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Abstract

The opening of large archives of satellite data such as LANDSAT, MODIS and the
SENTINELSs has given researchers unprecedented access to data, allowing them to better
quantify and understand local and global land change. The need to analyse such large
data sets has lead to the development of automated and semi-automated methods for
satellite image time series analysis. However, few of the proposed methods for remote
sensing time series analysis are available as open source software. In this paper we present
the R package dtwSat. This package provides an implementation of the Time-Weighted
Dynamic Time Warping method for land use and land cover mapping using sequence
of multi-band satellite images. Methods based on dynamic time warping are flexible to
handle irregular sampling and out-of-phase time series, and they have achieved significant
results in time series analysis. dtwSat is available from the Comprehensive R Archive
Network and contributes to making methods for satellite time series analysis available to
a larger audience. The package supports the full cycle of land cover classification using
image time series, ranging from selecting temporal patterns to visualising and evaluating
the results.
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1. Introduction

Remote sensing images are the most widely used data source for measuring land use and
land cover change (LUCC). In many areas, remote sensing images are the only data available
for this purpose (Lambin and Linderman 2006; Fritz et al. 2013). Recently, the opening of
large archives of satellite data such as LANDSAT, MODIS and the SENTINELs has given
researchers unprecedented access to data, allowing them to better quantify and understand
local and global land change. The need to analyse such large data sets has lead to the
development of automated and semi-automated methods for satellite image time series anal-
ysis. These methods include multi-image compositing (Griffiths et al. 2013), detecting forest
disturbance and recovery (Kennedy et al. 2010; Zhu et al. 2012; DeVries et al. 2015), crop
classification (Xiao et al. 2005; Wardlow et al. 2007; Petitjean et al. 2012; Maus et al. 2016),
planted forest mapping (le Maire et al. 2014), crop expansion and intensification (Galford

This vignette is based on the paper: MAUS, V.; CAMARA, G.; APPEL, M.; PEBESMA, E. dtwSat:
Time-Weighted Dynamic Time Warping for satellite image time series analysis in R. Submitted to the Journal
of Statistical Software.
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et al. 2008; Sakamoto et al. 2009), detecting trend and seasonal changes (Lunetta et al. 2006;
Verbesselt et al. 2010a,b, 2012), and extracting seasonality metrics from satellite time series
(Jonsson and Eklundh 2002, 2004). Given the open availability of large image data sets, the
research community on Earth Observation would get much benefit from methods that are
openly available, reproducible and comparable. However, few of the proposed methods for
remote sensing time series analysis are available as open source software, the main excep-
tion being the BFAST and BFAST-monitor algorithms for change detection (Verbesselt et al.
2010a,b). This paper is a contribution to making methods for satellite time series analysis
available to a larger audience.

In this paper we describe the dtwSat package, written in R (R Core Team 2016) and Fortran
programming languages, and available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=dtwSat. The package provides an implementation of Time-
Weighted Dynamic Time Warping (TWDTW) (Maus et al. 2016) for satellite image time series
analysis.

The TWDTW method is an adaptation of the well-known dynamic time warping (DTW)
method for time series analysis (Velichko and Zagoruyko 1970; Sakoe and Chiba 1971, 1978;
Rabiner and Juang 1993; Berndt and Clifford 1994; Keogh and Ratanamahatana 2005; Miiller
2007) for land use and land cover classification. The standard DTW compares a temporal
signature of a known event (e.g., a person’s speech) with an unknown time series. It finds all
possible alignments between two time series and provides a dissimilarity measure (Rabiner
and Juang 1993). In contrast to standard DTW, the TWDTW method is sensitive to seasonal
changes of natural and cultivated vegetation types. It also considers inter-annual climatic and
seasonal variability. In a tropical forest area, the method has achieved a high accuracy for
mapping classes of single cropping, double cropping, forest, and pasture (Maus et al. 2016).

We chose R because it is an open source software that offers a large number of reliable
packages. The dtwSat package builds upon on a number of graphical and statistical tools
in R: dtw (Giorgino 2009), proxy (Meyer and Buchta 2015), zoo (Zeileis and Grothendieck
2005), mgev (Wood 2000, 2003, 2004, 2006, 2011), sp (Pebesma and Bivand 2005; Bivand et al.
2013), raster (Hijmans 2015), caret (Kuhn et al. 2016), and ggplot2 (Wickham 2009). Other
R packages that are related and useful for remote sensing and land use analysis include landsat
(Goslee 2011), rgdal (Bivand and Lewin-Koh 2015), spacetime (Pebesma 2012; Bivand et al.
2013), bfast (Verbesselt et al. 2010a,b), bfastmonitor (Verbesselt et al. 2011), bfastSpatial
(Dutrieux and DeVries 2014), MODISTools (Tuck et al. 2014), maptools (Bivand and Lewin-
Koh 2015), and lucc (Moulds et al. 2015). Using existing packages as building blocks, software
developers in R save a lot of time and can concentrate on their intended goals.

There is already an R package that implements the standard DTW method for time series
analysis: the dtw package (Giorgino 2009). In the dtwSat package, we focus on the specific
case of satellite image time series analysis. The analysis method implemented in dtwSat
package extends that of the dtw package; it adjusts the standard DTW method to account
for the seasonality of different types of land cover. Our aim is to support the full cycle of land
use and land cover classification, from selecting sample patterns to visualising and evaluating
the final result.

This paper focuses on the motivation and guidance for using the TWDTW method for remote
sensing applications. The full description of the method is available in a paper published by
the lead author (Maus et al. 2016). In what follows, Section 3 gives an overview of the dtwSat
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package. The Section 2 describes the application of TWDTW (Maus et al. 2016) for satellite
time series analysis. Then, Section 4 focuses on the analysis of a single time series and shows
some visualisation methods. We then present an example of a complete land use and land
cover change analysis for a study area in the Mato Grosso, Brazil in Section 5.

2. The Time-Weighted Dynamic Time Warping method

In this section, we describe the Time-Weighted Dynamic Time Warping (TWDTW) algorithm
in general terms. For a detailed technical explanation, refer to Maus et al. (2016). TWDTW
is time-constrained version of the Dynamic Time Warping (DTW) algorithm. Although the
standard DTW method is good for shape matching (Keogh and Ratanamahatana 2005), it is
not suited per se for satellite image time series analysis, since it disregards the temporal range
when finding the best matches between two time series (Maus et al. 2016). When using image
time series for land cover classification, one needs to balance between shape matching and
temporal alignment, since each land cover class has a distinct phenological cycle associated
with the vegetation (Reed et al. 1994, Zhang et al. (2003)). For example, soybeans and maize
cycles range from 90 to 120 days, whereas sugar-cane has a 360 to 720 days cycle. A time
series with cycle larger than 180 days is unlikely to come from soybeans or maize. For this
reason, Maus et al. (2016) include a time constraint in DTW to account for seasonality. The
resulting method is capable of distinguishing different land use and land cover classes.

The inputs to TWDTW are: (a) a set of time series of known temporal patterns (e.g.,
phenological cycles of land cover classes); (b) an unclassified long-term satellite image time
series. For each temporal pattern, the algorithm finds all matching subintervals in the long-
term time series, providing a dissimilarity measure (cf. Figure 1). The result of the algorithm
is a set of subintervals, each associated with a pattern and with a dissimilarity measure.
We then break the unclassified time series in periods according to our needs (e.g., yearly,
seasonality, monthly). For each period, we consider all matching subintervals that intersect
with it, and classify them based on the land cover class of the best matching subinterval. In
this way, the long-term satellite time series is divided in periods, and each period is assigned
a land cover class.

To use TWDTW for land use and land cover classification, we need the following data sets:

e A set of remote sensing time series for the study area. For example, a tile of a MODIS
MOD13Q1 image consists of 4800 x 4800 pixels, covering an area of 10 degrees x 10
degrees at the Equator (Friedl et al. 2010). A 15-year (2000-2015) MODIS MOD13Q1
set time series has 23 images per year, with a total of 23 million time series, each with
346 samples.

e A set of time series with land cover information, called temporal patterns. Typically, each
time series is short and covers one phenological cycle of one land cover type. Examples
would be a time series of a soybean crop, or one that describes a mature tropical forest.
These temporal patterns can be extracted from the remote sensing image data, if the
user knows their spatial and temporal location.

e A set of ground truth points, with spatial and temporal information and land cover clas-
sification. These ground truth points are used for validation and accuracy assessment.
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Figure 1: Matches of the known temporal pattern to subintervals of the long-term time series.
The solid black line is the long-term time series, the colored lines are the different matches of
the same pattern ordered by TWDTW dissimilarity measure, and the gray dashed lines are
the matching points.

Based on the information provided by the user about the images to be analysed, our method
maps them to a three-dimensional (3-D) array in space-time (Figure 2). This array can have
multiple attributes, such as the satellite bands (e.g., “red”, “nir”, and “blue”), and derived
indices (e.g., “NDVI”, “EVI”, and “EVI2”). This way, each pixel location is associated to a
sequence of measurements, building a satellite image time series. Figure 2 shows an example
of “evi” time series for a location in the Brazilian Amazon from 2000 to 2008. In the first two
years, the area was covered by forest that was cut in 2002. The area was then used for cattle
raising (pasture) for three years, and then for crop production from 2006 to 2008. Satellite
image time series are thus useful to describe the dynamics of the landscape and the land use
trajectories.
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Figure 2: A 3-dimensional array of satellite images (left), an enhanced vegetation index (EVI)
time series at the pixel location (z,y) (right). The arrows indicate gaps in the time series.
Adapted from Maus et al. (2016).



Victor Maus, Gilberto Camara, Marius Appel, Edzer Pebesma

3. dtwSat package overview

dtwSat provides a set of functions for land cover change analysis using satellite image time
series. This includes functions to build temporal patterns for land cover types, apply the
TWDTW analysis using different weighting functions, visualise the results in a graphical
interface, produce land cover maps, and create spatiotemporal plots for land changes. There-
fore, dtwSat gives an end-to-end solution for satellite time series analysis, which users can
make a complete land change analysis.

For the dtwSat package, the user should provide the following inputs:

e A set of time ordered satellite images, all with the same spatial extent. The user should
also inform the date of each image. In R the images should use the RasterBrick or
RasterStack class of the raster package.

e A list of temporal patterns, each associated to a time series in zoo format.

e A list of known ground truth points, each with spatial and temporal information, in a
format readable in R, such as CSV or shapefile.

The dtwSat package organizes the data in three S4 classes of objects: twdtwTimeSeries,
twdtwMatches, and twdtwRaster. To store time series we use the class twdtwTimeSeries.
The objects of class twdtwTimeSeries have two slots; the slot called timeseries has a
list of zoo objects; and the slot called labels stores the labels of the time series. The
class twdtwMatches has 3 slots to store inputs and results of the TWDTW analysis. The
slots called timeseries and patterns are objects of the class twdtwTimeSeries with the
unclassified long-term time series and the temporal patterns, respectively. A third slot called
alignments has a list with detailed information about the matches between the patterns
and the unclassified long-term time series. The classes twdtwTimeSeries and twdtwMatches
are used to analyse lists of time series.

The class twdtwRaster is used for satellite image time series. This class can store either
unclassified raster time series with the satellite raw data, the results of the TWDTW analyis,
or a classified raster time series. In both cases, the objects of class twdtwRaster have five
slots. The slot called timeseries is a list of RasterBrick or RasterStack objects with
time ordered satellite images (all with the same temporal and spatial extents); the slot called
timeline is a vector of class Date with dates of the satellite images; the slot called layers
has the names of satellite bands; the slot called levels has levels for the raster values; and
the slot called labels has labels for the raster values. This class builds upon the R package
raster to build a multi-attribute 3-D raster in space-time, allowing for multi-band satellite
image time series analysis.

4. Classifying a time series

This section describes how to classify one time series, using examples that come with the
dtwSat package. We will show how to match three temporal patterns (“soybean”, “cotton”,
and “maize”) to subintervals of a long-term satellite image time series. These time series have

been extracted from a set of MODIS MOD13Q1 (Friedl et al. 2010) images and include the
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vegetation indices “ndvi”, “evi”, and the original bands “nir”, “red”, “blue”, and “mir”. In this
example, the classification of crop types for the long-term time series is known.

4.1. Input data

The inputs for the next examples are time series in zoo format. The first is an object of class
zoo with a long-term time series, referred to as example_ts, and the second is a 1ist of time
series of class zoo with the temporal patterns of “soybean”, “cotton”, and “maize”, referred to

as patterns.list.

From zoo objects we construct time series of class twdtwTimeSeries, for which we have a set
of visualization and analysis methods implemented in the dtwSat package. The code below
builds two objects of class twdtwTimeSeries. The first has the long-term time series and
second has the temporal patterns. We use the plot method types timeseries and patterns
to shown the objects ts in Figure 3 and patterns_ts in Figure 4, respectively. This plot
method uses ggplot syntax.

ts = twdtwlimeSeries(example_ts, labels="Time series")
patterns_ts = twdtwTimeSeries (patterns.list)
example_ts_labels

label from to

Soybean 2009-09-01
Cotton 2010-03-01
Soybean 2010-09-01
Cotton 2011-03-01
Soybean 2011-09-01

Maize 2012-03-01
Soybean 2012-09-01

Maize 2013-03-01

00 ~NO O WN =

library(dtwSat)
names (patterns.list)

2010-03-01
2010-09-01
2011-03-01
2011-09-01
2012-03-01
2012-09-01
2013-03-01
2013-09-01

[1] "Soybean" "Cotton" "Maize"
head (example_ts, n = 2)
ndvi evi red nir blue mir

2009-08-05 0.3169 0.1687 0.1167 0.2250 0.0427 0.2193
2009-08-28 0.2609 0.1385 0.1168 0.1993 0.0548 0.2657

plot(ts, type = "timeseries") +

annotate(geom = "text", x = example_ts_labels$from+90, y = 0.98,
label = example_ts_labels$label, size = 2)

plot(patterns_ts, type = "patterns")
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Figure 3: Example of time series based on MODIS product MOD13Q1 (Friedl et al. 2010).
The labels of the phenological cycle are shown in the plot.
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Figure 4: Temporal patterns of soybean, cotton, and maize based on MODIS product
MOD13Q1 (Friedl et al. 2010).

TWDTW uses both amplitude and phase information to classify the phenological cycles in
the long-term time series. The EVI peak of the “soybean” time series has a similar amplitude
as that of “cotton”. However, the “soybean” series peaks in late December while the “cotton”
series peaks in early April. The EVI peak of the “maize” time series is at the same period
as the peak of “cotton”. However, the “maize” time series has smaller amplitude than the
“cotton” one. Therefore, we can improve the time series classification by combining shape
and time information.

4.2. Detection of time series patterns with TWDTW

Each subinterval of the long-term time series in ts has a known phenological cycle. We will
now compare the known information with the result of the TWDTW algorithm. We use the
function twdtwApply that returns an R object of class twdtwMatches with all matches of each
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temporal pattern in the time series.

log_weight = logisticWeight(alpha = -0.1, beta = 100)
matches =

twdtwApply(x = ts, y = patterns_ts, weight.fun = log_weight, keep=TRUE)
slotNames (matches)

[1] "timeseries" "patterns"  "alignments"
show (matches)

An object of class "twdtwMatches"
Number of time series: 1

Number of Alignments: 16

Patterns labels: Soybean Cotton Maize

To retrieve the complete information of the matches we set keep=TRUE. We need this infor-
mation for the plot methods of the class twdtwMatches. The argument weight.fun defines
the time-weight to the dynamic time warping analysis (Maus et al. 2016). By default the
time-weight is zero, meaning that the function will run a standard dynamic time warping
analysis. The arguments x and y are objects of class twdtwTimeSeries with the unclassified
long-term time series and the temporal patterns, respectively. For details and other arguments
see 7twdtwApply.

In our example we use a logistic weight function for the temporal constraint of the TWDTW
algorithm. This function is defined by logisticWeight. The dtwSat package provides two
in-built functions: linearWeight and logisticWeight. The linearWeight function with
slope a and intercept b is given by

w:a'g(t17t2)+b7

and the logisticWeight with midpoint beta, and steepness alpha, given by

1
Yl ealeltni) B

The function g is the absolute difference in days between two dates, t; and to. The linear
function creates a strong time constraint even for small time differences. The logistic function
has a low weight for small time warps and significant costs for bigger time warps, cf. Figure
5. In our previous studies (Maus et al. 2016) the logistic-weight had better results than
the linear-weight for land cover classification. Users can define different weight functions as
temporal constraints in the argument weight.fun of the twdtwApply method.

4.3. Visualising the result of the TWDTW algorithm

dtwSat provides five ways to visualise objects of class twdtwMatches through the plot types:
matches, alignments, classification, path, and cost. The plot type matches shows the
matching points of the patterns in the long-term time series; the plot type alignments shows
the alignments and dissimilarity measures; the plot type path shows the low cost paths in the
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Figure 5: Logistic time-weight function logisticWeight with steepness alpha=-0.1 and
midpoint beta=100. The z axis shows the absolute difference between two dates in days and
the y axis shows the time-weight (Maus et al. 2016).

TWDTW cost matrix; and the plot type cost allows the visualisation of the cost matrices
(local cost, accumulated cost, and time cost); and the plot type classification shows the
classification of the long-term time series based on the TWDTW analysis. The plot methods
for class twdtwMatches return a ggplot object, so that users can further manipulate the
result using the ggplot2 package. For more details on visualisation functions, please refer to
the dtwSat documentation in the CRAN (Maus 2015).

We now describe the plot types matches and alignments. The code bellow shows how to
visualise the matching points of the four best matches of “soybean” pattern in the long-term
time series, cf. Figure 6.

plot (matches, type="matches", patterns.labels="Soybean", k=4)
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Figure 6: The four best matches of the "soybean” pattern in the time series using a logistic
time-weight. The solid black line is the long-term time series; the coloured lines are the
temporal patterns; and the grey dashed lines are the respective matching points.

The next example (Figure 7) uses the plot type alignments to show the alignments of the
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temporal patterns. We set the threshold for the dissimilarity measure to be lower than 3.0.
This is useful to display the different subintervals of the long-term time series that have at
least one alignment whose dissimilarity is less than the specified threshold.

plot (matches, type="alignments", attr = "evi", threshold = 3.0)

Time series

0.75 =

0.50 =
Pattern

025 = Soybean

—e— Cotton

TWDTW dissimilarity measure Maize

value

25 - Variable

—_—evi

20=
15=

1.0 - —
! ! ! !
2010 2011 2012 2013
Time

Figure 7: Alignments and dissimilarity measures of the patterns “soybean”, ”cotton”; and
“maize” to the subintervals of the long-term time series using a logistic time-weight. The solid
black line is the EVI time series, and the coloured lines are the alignments of the patterns
that have dissimilarity measure lower than three.

4.4. Classifying the long-term time series

Using the matches and their associated dissimilarity measures, we can classify the subintervals
of the long-term time series using twdtwClassify. To do this, we need to define a period for
classification and the minimum overlap between the period and the alignments that intersect
with it. We use the plot type classification to show the classification of the subintervals
of the long-term time series based on the TWDTW analysis. For this example, we set classifi-
cation periods of 6 months from September 2009 to September 2013, and a minimum overlap
of 50% between the alignment and the classification period. This means that at least 50% of
the alignment has to be contained inside of the classification period.

ts_classification = twdtwClassify(x = matches,
from = as.Date("2009-09-01"), to = as.Date("2013-09-01"),
by = "6 month", overlap = 0.5)

plot(ts_classification, type="classification")

Comparing the results of the classified time series in Figure 8 with the crop cycles in Figure
3 we see that the algorithm has classified correctly all the eight subintervals from 2009 to
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Figure 8: Classification of each 6 months periods of the time series using results of the
TWDTW analysis with logistic time-weight. The solid lines are the attributes of the time
series, the background colours indicate the classification of the periods.

2013, which are, respectively: “Soybean”, “Cotton”, “Soybean”, “Cotton”, “Soybean”, “Maize”,
“Soybean”, “Maize”.

5. Producing a land cover map

In this section we present an application of TWDTW for land use and land cover change
analysis using satellite image time series. Our input is a set of images, each covering the same
geographical area at different times. Each pixel location is then associated to an unclassified
satellite image time series. We assume to have done field work in the area; for some pixel
locations and time periods, we know what is the land cover. We then will show how to obtain
a set of template patterns, based on the field samples and how to apply these patterns to land
cover classification of the set of images. In the end of this section we show how to perform
land cover change analysis and how to do accuracy assessment. The satellite images and the
field samples used in the examples come with dtwSat package.

Our method is not restricted to cases where the temporal patterns are obtained from the set
of images. The patterns for the TWDTW analysis can be any time series with same bands
or indices as the unclassified images, such as in the examples of Section 4 above.

5.1. Input data

The inputs are: a) the satellite images for a given geographical area, organised as a set of
georeferenced raster files in GeoTIFF format, each containing all time steps of a spectral band
or index; and b) a set of ground truth samples. The satellite images are extracted from the
MODIS product MOD13Q1 collection 5 (Friedl et al. 2010) and include vegetation indexes
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“ndvi”, “evi”, and original bands “nir”, “red”, “blue”, and “mir”. This product has 250 x 250
m spatial and 16 day temporal resolution.

The region is a tropical forest area in Mato Grosso, Brazil of approximately 5300 km? with
images from 2007 to 2013 (Figure 9). This is a sequence of 160 images with 999 pixels each
for 6 years. We also have a set of 603 ground truth samples of the following classes: “forest”,

YEN14 PYEN1S

“cotton-fallow”, “soybean-cotton”, “soybean-maize”, and “soybean-millet”.

Brazil w7} =
c“*}p‘?ﬁ/}k

Mato Grosso ', -

S

Figure 9: Study area in Mato Grosso, Brazil, shown in a (C) Google Earth image. The area
was originally covered by tropical forest that has been removed for agricultural use.

The data files for the examples that follow are in the dtwSat installation folder lucc_MT/data/.
The tif files include the time series of “blue”, “red”, “nir”, “mir”, “evi”, “ndvi”, and “doy” (day of
the year); the text file timeline has the dates of the satellite images; the CSV file samples.csv
has the longitude, latitude, from, to, and label for each field sample; and the text file
samples_projection contains information about the cartographic projection of the samples, in

the format of coordinate reference system used by sp: :CRS.

data_folder = system.file("lucc_MT/data", package = "dtwSat")
dir(data_folder)

[1] "blue.tif" "doy.tif" "evi.tif"
[4] "mir.tif" "ndvi.tif" "nir.tif"
[7] "red.tif" "samples_projection" "samples.csv"

[10] "timeline"

In this example, we have stored all the time series for each band in one single file. In this
way, we can use the function raster: :brick to read the satellite images. The algorithm also
works when the time steps for each band are split in many files. In this case, the user should
call the function raster::stack with the appropriate parameters. Because of processing
performance, we suggest that interested users group their images in bricks and follow the
procedures given below.

blue = brick(paste(data_folder, "blue.tif", sep = "/"))
red brick(paste(data_folder, "red.tif", sep = "/"))
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nir = brick(paste(data_folder,"nir.tif", sep = "/"))
mir = brick(paste(data_folder,"mir.tif", sep = "/"))
evi = brick(paste(data_folder,"evi.tif", sep = "/"))
ndvi = brick(paste(data_folder,"ndvi.tif", sep = "/"))

day_of_year = brick(paste(data_folder, "doy.tif", sep = "/"))
dates = scan(paste(data_folder,"timeline", sep = "/"), what = "dates")

The set of ground truth samples in the CSV file samples.csv has a total of 603 samples divided
in five classes: 68 “cotton-fallow”, 138 “forest”, 79 “soybean-cotton”, 134 “soybean-maize”, and
184 “soybean-millet”. Reading this CSV file, we get a data.frame object, with the spatial
location (latitude and longitude), starting and ending dates (from and to), and the label

for each sample.

field_samples = read.csv(paste(data_folder, "samples.csv", sep = "/"))
head(field_samples, 2)

longitude 1latitude from to label
1 -55.98819 -12.03646 2011-09-01 2012-09-01 Cotton-fallow
2 -55.99118 -12.04062 2011-09-01 2012-09-01 Cotton-fallow

table(field_samples[["label"]])

Cotton-fallow Forest Soybean-cotton Soybean-maize Soybean-millet
68 138 79 134 184
proj_str = scan(paste(data_folder, "samples_projection", sep = "/"),
what = "character")
proj_str

[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

5.2. Creating the time series and the temporal patterns

After reading our data, we need to create the time series for analysis. For this purpose, dtwSat
provides the constructor twdtwRaster that builds a multi-band satellite image time series.
The inputs of this function are RasterBrick objects with the same temporal and spatial
extents, and a vector (timeline) with the acquisition dates of the images in the format
"YYYY-MM-DD". The argument doy is optional. If doy is not declared, the function builds a
RasterBrick object using the dates given by timeline. This function produces an object of

class twdtwRaster with the time series of multiple satellite bands.

raster_timeseries = twdtwRaster(blue, red, nir, mir, evi, ndvi,
timeline = dates, doy = day_of_year)

13
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We now need to identify the temporal patterns. Usually, this can be done using the collected
field samples. In the next example we use the function getTimeSeries to get the time
series of each field sample from our raster time series. The arguments of the function are
a set of raster time series, a data.frame with spatial and temporal information about the
fields samples (as in the object field_samples given above), and a proj4string with the
projection information. The projection should follow the sp::CRS format. The result is an
object of class twdtwTimeSeries with one time series for each field sample.

field_samples_ts = getTimeSeries(raster_timeseries,
y = field_samples, proj4string = proj_str)
field_samples_ts

An object of class "twdtwTimeSeries"

Slot "timeseries" length: 603

Slot "labels": [1] Cotton-fallow Cotton-fallow Cotton-fallow

5 Levels: Cotton-fallow Forest Soybean-cotton ... Soybean-millet

After obtaining the time series associated to the field samples, we need to create the template
patterns for each class. For this purpose, dtwSat provides the function createPatterns.
This function fits a Generalized Additive Model (GAM) [Hastie:1986,Wood:2011] to the field

9

samples and retrieves a smoothed temporal pattern for each band (e.g., “blue”, “red”; “nir”,
“mir”, “evi”, and “ndvi”). We use the GAM because of its flexibility for non-parametric fits,
with less rigorous assumptions on the relationship between response and predictor. This
potentially provides better fit to satellite data than purely parametric models, due to the

data’s inter- and intra-annual variability.

To produce the set of template patterns using the function createPatterns, we need to set
the temporal frequency of the resulting patterns and the smoothing function for the GAM
model. In the example below, we set freq=8 to get temporal patterns with a frequency of 8
days. We also set the GAM smoothing formula to be formula = y ~ s(x), where function
s sets up a spline model, with x the time and y a satellite band (for details see ?mgcv: : gam
and Pmgcv::s).

temporal_patterns =
createPatterns(field_samples_ts, freq = 8, formula =y ~ s(x))

We use the plot method type="patterns" to show the results of the createPatterns in
Figure 10.

plot (temporal_patterns, type = "patterns") +
theme (legend.position = c(.8,.25))

After obtaining the template patterns for each land cover class, it is useful to perform a
pre-classification analysis to assess their quality and their informational content. Ideally, one
would need template patterns that, when applied to the set of unknown time series, produce
consistent results. For this reason, it is advisable that the user performs a pre-classification
step, along the lines of the individual analysis described in Section 4. In this way, the users
would assess how good their patterns are before classifying a large data set.
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Figure 10: Temporal patterns of forest, cotton-fallow, soybean-cotton, soybean-maize, and
soybean-millet based on the ground truth samples.

5.3. Classifying the image time series

After obtaining a consistent set of temporal patterns, we use the function twdtwApply to
run the TWDTW analysis for each pixel location in the raster time series. The input raster
time series in the object twdtwRaster should be longer or have approximatly the same length
as the temporal patterns. This function retrieves an object of class twdtwRaster with the
TWDTW dissimilarity measure of the temporal patterns for each time period. The arguments
overwrite and format are passed to raster: :writeRaster. The arguments weight.fun and
overlap are described in Section 4. Here we set the parameters of the time weight (logistic
function) base on our the experience about the phenological cycle of the vegetation in the
study area. In the next example, we classify the raster time series using the temporal patterns
in temporal_patterns obtained as described above. The result is a twdtwRaster with five
layers; each layer contains the TWDTW dissimilarity measure for one temporal pattern over
time. We use the plot type distance to illustrate the TWDTW dissimilarity for each temporal
pattern in 2013, cf. Figure 11.

log_fun = logisticWeight(alpha=-0.1, beta=50)

twdtw_dist = twdtwApply(x = raster_timeseries, y = temporal_patterns,
overlap = 0.5, weight.fun = log_fun, overwrite=TRUE, format="GTiff")

[1] "Procesing chunk 1/1"

plot(x = twdtw_dist, type="distance", time.levels = 6)

The results of the example above can be used to create categorical land cover maps. The
function twdtwClassify selects the most similar pattern for each time period and retrieves

15
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2013
Cotton—fallow Forest Soybean-cotton
Soybean-maize Soybean-millet

TWDTW distance “

2 4 6 8 10

Figure 11: Tllustration of the TWDTW dissimilarity from each temporal pattern in 2013. The
blue areas are more similar to the pattern and the red areas are less similar to the pattern.

a twdtwRaster object with the time series of land use maps. The resulting object includes
two layers, the first has the classified categorical maps and the second has the TWDTW
dissimilarity measure.

land_use_maps = twdtwClassify(twdtw_dist, format="GTiff", overwrite=TRUE)

5.4. Looking at the classification results

The classification results can be visualised using the plot methods of the class twdtwRaster,

YW YW

which supports four plot types: “maps”, “area”, “changes”, and “distance”. The type="maps"
shows the land cover classification maps for each period, cf. Figure 12.

plot(x = land_use_maps, type = "maps")

The next example shows the accumulated area for each class over time, using type="area",
cf. Figure 13.

plot(x = land_use_maps, type = "area")

Users can also view the land cover transition for each time period, by setting type="changes".
For each land cover class and each period, the plot shows gains and losses in area from the
other classes. This is the visual equivalent of a land transition matrix, cf. Figure 14.

plot(x = land_use_maps, type = "changes")
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Figure 12: Land use maps for each year from 2008 to 2013.
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Figure 13: Percentage of area for each land use class from 2008 to 2013.

We can also look at the dissimilarity of each classified pixel setting type="distance". This
plot can give a measure of the uncertainty of the classification of each pixel for each time
period, cf. Figure 15.

plot(x = land_use_maps, type="distance")
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Figure 14: Gains and losses in area from the other classes. The y axis shows the actual class;
the positive direction of x axis shows the gains and the negative direction of x axis shows the
losses of the classes indicated in y. The colors indicate from/to which classes the gains/losses
belong.
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Figure 15: TWDTW dissimilarity measure for each pixel over each classified period. The blue
areas have high confidence and the red areas have low confidence in the classification.

5.5. Assessing the classification accuracy

In this section we show how to assess the accuracy of the TWDTW method for land cover
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classification. To do this, we split the ground truth samples into training and validation sets,
using the function splitDataset from the package dtwSat. This function splits set of time
series in the object twdtwTimeSeries for training and validation. The argument p defines the
percentage used for training and the argument times gives the number of different partitions
to create. This is a a stratified sampling with a simple random sampling within each stratum,
see 7createDataPartition for details. In the next example we create 100 different partitions
of the data. Each partition uses 10% of the data for training and 90% for validation. The
output is a list with 100 different data partitions; each partition has the temporal patterns
based on the training samples and a set of time series for validation.

set.seed (1)
partitions = splitDataset(field_samples_ts, p=0.1, times=100,
freq = 8, formula =y ~ s(x, bs="cc"))

For each data partition we run the TWDTW analysis to classify the set of validation
time series using the trained temporal patterns. The result is a list of twdtwMatches
objects with the classified set of time series for each data partition. To compute the User’s
Accuracy (UA) and Producer’s Accuracy (PA) of the classified time series we use the function
dtwSat: :twdtwAssess that retrieves a data.frame with the accuracy assessment for all data
partitions.

log_fun = logisticWeight(alpha=-0.1, beta=50)

twdtw_res = lapply(partitions, function(x){
res = twdtwApply(x = x$ts, y = x$patterns, weight.fun = log_fun, n=1)
twdtwClassify(x = res)

P

assessment = twdtwAssess (twdtw_res)

head (assessment, 5)

Figure 16 shows the average p and standard deviation o of wser’s and producer’s accu-
racy based on a bootstrap simulation of 100 different data partitions using resampling-with-
replacement. The user’s accuracy gives the confidence and the producer’s accuracy gives the
sensitivity of the method for each class. In our analysis all classes had high user’s and pro-
ducer’s accuracy, meaning that TWDTW has high confidence and sensitivity for the classes
included in the analysis. The average, standard deviation, and the 99% confidence interval is
also shown in Table 1.

6. Conclusions and Discussion

Nowadays, there are large open archives of Earth Observation data, but few open source
methods for analysing them. With this motivation, this paper provides guidance on how
to use the Time-Weighed Dynamic Time Warping (TWDTW) method for remote sensing
applications. As we have discussed in a companion paper (Maus et al. 2016), the TWDTW
method is well suited for land cover change analysis of satellite image time series.
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Figure 16: User’s Accuracy (UA) and Producer’s Accuracy (PA) of the TWDTW method for
land cover classification. The plot shows the averages and their confidence interval for 99%.

Class User’s Accuracy (UA) % Producer’s Accuracy (PA)%
W o CI W o CI
Cotton-fallow  99.93 (0.46) [99.80-100.00]  95.78 (1.29)  [95.44-96.07]
Forest 100.00  (0.00) [100.00-100.00] 100.00 (0.00) [100.00-100.00]
Soybean-cotton  88.92 (1.81)  [88.45-80.37]  98.58 (5.37)  [96.87-99.73]
(0.95) (4.79)
(6.09) (0.70)

Soybean-maize  99.58  (0.95 [99.32-99.78]  93.51  (4.79 [92.12-94.52]
Soybean-millet  97.12  (6.09 [95.57-98.52] 99.67 (0.70 [99.48-99.83]

Table 1: User’s and Producer’s Accuracy of the land use classification based on TWDTW
analysis. u is the average accuracy, o the standard deviation, and CI is the confidence interval
of 99% using 100 resampling-with-replacement.

The main goal of dtwSat package is to make TWDTW accessible for researchers. The pack-
age supports the full cycle of land cover classification using image time series, ranging from
selecting temporal patterns to visualising and evaluating the results. The current version of
the dtwSat package provides a pixel-based time series classification method. We envisage that
future versions of the package could include local neighborhoods to reduce border effects and
improve classification homogeneity.

The dtwSat package provides two in-built functions for linear and logistic time weight. In
the current version of the package the parameters of the weight functions are set manually
to the same value for all land use/cover classes. Future versions of the package could include
methods to search for the best parameters to be set class-by-class using field data.

To aim for maximum usage by the scientific community, the dtwSat package described in this
paper works with well-known R data classes such as provided by packages zoo and raster.
We are planning improvements, so that dtwSat can be combined with array databases, such
as SciDB (Stonebraker et al. 2013). We believe that combining array databases with image
time series analysis software such as presented here is one way forward to scaling the process
of information extracting to very large Earth Observation data.
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