. those provided by
BP and BLP). Moreover, the hypothesis of homogenous or heterogenous spillovers can be
tested. The second function is boot, which is built to obtain valid inference when the NLLS
estimator with Heckman correction is used. The third function is horse_race, which allows
one to compare the explanatory power of parameter-dependent centralities relative to other
centrality measures. The forth function is quantify, and it is used to assess the effect of
control variables in the framework designed by BLP.

4.1. Detailing the functions

The modeling choices presented so far are implemented by the function net_dep.

The first three arguments of this function are: i) formula, an object of class formula which
specifies the independent variable and the controls; ii) data, an object of class data.frame
containing the values of the variables included in formula, iii) G, an object of class Matrix
where the generic element g;; is used to track the connection between ¢ and j in the social
network. G can be unweighted (i.e. g;; = 1 if i and j are connected, and 0 otherwise),
or weighted (e.g., g;; collects the intensity of the relations between i and j) and column-
normalized. The matrix must be arranged in the same order of the data, and row and column
names must indicate agents’ ids.

The next two arguments in net_dep, model and hypothesis, are used to specify the model to
be estimated through an object of class character, as documented in Table 1. Specifically, the
argument model indicates the framework to be applied: i.e., it is set to Model_A or Model_B
to implement respectively the framework by BP and BLP. The argument hypothesis is
necessary to indicate whether peer effects are assumed to be homogeneous model = "1lim or
heterogeneous (model = c("het", "het_1", "het_r")).

The argument z is used to specify the source of heterogeneity for the peer effects parameter
¢ (i.e., the variable z in equation 5, 8, 9), or the groups in which the network should be
partitioned when model="par". Specifically, z is a numeric vector where the generic element
i refers to agent’s i characteristic (e.g. it takes 1 if 7 is a female, and 0 otherwise).
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In order to correct for the potential bias arising from network endogeneity, we include in the
function four arguments: i) endogeneity, a logical object equal to TRUE if net_dep should
implement the two-step correction procedure as e.g. in model 19, and FALSE otherwise; ii)
correction, an object of class character that is set to indicate whether net_dep should
implement a Heckman correction (correction = "heckman"), or an instrumental variable
approach (correction = "iv");iii) exclusion_restriction, an object of class Matrix used
to specify the matrix to instrument the endogenous network; iv) first_step, an object of
class character which specifies the network formation model to be used in the first step of
the procedure for both correction = "heckman" and correction = "iv". This argument
can be equal to standard (equation 16), shortest (equation 17, as in Fafchamps et al. 2010),
(equation 17, as in Graham 2015), fe (equation 18), degree, where the difference in degree
centrality between agents is an additional regressor of equation 16.

Finally, the argument estimation allows the user to choose the estimation technique. This is
an object of class character that can be one of two options: NLLS (nonlinear least squares),
which implements the Levenberg-Marquardt optimization algorithm for solving the nonlin-
ear least-squares problem using the function nlsLM contained in the R package minpack.lm
(Elzhov et al. 2016) or MLE (maximum likelihood), which uses the function mle2 of the R pack-
age bbmle to implement the quasi-Newton method by Bolker (2017) for maximum-likelihood
bound constrained optimization.

The output of net_dep consists of a list of three objects: i) the point estimates and relative
standard errors of the model’s parameters; ii) the vector of agents’ network centrality; iii)
the point estimates and relative standard errors of the parameters of the first stage model, if
endogeneity=TRUE.

We provide below a list of examples to illustrate the functionality of net_dep. Since in all
examples we reject the hypothesis of normality of the errors, the NLLS estimation method is
used.

Exercise 1: Katz-Bonacich centrality with parameter constant across agents

In the first example, we estimate the association between a congressman’s network centrality
and the amount of dollars he received from interest groups to finance his electoral campaign
for the 111th Congress using model 4. The variables used to control for the effect of legisla-
tors’ characteristics are: party affiliation (party); gender (gender); chairmanship (nchair);
whether or not the congressman has at least one connection in the network (isolate).

The network used for this exercise represents the connections between agents which are made
during adolescence. The network is constructed using information on the educational insti-
tutions attended by the congressmen. Specifically, we assume that a tie exists between two
congressmen if they graduated from the same institution within eight years of each other.
We set a link between two congressmen, g;;, to be equal to the number of schools they both
attended within eight years of each other; then we row normalize the social weights so that
>.; 9ij = 1 for any i. This analysis is a simplified version (in terms of both data and controls
included in the model specification) of the analysis in BP.

R> library("econet")

R> # Select data from the 111h congress
R> data("a_db_alumni")

R> data("G_alumni_111")
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R> db_model_A <- subset(a_db_alumni, time == 3)

R> G _model A <- a_G alumni_111

R> # Specify which variables are factors

R> are_factors <- c("party", "gender", "nchair", "isolate")

R> db_model_A[are_factors] <- lapply(db_model_A[are_factors] ,factor)
R> # Divide Dependent variable by 1e+06

R> db_model A$PAC <- db_model A$PAC/1e+06

R> # Specify formula

R> f_model_A <- formula("PAC ~ gender + party + nchair + isolate")
R> # Specify starting values

R> starting <- c(alpha = 0.47325, beta_genderl = -0.26991,

+> beta_partyl = 0.55883, beta_nchairl = -0.174009,

+> beta_isolatel = 0.18813, phi = 0.21440)

R> # Run net_dep

R> 1im _model_A <- net_dep(formula = f_model_A, data = db_model_A,
+> G = G_model_A, model = "model_A", estimation = "NLLS",

+> hypothesis = "lim", start.val = starting)

R> # Store results in different objects

R> lim estimate model A <- lim model A[[1]]

R> lim_centrality model_A <- 1im_model_A[[2]]

R> # Print results

R> summary(lim_estimate_model_A)

Formula: PAC ~ alpha * solve_block(I - phi * G) %xJ, Ones + beta_genderl * genderl +
beta_partyl * partyl + beta_nchairl * nchairl + beta_isolatel * isolatel

Parameters:

Estimate Std. Error t value Pr(>|tl)

alpha 0.47325 0.17969 2.634 0.00876 *x
beta_genderl -0.26991 0.10504 -2.570 0.01052 *
beta_partyl 0.55883 0.08363 6.682 T7.be—-11 **x
beta_nchairl -0.17409 0.19004 -0.916 0.36016
beta_isolatel 0.18813 0.18196 1.034 0.30178

phi 0.21440 0.27005 0.794 0.42768

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.815 on 420 degrees of freedom

Number of iterations to convergence: 2
Achieved convergence tolerance: 1.49e-08

In this model, the estimate of the intercept o directly measures the impact of the network
centrality. We find a positive effect of a legislator’s centrality on campaign contributions,
showing that more connected congressmen are likely to receive more attention from interest
groups. The estimate of the spillover effect, assumed to be the same for all congressmen, is also
positive (even though is not statistically significant in this example). As already mentioned,
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the values in the weighted Katz-Bonacich centrality can be extracted from the second object
stored in the output of net_dep (e.g. 1im_centrality_Model_A).

Let us now repeat the same exercise for model 7. We use a simplified version (in terms of
both data and controls included in the model specification) of the analysis presented in BLP.
Our goal here is to investigate the association of legislative networks with congressmen’s
legislative effectiveness (LES). Network ties are defined here as the number of bills that j
cosponsored with ¢. Also in this case, we impose that ) ; g;; = 1. The underlying idea is that
legislators’ productivity is affected by the productivity of the other legislators with whom they
interact. However, while alumni connections are formed during adolescence and can thus be
reasonably assumed to be exogenous to a congressman’s political activity, cosponsorships are
instead endogenous, since legislators are clearly strategic in choosing with whom to cosponsor
a bill. The function net_dep allows the users to control for network endogeneity using the
Heckman correction procedures described in Section 2.1. The legislators’ characteristics used
in this context are the same used in the previous example except the variable isolate, since
all congressmen have at least one cosponsorship link.

R> # Select data from the 111th congress

R> data("db_cosponsor")

R> data("G_alumni_111")

R> db_model_B <- subset(db_cosponsor, time == 3)

R> G_model_B <- G_cosponsor_111

R> G_exclusion_restriction <- G_alumni_111

R> # Specify which variables are factors

R> are_factors <- c("gender", "party", "nchair")

R> db_model_B[are_factors] <- lapply(db_model_B[are_factors] , factor)
R> # Specify formula

R> f_model_B <- formula("les ~gender + party + nchair")

R> # Specify starting values

R> starting <- c(alpha = 0.23952, beta_genderl = -0.22024,

+> beta_partyl = 0.42947, beta_nchairl = 3.09615,

+> phi = 0.40038, unobservables = 0.07714)

R> # Run net_dep

R> 1im_model_B <- net_dep(formula = f_model_ B, data = db_model_B,
+> G = G_model_B, model = "model_B", estimation = "NLLS",

+> hypothesis = "lim", endogeneity = TRUE, correction = "heckman",
+> first_step = "standard", exclusion_restriction = G_exclusion_restriction,
+> start.val = starting)

R> # Store results in different objects

R> 1im estimate _model B <- lim model B[[1]]

R> lim_centrality model_B <- 1im_model_B[[2]]

R> lim_estimate_first_step_model_B <- lim_model_B[[3]]

R> # Print results

R> summary(lim_estimate_model_B)

Formula: les ~ solve_block(I - phi * G) %x%, (alpha * Ones + beta_genderl
genderl + beta_partyl * partyl + beta_nchairl * nchairl +
beta_unobservables * unobservables)

11
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Parameters:

Estimate Std. Error t value Pr(>|tl)

alpha 0.23952 0.07130 3.359 0.000851 ***
beta_genderl -0.22024 0.14052 -1.567 0.117787
beta_partyl 0.42947 0.10111  4.247 2.65e-05 **x*
beta_nchairl 3.09615 0.25951 11.931 < 2e-16 **x*
phi 0.40038 0.06136  6.525 1.90e-10 **x*
beta_unobservables 0.07714 0.06138 1.257 0.209519

Signif. codes: O '*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.106 on 433 degrees of freedom

Number of iterations to convergence: 2
Achieved convergence tolerance: 1.49e-08

R> summary(lim_estimate_first_step_model_B)

Call:
Im(formula = formula_first_step, data = e_first_step)

Residuals:
Min 1Q Median 3Q Max
-0.008437 -0.001936 -0.000997 0.000791 0.149182

Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 1.481e-03 3.809e-05 38.887 < 2e-16 **x*
exclusion_restriction 4.657e-03 4.129e-04 11.279 < 2e-16 *xxx*
genderl -6.638e-05 2.135e-05 -3.109 0.00188 x*x*
partyl 2.366e-03 1.940e-05 121.922 < 2e-16 ***
nchairl -4.180e-04 3.436e-05 -12.163 < 2e-16 *xx*
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.004247 on 192277 degrees of freedom
Multiple R-squared: 0.07383, Adjusted R-squared: 0.07381
F-statistic: 3832 on 4 and 192277 DF, p-value: < 2.2e-16

The output about present estimation results of model 19 are presented, along with the esti-
mates of the first step model 16 (i.e. 1lim_estimate_first_step_model_B). Because of the
two-step procedure, standard errors of model 7 are bootstrapped using the function boot.
This function takes the following arguments: i) fit, the first object of net_dep’s output; ii)
group, a numeric vector used to specify if the resampling should be performed within specific
groups; iii) niter, an object of class numeric which indicates the iterations of the bootstrap:;
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iv) weights, a logical object equal to TRUE if the object fit is estimated with the argument
to_weight different from NULL, and FALSE otherwise.

R> boot_lim_estimate <- boot(fit = lim_estimate_model_B, hypothesis = "lim",
+> group = NULL, niter = 1000, weights = FALSE)

res <- data.frame(coefficient = coefficients(lim_estimate_model_B),

+> boot.Std.Error = boot_lim_estimate)

R> # Compute new t values

R> res[, "boot.t.value"] <- res[, "coefficient"] / res[, "boot.Std.Error"]
R> # Compute new p values

R> res[, "boot.p.value"] <- 2 * pt( - abs(res[, "boot.t.value"]),

+> df = nobs(lim_estimate_model_B) - nrow(res))

R> # Print results

R> res

coefficient boot.Std.Error boot.t.value boot.p.value

alpha 0.23951648 0.08724885 2.745211 6.298903e-03
beta_genderl -0.22023753 0.14248594 -1.545679 1.229126e-01
beta_partyl 0.42946569 0.12335344 3.481587 5.490851e-04
beta_nchairl 3.09614813 0.26463420 11.699728 1.153402e-27
phi 0.40038484 0.06099259 6.564483 1.496393e-10
beta_unobservables 0.07714043 0.05978823 1.290228 1.976602e-01

The results of this second exercise show positive and significant network effects on the effective-
ness of agents, meaning that congressmen benefit from their interactions with the colleagues
conscripted to their own causes. In this simple example, network endogeneity does not seem
to be a major concern, since the correlation between the unobservables of link formation and
outcome equation (¢ in model 7) is not statistically significant. The results show that the
alumni network (G_exclusion_restriction) is an important predictor of the cosponsorship
network (G_Model_B).

While in model 4 the estimated effect of network centrality is captured by one parameter «,
in model 7 it requires further elaboration since it varies with individual characteristics. For
the k-th covariate in model 7, if ¢ > 0, the centrality’s marginal effect is (I — ¢G)~1(I15),
which is a n - n matrix with its (¢,7)-th element representing the effect of a change in the
characteristic k£ for agent j on the outcome of agent 7. The diagonal elements capture the
direct effect of a marginal change in the characteristic k for agent . The elements outside the
diagonal instead capture the indirect effects, that is the effects on the outcome of i triggered
by variation of the characteristic k in other agents. The direct effects are comparable to the
OLS estimated effects without considering the network effects. The important difference in
comparing the estimates of the covariates in the models with and without network effects is
precisely that when ¢ > 0, the marginal effect of the k-th covariate in model 7 is not just
B but it also depends on the individual’s position in the network (i.e.m on the individual’s
network centrality).

The function quantify allows the user to run this task. Specifically, it provides the estimated
impacts of the agents’ characteristics with network effects (which is equivalent to the estimated
impacts of agents’ network centrality by characteristic) and compares them with the OLS
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estimates. Because, as we said before, the marginal effects of characteristics are different for
different agents, the function quantify reports the mean, standard deviation, maximum and
minimum for both direct and indirect effects. It requires two arguments: i) fit, which takes
the first object stored in net_dep, i.e. the estimates; ii) Gn, which takes the adjacency matrix
passed to net_dep through the argument G to obtain the estimates.

R> quantify(fit = lim_estimate_model_ B, Gn = G_model_B)

beta Direct_mean Direct_std Direct_max Direct_min Indirect_mean

1 -0.2202 -0.2205 0.0002 -0.2202 -0.2217 -0.0003
2 0.4295 0.4299 0.0003 0.4323 0.4295 0.0007
3 3.0961 3.0992 0.0025 3.1162 3.0961 0.0047
4 0.0771 0.0772 0.0001 0.0776 0.0771 0.0001
Indirect_std Indirect_max Indirect_min

1 0.0005 0.0000 -0.0149

2 0.0009 0.0290 0.0000

3 0.0068 0.2091 0.0000

4 0.0002 0.0052 0.0000

The estimation results show the mean, standard deviation, maximum and minimum for both
direct and indirect effects. Perhaps unsurprisingly, it appears that the indirect effects are
smaller than the direct effects.

As already mentioned, agents’ centrality measures are stored in the second object of net_dep’s
output, and it can be used for different applications. For example, we can use it to rank
agents’ positions in the Congress social space, or to study the centrality distribution in the
Republican and the Democratic party, as we do in Figure 1. Figure 1 can be replicated using
the following script:

R> library("ggplot2")

R> # Associate congressmen centrality to party affiliation

R> df <- data.frame(centrality = lim_centrality_model_B,

+> party = lim_estimate_model_B$data$partyl)

R> # Specify party categories and colors

R> df[, "party"] <- ifelse(df[, "party"] == 0, "Republican", "Democrat")

R> df[, "colour"] <- ifelse(df[, "party"] == "Republican", "red", "blue")

R> # Plot the distributions

R> ggplot(data = df, aes(centrality), colour = df[, "colour"]) +

+> geom_histogram(binwidth = 0.25, aes(fill = factor(colour)), col=I("black"),
+> alpha=I(.7)) +

+> facet_grid(party ~.) + theme_bw() +

+> labs(x = "Parameter-Dependent Centrality", y = "Frequency") +

+> scale_fill_manual(values = c("blue", "red")) + theme(legend.position = "none")

Exercise 2: Katz-Bonacich centrality with heterogenous by node parameter

The code below estimates model 5 using gender as the relevant dimension of heterogeneity.
Gender is a dummy variable which takes 1 if the legislator is a female, and 0 otherwise.
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Figure 1: BLP model: Distribution of Parameter-Dependent Network Centrality.

# Create gender variable

z <- as.numeric(as.character(db_model_A[, "gender"]))

# Specify formula

f_het_model_A <- formula("PAC ~ party + nchair + isolate")
# Specify starting values

starting <- c(alpha = 0.44835, beta_partyl = 0.56004,
beta_nchairl = -0.16349, beta_isolatel = 0.21011,

beta_z = -0.26015, phi = 0.34212, gamma = -0.49960)

# Run net_dep

het_model_A <- net_dep(formula = f_het_model_A, data = db_model_A,
G = G_model_A, model = "model A", estimation = "NLLS",
hypothesis = "het", z = z, start.val = starting)

# Store results in different objects

het_estimate_model_A <- het_model_A[[1]]
het_centrality_model_A <- het_model_A[[2]]

# Print results

R > summary (het_estimate_model_A)

15
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Formula: PAC ~ alpha * solve_block(I - G %*J (phi * I + gamma * G_heterogeneity)) %*’ Ones
beta_partyl * partyl + beta_nchairl * nchairl + beta_isolatel * isolatel + beta_z * z

Parameters:

Estimate Std. Error t value Pr(>|tl)

alpha 0.44835 0.17942 2.499 0.0128 *
beta_partyl 0.56004 0.08342 6.713 6.21e-11 *x*x
beta_nchairl -0.16349 0.18984 -0.861 0.3896
beta_isolatel 0.21011 0.17927 1.172 0.2418

beta_z -0.26014 0.10655 -2.441 0.0150 =

phi 0.34212 0.25377 1.348 0.1783

gamma -0.49960 0.34662 -1.441 0.1502

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8138 on 419 degrees of freedom

Number of iterations to convergence: 2
Achieved convergence tolerance: 1.49e-08

The results show that in this simple example = is not significant, suggesting that female
congressmen do not have a different level influence than their male peers. Note that the
weighted Katz-Bonacich centrality derived from the spillover effect are stored in the object
het_centrality_model_A.

If we use equation 8 and 9, we distinguish between outgoing and incoming influence, that is
if females are more (or less) able to influence and to be influenced by their peers respectively.
The code below implements this analysis. For ease of exposition, we do not consider the
possible endogeneity of the social network.

R> # Create gender variable

R> z <- as.numeric(as.character(db_model_B[, "gender"]))

R> # Specify formula

R> f_het_model B <- formula("les ~ party + nchair")

R> # Specify starting values

R> starting <- c(alpha = 0.23952, beta_partyl = 0.42947,

+> beta_nchairl = 3.09615, beta_z = -0.12749,

+> theta 0 = 0.42588, theta_1 = 0.08007)

R> # Run net_dep

R> het_model_B_1 <- net_dep(formula = f_het_model_B, data = db_model_B,
+> G = G_model_B, model = "model_B", estimation = "NLLS",

+> hypothesis = "het_1", z = z, start.val = starting)

R> # Specify starting values

R> starting <- c(alpha = 0.04717, beta_partyl = 0.51713,

+> beta_nchairl = 3.12683, beta_z = 0.01975,

+> eta_0 = 1.02789, eta_1 = 2.71825)

R> # Run net_dep

R> het_model_B_r <- net_dep(formula = f_het_model_B, data = db_model_B,



Marco Battaglini, Valerio Leone Sciabolazza, Eleonora Patacchini, Sida Peng 17

+> G = G_model_B, model = "model_B", estimation = "NLLS",
+> hypothesis = "het_r", z = z, start.val = starting)

R> # Store results in different objects

R> het_1_estimate model B <- het_model B 1[[1]]

R> het_1_centrality_model B <- het_model_B 1[[2]]

R> het_r_estimate model B <- het_model B r[[1]]

R> het_r_centrality_model_ B <- het_model_B_ r[[2]]

R> # Print results

R> summary (het_1_estimate_model_B)

Formula: les ~ solve_block(I - (theta_ O * I - theta_1 * G_heterogeneity) %*’
G) %% (alpha * Ones + beta_partyl * partyl + beta_nchairl * nchairl + beta_z * z)

Parameters:
Estimate Std. Error t value Pr(>|tl)
alpha 0.22740 0.07584 2.998 0.00287 *x*

beta_partyl 0.41382 0.10198 4.058 5.88e-05 *x*x
beta_nchairl 3.07797 0.26148 11.771 < 2e-16 *%*x*

beta_z -0.12749 0.21199 -0.601 0.54789

theta_0 0.42587 0.07418 5.741 1.77e-08 *xx

theta_1 0.08007 0.12320 0.650 0.51611

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.108 on 433 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 1.49e-08

R> summary (het_r_estimate_model_B)

Formula: les ~ solve_block(I - G %*% (eta_0 * I - eta_1 * G_heterogeneity)) %*%
(alpha * Ones + beta_partyl * partyl + beta_nchairl * nchairl + beta_z * z)

Parameters:

Estimate Std. Error t value Pr(>|tl)

alpha 0.04717 0.06867 0.687 0.49251

beta_partyl 0.51713 0.09259 5.585 4.13e-08 *x*x
beta_nchairl 3.12683 0.25680 12.176 < 2e-16 **x*

beta_z 0.01976 0.15098 0.131 0.89595

eta_0 1.02790 0.22400 4.589 5.85e-06 **x*

eta_1 2.71825 0.91547 2.969 0.00315 *x*

Signif. codes: O '*x*x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.099 on 433 degrees of freedom
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Number of iterations to convergence: 1
Achieved convergence tolerance: 1.49e-08

The results shows that females do not seem to be able to influence their socially connected
peers (6 is not significant), but they are helpful to their colleagues (7, > 0). In terms of
network analysis, this implies that all else being equal, congressmen located close to female
colleagues benefit from their position since they can leverage females to be more effective in
their legislative activity. In this case, the weighted Katz-Bonacich centralities are stored in
het_1_centrality_model_B and het_r_centrality_model_B.

Ezercise 3: Katz-Bonacich centrality with heterogenous by link parameter

In this last exercise, we show how to explore the hypothesis that relations within and between
parties might have a different impact on the congressmen’s LES. The code below estimates
model 10 where the within and between effects are shaped by party membership.

R> # Specify partition vector

R> z <- as.numeric(as.character(db_model_B[, "party"]))
R> # Specify partition vector

R> starting <- c(alpha = 0.242486, beta_genderl = -0.229895,
+> beta_partyl = 0.42848, beta_nchairl = 3.0959,

+> phi_within = 0.396371, phi_between = 0.414135)

R> # Run net_dep

R> party_model_B <- net_dep(formula = f_model_B,

+> data = db_model_B,

+> G = G_model_B, model = "model_B", estimation = "NLLS",
+> hypothesis = "par", z = z, start.val = starting)

R> # Store results in different objects

R> party_estimate_model_B <- party_model_B[[1]]

R> party_centrality_model_ B <- party_model_ B[[2]]

R> # Print results

R> summary(party_estimate_model_B)

Formula: les ~ solve_block(I - phi_within * G_within - phi_between * G_between) %x*%
(alpha * Ones + beta_genderl * genderl + beta_partyl * partyl + beta_nchairl * nchairl)

Parameters:
Estimate Std. Error t value Pr(>|t])
alpha 0.24249 0.08988 2.698 0.007251 *x*

beta_genderl -0.22990
beta_partyl  0.42848
beta_nchairl 3.09590
phi_within 0.39637
phi_between 0.41414

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

.14120 -1.628 0.104221
.12623  3.394 0.000751 *x*x
.26008 11.904 < 2e-16 **x*
.07306  5.425 9.66e-08 *x*xx
.24175 1.713 0.087420 .

O O O O O
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Residual standard error: 1.108 on 433 degrees of freedom

Number of iterations to convergence: 1
Achieved convergence tolerance: 1.49e-08

The estimation results show that connections within one’s own party and between parties are
both significant for advancing a piece of legislation. The weighted Katz-Bonacich centrality
can be found in the object party_centrality_model_B.

4.2. Centrality measure comparison

The R package econet allows also to evaluate the explanatory power of parameter-dependent
centralities relative to other centrality measures, which depends on network topology only.
More specifically, econet considers the following measures, which are computed using the R
package igraph (Csardi 2018): indegree centrality, outdegree centrality, degree centrality,
betweenness centrality, incloseness centrality, outcloseness centrality, closeness centrality. It
also reports eigenvector centrality, which is calculated using the R package sna (Butts 2016).2
We then implement an augmented version of models 4 and 7 where we add one (or more)
centrality measures in the matrix of individual characteristics X;!. By doing so we can run
an horse race across different centrality measures.

The arguments of the function horse_race are similar to the net_dep ones. The different
ones are: i) centralities, an object or a vector of class character specifying the names
of the centrality measure(s) to be used; ii) directed, a logical object which is set to TRUE if
the network is directed, and FALSE otherwise; iii) weighted, a logical object equal to TRUE if
links between agents have weights, and FALSE otherwise; and iv) normalization, an object

of class character which can be used to normalize centrality measures before the estimations.
3

The output of this function is also similar to net_dep, i.e. a list containing the results of
the main estimates in the first object, a data.frame listing the centrality measures in the
second object, and the results of the first step estimation in the third object (if endogeneity
= TRUE). An example of how this model is implemented and results are stored is provided in
the following example, where we use a linear regression model where betweenness centrality
iS a regressor.

?Indegree centrality is the number of incoming links of one node; outdegree centrality is the number of
outgoing links of one node; degree centrality is the sum of in and out degree; betweenness centrality is the
number of times a node falls on the shortest path between two other nodes; incloseness centrality is the inverse
of the average distance of one node from all the other nodes passing through incoming links; outcloseness
centrality is the inverse of the average distance of one node from all the other nodes passing through outcoming
links; closeness centrality is the sum of in and out closeness, and eigenvector centrality is proportional to the
sum of the centrality of agent’s neighbors (see Jackson 2010, for further details).

3The options available are: NULL, no normalization; bygraph, divide by the number of nodes in the network
minus 1 (for degree and closeness) or the number of possible links in the network (betweenness), bycomponent,
divide by the number of nodes in agent’s component minus 1 (for degree and closeness) or the number of
possible links in agent’s component (betweenness); bymaxgraph, divide by the maximum centrality value in
the network; bymaxgraph, divide by the maximum centrality value in agent’s component.

19
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R> # Specify starting values

R> starting <- c(alpha = 0.214094, beta_genderl = -0.212706,

+> beta_partyl = 0.478518, beta_nchairl = 3.09234,

+> beta_betweenness = 7.06287e-05, phi = 0.344787)

R> # Horse race

R> horse_model_B <- horse_race(formula = f_model_ B, centralities = "betweenness',
+> directed = TRUE, weighted = TRUE, normalization = NULL,

+> data = db_model_B, G = G_model_B,

+> model = "model_B", estimation = "NLLS", start.val = starting)
R> # Store results in different objects

R> betweenness_estimate _model B <- horse model B[[1]][[1]]

R> horse_estimate_model_B <- horse_model B[[1]]1[[2]]

R> horse_centrality_model_B <- horse_model_B[[2]]

R> # Print results

R> summary (betweenness_estimate_model_B)

Call:
lm(formula = to_fit, data = data, weights = to_weight)

Residuals:
Min 1Q Median 3Q Max
-3.6051 -0.5665 -0.1877 0.2559 10.8641

Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 3.300e-01 9.042e-02 3.650 0.000295 *xx*
genderl -8.904e-02 1.445e-01 -0.616 0.538011
partyl 7.054e-01 1.139e-01 6.194 1.36e-09 *xx*
nchairl 3.202e+00 2.644e-01 12.112 < 2e-16 **x*
betweenness 1.851e-04 3.985e-05 4.645 4.51e-06 **x

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.133 on 434 degrees of freedom
Multiple R-squared: 0.3654, Adjusted R-squared: 0.3595
F-statistic: 62.46 on 4 and 434 DF, p-value: < 2.2e-16

> summary (horse_estimate_model_B)

Formula: les ~ solve_block(I - phi * G) %x% (alpha * Ones + beta_genderl *
genderl + beta_partyl * partyl + beta_nchairl * nchairl +
beta_betweenness * betweenness)

Parameters:
Estimate Std. Error t value Pr(>|tl)
alpha 2.141e-01 7.676e-02 2.789 0.00552 *x



Marco Battaglini, Valerio Leone Sciabolazza, Eleonora Patacchini, Sida Peng 21

beta_genderl -2.127e-01 1.408e-01 -1.511 0.13162
beta_partyl 4.785e-01 1.105e-01 4.331 1.85e-05 **x
beta_nchairl 3.092e+00 2.593e-01 11.927 < 2e-16 *x*x*
beta_betweenness 7.063e-05 4.561e-05 1.549 0.12219

phi 3.448e-01 7.101e-02 4.856 1.68e-06 *x*x
Signif. codes: O 'xxx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.105 on 433 degrees of freedom

Number of iterations to convergence: 1
Achieved convergence tolerance: 1.49e-08

The results of this estimation show evidence that being able to broker connections in the net-
work, as measured by betweenness centrality in the object betweenness_estimate_model_B
is associated with higher legislative effectiveness. The effect disappears when we include net-
work effects, that is when we add betweenness centrality as an additional regressor in the
linear model of social interactions (equation 7). This suggests that Katz-Bonacich central-
ity is a more robust predictor of effectiveness in this context. Estimates are stored in the object
horse_estimate_model_B, whereas centrality measures in the object horse_centrality_model_B.

5. Conclusions

We have described the key elements for the estimation of parameter-dependent centralities
derived from equilibrium models of behavior, and discussed the use of the package econet for
the implementation of such metrics. The methods described in the paper are derived from
several modifications to the linear-in-means model - for which both nonlinear least squares
and maximum likelihood estimators are provided - and they allow one to model both link
and node heterogeneity in network effects, endogenous network formation and the presence
of unconnected nodes. Furthermore, they provide the means to compare the explanatory
power of parameter-dependent network centrality measures with those of standard measures of
network centrality. A number of examples are used to walk the reader through the discussion
and orientate the application of these methods to new potential directions of research.
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