Package ‘ebvcube’

December 14, 2021

Title Working with netCDF for Essential Biodiversity Variables
Version 0.0.1
Date 2021-12-01

Author Luise QuoB [aut, cre],
Christian Langer[aut],
Henrique Pereira [aut],
Néstor Fernandez [aut],
José Valdez [aut]

Maintainer Luise QuoB <luise.quoss@idiv.de>

Description Functions to easily access the data of the EBV netCDFs which can be
downloaded here: <portal.geobon.org>. Also some basic visualization of the data is provided.
Advanced users can build their own netCDFs with the EBV standard using this package.

URL <https://portal.geobon.org/> <https://geobon.org/ebvs/what-are-ebvs/> <https:
//github.com/LuiseQuoss/ebvcube>

BugReports <https://github.com/LuiseQuoss/ebvcube/issues>
License GPL (>=3)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Imports checkmate,
colorspace,
gdalUtils,
graphics,
HDF5Array,
jsonlite,
lattice,
memuse,
methods,
ncdf4,
raster,
rhdf5,
rgdal,
sp,
stats,
stringr,

https://portal.geobon.org/>
https://geobon.org/ebvs/what-are-ebvs/>
https://github.com/LuiseQuoss/ebvcube>
https://github.com/LuiseQuoss/ebvcube>
https://github.com/LuiseQuoss/ebvcube/issues>

2 EBYV netCDF properties-class

utils,
withr,
ncmeta

Suggests knitr,
rmarkdown

SystemRequirements GDAL binaries
Depends R (>=3.5.0)

VignetteBuilder knitr, rmarkdown

R topics documented:

EBV netCDF properties-class e 2
ebvcube L L e e 3
ebv_add_data 3
ebv_analyse 4
ebv_attribute e e 6
ebv_create e e e 7
ebv_datacubepaths L 8
ebv_indicator e 9
EDV_MAD e e e e e e e e e 10
EDV_PIOPerties i i e e e e e e e e e e 11
ebv read L s 12
ebv_read bb. L s 13
ebv_read_shp e 15
ebv_resample L. e e e e 16
EDV_WIIte e e e e e e e e e e e e 18
world_boundaries e e 19
Index 20

EBV netCDF properties-class
EBV netCDF properties class (S4)

Description

EBYV netCDF properties class (S4)

Value

S4 class containing the EBV netCDF properties

Slots

general Named list. Elements: title, description, ebv_class, ebv_name, ebv_domain, references,
source, project, creator_name, creator_institution, creator_email, contributor_name, publisher_name,
publisher_institution, publisher_email, comment, keywords, id, history, licence, conventions,
naming_authority, date_created, date_issued, entity_names, entity_type, entity_scope, en-
tity_classification_name, entity_classification_url

ebvcube 3

spatial Named list. Elements: wkt2, epsg, extent, resolution, crs_units, dimensions, scope, de-
scription

temporal Named list. Elements: resolution, units, timesteps, timesteps_natural
metric Named list. Elements: name, description
scenario Named list. Elements: name, description

ebv_cube Named list. Elements: units, coverage_content_type, fillvalue, type

Note

If the properties class holds e.g. no scenario information this is indicated with an element called
status in the list.

If you read an EBV netCDF based on an older standard, the properties will differ from the definition
above.

ebvcube Working with netCDF for Essential Biodiversity Variables

Description

This package can be used to easily access the data of the EBV netCDFs which can be downloaded
from the Geobon Portal. It also provides some basic visualization of the data. Advanced users can
build their own netCDFs with the EBV standard using this package.

Details

This package contains three main usecases: accessing the data, visualising it and creating your own
data in the EBV netCDF standard.

ebv_add_data Add data to a self-created EBV netCDF

Description

Add data to the self-created EBV netCDF from GeoTiffs.

Usage

ebv_add_data(
filepath_nc,
datacubepath,
entity = NULL,
timestep = 1,
filepath_tif,
band = 1,
ignore_RAM = FALSE,
verbose = FALSE

portal.geobon.org

4 ebv_analyse

Arguments

filepath_nc Character. Path to the self-created netCDF file.
datacubepath Character. Path to the datacube (use ebv_datacubepaths()).

entity Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

timestep Integer. Default: 1. Define to which timestep or timesteps the data should be
added. If several timesteps are given they have to be in a continuous order.
Meaning c(4,5,6) is right but ¢(2,5,6) is wrong.

filepath_tif Character. Path to the GeoTiff file containing the data. Ending needs to be *.tif.

band Integer. Default: 1. Define which band(s) to read from GeoTiff. Can be several.
Don’t have to be in order as the timesteps definition requires.
ignore_RAM Logical. Default: FALSE. Checks if there is enough space in your memory to
read the data. Can be switched off (set to TRUE).
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value

Adds data to the EBV netCDF. Check your results using ebv_read() and/or ebv_analyse().

Note

If the data exceeds your memory the RAM check will throw an error. No block-processing or other
method implemented so far. Move to a machine with more capacities for the moment if needed.

Examples

#set path to EBV netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#set path to GeoTiff with data

tif <- system.file(file.path("extdata","cSAR_write_ts234.tif"), package="ebvcube")

add data to the timestep 2, 3 and 4 using the first three bands of the GeoTiff
#ebv_add_data(filepath_nc = file, datacubepath = datacubepaths[1,1],

entity = NULL, timestep = 2:4, filepath_tif = tif, band = 1:3)
ebv_analyse Get a simple explorative analysis of an EBV netCDF datacube
Description

Get basic measurements of the data, including min, max, mean, sd, n, #NAs, 25, 50, q75 (no
mean for categorical data).

ebv_analyse

Usage

ebv_analyse(
filepath,
datacubepath,

entity = NULL,

timestep = 1,

subset = NULL,

at = TRUE,
epsg = 4326,

numerical = TRUE,

na_rm = TRUE,

verbose = FALSE

Arguments

filepath
datacubepath
entity

timestep

subset

at

epsg

numerical

na_rm

verbose

Value

Character. Path to the netCDF file.
Character. Path to the datacube (use ebv_datacubepaths()).

Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

Integer. Choose one or several timesteps (vector).

Optional if you want measurements on a smaller subset. Possible via the path
to a shapefile (character) or the indication of a bounding box (vector of four
numeric values) defining the subset. Else the whole area is analysed.

Logical. Optional. Default: TRUE. Only relevant if the subset is indicated by a
shapefile. See ebv_read_shp().

Numeric. Optional. Only relevant if the subset is indicated by a bounding box
and the coordinate reference system differs from WGS84. See ebv_read_bb ().

Logical. Default: TRUE. Change to FALSE if the data covered by the netCDF
contains categorical data.

Logical. Default: TRUE. NA values are removed in the analysis. Change to
FALSE to include NAs.

Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.

Returns a named list containing the measurements.

See Also

ebv_read_bb() and ebv_read_shp() for the usage of subsets.

Examples

#set path to EBV

netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_

#set path to shp

datacubepaths(file)
file

6 ebv_attribute

shp_path <- system.file(file.path("extdata"”,"subset_germany.shp"), package="ebvcube")

#get measurements for full extent and all timesteps
data_global <- ebv_analyse(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = 1:12)

#get measurements for germany only (using bounding box) and one timestep
data_bb_1900 <- ebv_analyse(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = 1:12, subset = c(5,15,47,55))

#get measurements for germany only (using shp) and one timestep
data_shp_1900 <- ebv_analyse(filepath = file, datacubepath = datacubes[1,1],

entity = NULL, timestep = 1:12, subset = shp_path)
ebv_attribute Write a new attribute value to an EBV netCDF
Description

Write a new attribute value to an EBV netCDF. Not all attributes can be changed. Some are always
created automatically, e.g. the attributes belonging to the crs, time and var_entity datasets. In this
case you have to re-create the netCDF file.

Usage

ebv_attribute(
filepath,
attribute_name,
value,
levelpath = NULL,
verbose = FALSE

)
Arguments
filepath Character. Path to the netCDF file.
attribute_name Character. Name of the attribute that should be changed.
value New value that should be assigned to the attribute.
levelpath Character. Default: NULL. Indicates the location of the attribute. The default

means that the attribute is located at a global level. If the attribute is located at
the datacubelevel just add the datacubepath, e.g. metric_Il/ebv_cube. For the
metric level the value may be 'metric_1" or ’scenario_1/metric_1’. This path
depends on whether the netCDF hierarchy has scenarios or not.

verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.

Value

Adds the new value to the attribute. Check your results using ebv_properties().

Note

You can change the ebv_class and the ebv_name. In this case you need to change the ebv_class
first. Don’t forget to change the ebv_name accordingly!

ebv_create 7

Examples

#set path to EBV netCDF
file <- system.file(file.path("extdata”,"cSAR_idiv_v1.nc"), package="ebvcube")

#change the standard_name of the metric

attributel <- 'standard_name'

valuel <- 'new fake metric name'

levell <- 'scenario_1/metric_1"

ebv_attribute(filepath = file, attribute_name = attributel,
value = valuel, level = levell)

#change the units of the ebv_cube

attribute2 <- 'units'

value2 <- 'mean'

level2 <- 'scenario_1/metric_1/ebv_cube' #equal to the datacubepath
ebv_attribute(filepath = file, attribute_name = attribute2,

value = value2, level = level2)

#change the name of the creator at the global level
attribute3 <- 'creator_name'

value3 <- 'Jane Doe'

ebv_attribute(filepath = file, attribute_name = attribute3,

value = value3)
ebv_create Create an EBV netCDF
Description

Create the core structure of the EBV NetCDF based on the json from the Geobon Portal API. Data
and attributes will be added afterwards. Use ebv_add_data() to add the missing attributes.

Usage

ebv_create(
jsonpath,
outputpath,
entities,
epsg = 4326,
extent = c(-180, 180, -90, 90),
resolution = c(1, 1),
fillvalue = NULL,
prec = "double”,
force_4D = TRUE,
overwrite = FALSE,
verbose = FALSE

Arguments

jsonpath Character. Path to the json file downloaded from the Geobon Portal API.
outputpath Character. Set path where the NetCDF file should be created.

https://portal.geobon.org/api-docs
https://portal.geobon.org/api-docs

entities

epsg

extent

resolution

fillvalue

prec

force_4D

overwrite

verbose

Value

ebv_datacubepaths

Character. Csv table holding the entity names. Should have only one column,
each row is the name of one entity.

Integer. Default: 4326 (WGS84). Defines the coordinate reference system via
the corresponding epsg code.

Numeric. Default: ¢(-180,180,-90,90). Defines the extent of the data: c(xmin,
Xmax, ymin, ymax).

Numerical. Vector of two numerical values defining the longitudinal and latitu-
dinal resolution of the pixel: c(lon,lat).

Numeric. Value of the missing data in the array. Not mandatory but should be
defined!

Character. Default: ’double’. Precision of the data set. Valid options: ’short’
“integer’ "float’ *double’ 'char’ *byte’.

Logical. Default is TRUE. If the argument is TRUE, there will be 4D cubes (lon,
lat, time, entity) per metric. If this argument is changed to FALSE, there will
be 3D cubes (lon, lat, time) per entity (per metric). So the latter yields a higher
amount of cubes and does not bundle all information per metric. In the future
the standard will be restricted to the 4D version. Recommendation: go with the
4D cubes!

Logical. Default: FALSE. Set to TRUE to overwrite the outputfile defined by
“outputpath’.

Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.

Creates the NetCDF file at the *outputpath’ location.

Note

To check out the results take a look at your netCDF file with Panoply provided by the NASA.

Examples

#set path to JSON file

json <- system.file(file.path("extdata”,"metadata.json”), package="ebvcube")
#set output path of the new EBV netCDF

out <- file.path(system.file(package="ebvcube'),"extdata”,"sCAR_new.nc")

#set path to the csv holding the entity names

entities <- file.path(system.file(package="'ebvcube'),"extdata”,"entities.csv")

non

#create new EBV netCDF
ebv_create(jsonpath = json, outputpath = out, entities = entities,

#

fillvalue=-3.4E38)

ebv_datacubepaths

Get datacubepaths of EBV netCDF

Description

Get the paths to the datacubes of the EBV netCDF to access the data.

https://www.giss.nasa.gov/tools/panoply/

ebv_indicator 9

Usage

ebv_datacubepaths(filepath, verbose = FALSE)

Arguments

filepath Character. Path to the netCDF file.

verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value

Dataframe containing the paths to access the datacubes and descriptions of scenario, metric and
entity if existing.

Examples

#set path to EBV netCDF
file <- system.file(file.path("extdata”,"cSAR_idiv_v1.nc"), package="ebvcube")

#get all datacubepaths of EBV netCDF
datacubes <- ebv_datacubepaths(file)

ebv_indicator Plot the average over time of one datacube of an EBV NetCDF

Description

Plot the average (y-axis) of one datacube of a EBV NetCDF over time (x-axis). If the datacube has
only one timestep a single mean value is returned.

Usage

ebv_indicator(
filepath,
datacubepath,
entity = NULL,
color = "dodgerblue4”,
verbose = FALSE

Arguments

filepath Character. Path to the NetCDF file.
datacubepath Character. Path to the datacube (use ebv_datacubepaths()).

entity Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

color Character. Default: dodgerblue4. Change to any color known by R grDevices: :colors()
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.

10 ebv_map

Value

Plots a line plot and returns a vector of the average. If the data encompasses only one timestep a
single mean is returned.

Examples

#set path to EBV netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#plot the change of the mean over time of the first datacube
ebv_indicator(filepath = file, datacubepath = datacubes[1,1], entity = NULL)

ebv_map Map plot of an EBV NetCDF

Description

Map plot of the data of one timestep in one datacube of an EBV NetCDF. This functions sometimes
writes temporary files on your disk. Speficy a directory for these setting via options(’ebv_temp’="/path/to/temp/directory

Usage

ebv_map(
filepath,
datacubepath,
entity = NULL,
timestep = 1,
countries = TRUE,
col_rev = TRUE,
classes = 5,
ignore_RAM = FALSE,
verbose = FALSE

Arguments

filepath Character. Path to the NetCDF file.
datacubepath Character. Path to the datacube (use ebv_datacubepaths()).

entity Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

timestep Integer. Choose one timestep.

countries Logical. Default: TRUE. Simple country outlines will be plotted on top of the
raster data. Disable by setting this option to FALSE.

col_rev Logical. Default: TRUE. Set to FALSE if you want the color ramp to be the

other way around.

classes Integer. Default: 5. Define the amount of classes (quantiles) for the symbology.
Currently restricted to maximum 15 classes.

ebv_properties 11

ignore_RAM Logical. Default: FALSE. Checks if there is enough space in your memory to
read the data. Can be switched off (set to TRUE).
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value
Plots a map.
Examples

#set path to EBV netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#plot a map for the 9th timestep, divide into 7 classes
ebv_map(filepath = file, datacubepath = datacubes[1,1], entity = NULL,
timestep = 9, classes = 7)

ebv_properties Read properties of EBV netCDF

Description

Structured access to all attributes of the netCDF file.

Usage

ebv_properties(filepath, datacubepath = NULL, verbose = FALSE)

Arguments
filepath Character. Path to the netCDF file.
datacubepath Character. Optional. Path to the datacube (use ebv_datacubepaths()).
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value

S4 class containing information about file or file and datacube depending on input.

Examples

#set path to EBV netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#get properties only for the file

prop_file <- ebv_properties(file)

#tget properties for the file and a specific datacube
prop_dc <- ebv_properties(file, datacubes[1,1])

12

ebv_read

ebv_read

Read data from an EBV netCDF

Description

Read one or more layers from one datacube of the netCDF file. Decide between in-memory array,
in-memory raster or an array-like object (DelayedMatrix) pointing to the on-disk netCDF file. Latter
is useful for data that exceeds your memory.

Usage

ebv_read(
filepath,

datacubepath,

entity = NULL,

timestep = 1,

nn

type = "a

’

sparse = FALSE,
ignore_RAM = FALSE,

verbose =

Arguments

filepath
datacubepath
entity

timestep

type

sparse

ignore_RAM

verbose

Value

FALSE

Character. Path to the netCDF file.
Character. Path to the datacube (use ebv_datacubepaths()).

Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

Integer. Choose one or several timesteps (vector).

5 9.

Character. Choose between ’a’, 'r’ and ’da’. The first returns an array or matrix
object. The ’r’ indicates raster as return class. The latter returns a Delayed Array
object.

Logical. Default: FALSE. Set to TRUE if the data contains a lot empty raster
cells. Only relevant for DelayedMatrix. No further implementation by now.

Logical. Default: FALSE. Checks if there is enough space in your memory to
read the data. Can be switched off (set to TRUE).

Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.

Array, Raster or DelayedMatrix object containing the data of the corresponding datacube and

timestep(s).

Note

For working with the DelayedMatrix take a look at DelayedArray::DelayedArray() and the
DelayedArray-utils.

https://www.rdocumentation.org/packages/HDF5Array/versions/1.0.2/topics/DelayedArray-utils

ebv_read_bb 13

Examples

#set path to EBV netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#read data as DelayedArray

cSAR.delayedarray <- ebv_read(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = c(1,6), type='da’',
sparse=TRUE)

#read data as Raster

cSAR.raster <- ebv_read(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = 1:3, type='r')

#read data as Array
cSAR.array <- ebv_read(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = 1, type='r")

ebv_read_bb Read subset (bounding box) of one datacube of an EBV netCDF

Description

Read a subset of one or more layers from one datacube of the NetCDF file. Subset definition by a
bounding box.

Usage

ebv_read_bb(
filepath,
datacubepath,
entity = NULL,
timestep = 1,

bb,
outputpath = NULL,
epsg = 4326,

overwrite = FALSE,
ignore_RAM = FALSE,
verbose = FALSE

Arguments

filepath Character. Path to the netCDF file.
datacubepath Character. Path to the datacube (use ebv_datacubepaths()).

entity Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

timestep Integer. Choose one or several timesteps.

bb Integer Vector. Definition of subset by bounding box: c(xmin, xmax, ymin,
ymax).

14 ebv_read bb
outputpath Character. Default: NULL, returns the data as a raster object in memory. Op-
tional: set path to write subset as GeoTiff on disk.
epsg Integer. Default: 4326 (WGS84). Change accordingly if your bounding box
coordinates are based on a different coordinate reference system.
overwrite Logical. Default: FALSE. Set to TRUE to overwrite the outputfile defined by
“outputpath’.
ignore_RAM Logical. Default: FALSE. Checks if there is enough space in your memory to
read the data. Can be switched off (set to TRUE).
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value

Returns a raster object if no outputpath is given. Otherwise the subset is written onto the disk and
the outputpath is returned.

Note

In case the epsg of the Bounding Box and the netCDF differ, the data is returned based on the epsg
of the netCDF Dataset.

See Also

ebv_read_shp() for subsetting via shapefile.

Examples

#set path to EBV netCDF

file <- system.file(file.path("”extdata”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#set outputpath

out <- file.path(system.file(package="'ebvcube'),"extdata”,"subset_bb.tif")
#define two different bounding boxes based on different EPSG codes
bb_wgs84 <- c¢(5,15,47,55)

bb_utm32 <- c(271985, 941837, 5232640, 6101151)

print(gdalUtils::gdalsrsinfo(paste@("EPSG:", 32632)))

#read bb (based on EPSG 4326) - return Raster

cSAR.germany <- ebv_read_bb(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = c(1,4,12), bb = bb_wgs84)

#tread bb (based on EPSG 4326) - write to GeoTiff

path <- ebv_read_bb(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = 1, bb = bb_wgs84,

outputpath = out, overwrite = TRUE)

#tread bb (based on EPSG 32632) - write to GeoTiff

path <- ebv_read_bb(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = 1:3, bb = bb_utm32,

epsg = 32632, outputpath = out, overwrite = TRUE)

ebv_read_shp 15

ebv_read_shp Read subset (shapefile) of one datacube of an EBV netCDF

Description

Read a subset of one or more layers from one datacube of the netCDF file. Subset definition by a
shapefile. This functions writes temporary files on your disk. Specify a directory for these setting
via options(’ebv_temp’="/path/to/temp/directory’).

Usage

ebv_read_shp(
filepath,
datacubepath,
entity = NULL,
timestep = 1,

shp,
outputpath = NULL,
at = TRUE,

overwrite = FALSE,
ignore_RAM = FALSE,
verbose = FALSE

Arguments

filepath Character. Path to the netCDF file.
datacubepath Character. Path to the datacube (use ebv_datacubepaths()).

entity Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

timestep Integer. Choose one or several timesteps (vector).
shp Character. Path to the shapefile defining the subset. Ending needs to be *.shp.
outputpath Character. Default: NULL, returns the data as a raster object in memory. Op-

tional: set path to write subset as GeoTiff on disk.

at Logical. Default: TRUE, all pixels touched by the polygon(s) will be updated.
Set to FALSE to only include pixels that are on the line render path or have
center points inside the polygon(s).

overwrite Logical. Default: FALSE. Set to TRUE to overwrite the outputfile defined by
“outputpath’.
ignore_RAM Logical. Default: FALSE. Checks if there is enough space in your memory to
read the data. Can be switched off (set to TRUE).
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value

Returns a raster object if no outputpath is given. Otherwise the subset is written onto the disk and
the ouputpath is returned.

16 ebv_resample

See Also

ebv_read_bb() for subsetting via bounding box.

Examples

#define temp directory

options('ebv_temp'=system.file("extdata/", package="ebvcube"))

#set path to EBV netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#set path to shp file
shp_path <- system.file(file.path("extdata"”,"subset_germany.shp"), package="ebvcube")

#read subset - return Raster
cSAR.germany <- ebv_read_shp(filepath = file, datacubepath = datacubes[1],

entity = NULL, timestep = 1, shp = shp_path,
outputpath = NULL)
ebv_resample Change the resolution of the data of an EBV NetCDF
Description

Change the resolution of one datacube of a EBV NetCDF based on another EBV NetCDF or a given
resolution. This functions writes temporary files on your disk. Specify a directory for these setting
via options(’ebv_temp’="/path/to/temp/directory’).

Usage

ebv_resample(
filepath_src,
datacubepath_src,
entity_src = NULL,
timestep_src = 1,
resolution,
outputpath,
method = "average”,
return_raster = FALSE,
overwrite = FALSE,
ignore_RAM = FALSE,
verbose = FALSE

Arguments

filepath_src Character. Path to the NetCDF file whose resolution should be changed.
datacubepath_src

Character. Path to the datacube (use ebv_datacubepaths()) whose resolution
should be changed.

ebv_resample 17

entity_src Character or Integer. Default is NULL. If the structure is 3D, the entity argument
is set to NULL. Else, a character string or single integer value must indicate the
entity of the 4D structure of the EBV netCDFs.

timestep_src Integer. Choose one or several timesteps (vector).

resolution Either the path to an EBV NetCDF file that determines the resolution (character)
or the resolution defined directly (numeric). The vector defining the resolution
directly must contain three elements: the x-resolution, the y-resolution and the
corresponding epsg.
outputpath Character. Set path to write data as GeoTiff on disk.
method Character. Default: Average. Define resampling method. Choose from: "near","bilinear”,"cubic","cul
and "q3". For detailed information see: gdalwarp.

return_raster Logical. Default: FALSE. Set to TRUE to directly get the corresponding raster

object.
overwrite Logical. Default: FALSE. Set to TRUE to overwrite the outputfile defined by
“outputpath’.
ignore_RAM Logical. Default: FALSE. Checks if there is enough space in your memory to
read the data. Can be switched off (set to TRUE).
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value

Default: returns the outputpath of the GeoTiff with the new resolution. Optional: return the raster
object with the new resolution.

Examples

#define temp directory

options('ebv_temp'=system.file("extdata/", package="ebvcube"))

#set path to EBV netCDF

file <- system.file(file.path("extdata”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#define different resolutions

resl <- system.file(file.path("extdata”,"rodinini_001.nc"), package="ebvcube")
res2 <- c(1,1,4326)

#define output path

out <- file.path(system.file(package="'ebvcube'),"extdata"”,"changeRes.tif")

#resample using a netCDF file - return GeoTiff

ebv_resample(filepath_src = file, datacubepath_src = datacubes[1,1],
entity_src=NULL, timestep_src = 1, resolution = resi,
outputpath = out)

#resample defining the resolution and EPSG code by hand - return Raster

data_raster <- ebv_resample(filepath_src = file, datacubepath_src = datacubes[1,1],
entity_src=NULL, timestep_src = 1, resolution = resil,
outputpath = out, method='max', return_raster=TRUE)

https://gdal.org/programs/gdalwarp.html

18 ebv_write

ebv_write Write the extracted data on your disk as a GeoTiff

Description

After you extracted data from the EBV netCDF and worked with it this function gives you the
possibility to write it to disk as a GeoTiff. This functions writes temporary files on your disk.
Specify a directory for these setting via options(’ebv_temp’="/path/to/temp/directory’).

Usage

ebv_write(
data,
outputpath,
epsg = 4326,
extent = c(-180, 180, -90, 90),
type = "FLT8S",
overwrite = FALSE,
verbose = FALSE

)
Arguments
data Your data object. May be raster, array, DelayedMatrix or list of DelayedMatrix
(see return values of ebv_read())
outputpath Character. Set the path where you want to write the data to disk as a GeoTiff.
Ending needs to be *.tif.
epsg Integer. Default: 4326 (WGS84). Defines the coordinate reference system via
the corresponding epsg code.
extent Numeric. Default: ¢(-180,180,-90,90). Defines the extent of the data: c(xmin,
Xmax, ymin, ymax).
type Character. Default is FLT8S Indicate the datatype of the GeoTiff file. Possi-
ble values: LOGI1S, INTIS, INTI1S, INT2S, INT2U, INT4S, INT4U, FLT4S,
FLTSS.
overwrite Locigal. Default: FALSE. Set to TRUE to overwrite the outputfile defined by
“outputpath’.
verbose Logical. Default: FALSE. Turn on all warnings by setting it to TRUE.
Value

Returns the outputpath.

Note

Not yet implemented for subsets of the data (only whole spatial coverage of the corresponding EBV
netCDF).

For more info on the datatype definition see raster: :dataType().

world_boundaries 19

Examples

#define temp directory

options('ebv_temp'=system.file("extdata/", package="ebvcube"))

#set path to EBV netCDF

file <- system.file(file.path("extdata"”,"cSAR_idiv_v1.nc"), package="ebvcube")
#get all datacubepaths of EBV netCDF

datacubes <- ebv_datacubepaths(file)

#read data
data <- ebv_read(filepath = file, datacubepath = datacubes[1,1], timestep = 1)
HERE YOU CAN WORK WITH YOUR DATA

#write data to disk as GeoTiff
out <- system.file(file.path("extdata","write_data.tif"), package="ebvcube")
ebv_write(data = data, outputpath = out)

#read a subset
data_bb <- ebv_read_bb(filepath = file, datacubepath = datacubes[1,1],
entity = NULL, timestep = 1:3, bb = ¢(5,15,47,55))

#write subset to disk as GeoTiff
ebv_write(data = data_bb, outputpath = out, extent = c(5,15,47,55), overwrite = TRUE)

world_boundaries Simple outlines of world countries

Description

Simple outlines of world countries

Usage

world_boundaries

Format

A Spatial Polygons Data Frame with 177 elements

Source

Data downloaded from Natural Earth. Used version 4.0.0 and reduced attributes.

https://www.naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-0-countries/

Index

x datasets
world_boundaries, 19

DelayedArray: :DelayedArray(), 12

EBV netCDF properties-class, 2
ebv_add_data, 3
ebv_add_data(), 7”7
ebv_analyse, 4
ebv_analyse(), 4
ebv_attribute, 6
ebv_create, 7
ebv_datacubepaths, 8
ebv_datacubepaths(), 4, 5, 9-13, 15, 16
ebv_indicator, 9
ebv_map, 10
ebv_properties, 11
ebv_properties(), 6
ebv_read, 12
ebv_read(), 4, 18
ebv_read_bb, 13
ebv_read_bb(), 5, 16
ebv_read_shp, 15
ebv_read_shp(), 5, 14
ebv_resample, 16
ebv_write, 18
ebvcube, 3

grDevices: :colors(), 9
raster::dataType(), I8

world_boundaries, 19

20

	EBV netCDF properties-class
	ebvcube
	ebv_add_data
	ebv_analyse
	ebv_attribute
	ebv_create
	ebv_datacubepaths
	ebv_indicator
	ebv_map
	ebv_properties
	ebv_read
	ebv_read_bb
	ebv_read_shp
	ebv_resample
	ebv_write
	world_boundaries
	Index

