Notes on Vectorization

Robert McDonald
April 5, 2018

Contents
1 Introduction 1
2 Vectorization 1
2.1 Automatic Vectorization 1
2.2 Limitations of Automatic Vectorization 2
2.3 Three Solutions 3
2.3.1 Use a Booleans in Place of ifelse 3
2.3.2 CreateaDataFrame. 4
2.3.3 Create a Vectorization Function 4
2.4 Why Worry About Vectorization? 7

1 Introduction

Many of the pricing functions in the derivmkits package are vectorized. This
document summarizes some of the issues that arose when implementing vector-
ization.

2 Vectorization

Where possible, I have tried to make sure that the pricing functions return
vectors. This is automatic in many cases (for example, with the Black-Scholes
formula), but there are situations in which achieving robust vectorization re-
quires care when constructing a function. The purpose of this section is to
explain the problems I encountered and the solutions I considered. Perhaps I
overlooked the obvious or I am ignorant of some details of R. In either case I
hope you will let me know! Otherwise, I hope this discussion is helpful to others.

2.1 Automatic Vectorization

f = function(a, b, k) a*xb + k
£(3, 5, 1)

[1]1 16

£(1:5, 5, 1)

[1] 6 11 16 21 26
f(1:6, 1:2, 1)

[1] 2 5 4 9 613

In this example, R automatically vectorizes the multiplication using the re-
cycling rule. It’s worth noting that the third example, in which both arguments
are vectorized, but with different length vectors, is an unusual programming
construct.! This property makes it trivial to perform what-if calculations for
an option pricing formula.

2.2 Limitations of Automatic Vectorization

A problem with automatic vectorization occurs when there are conditional state-
ments. With barrier options, for example, it is necessary to check whether the
asset price is past the barrier. R’s if statement is not vectorized, and the ifelse
function returns output that has the dimension of the conditional.

condl <- function(a, b, k) {

if (a > b) {
axb + k
} else {
k
}

}

cond1(5, 3, 1)
[1] 16

cond1(5, 7, 1)
[1] 1

cond1(3:7, 5, 1)

Warning in if (a > b) {: the condition has length > 1 and only the first element will
be used

(11 1

The third invocation of cond1 causes an error because the if statement is not
vectorized. This can be fixed by rewriting the conditional using ifelse, which
is vectorized. The following examples all compute correctly because if either a
or b are vectors, the conditional statement is vectorized:

1You can produce the same output in python using the itertools module.

cond2 <- function(a, b, k) {
ifelse(a > b,
axb + k,
k
)
}
cond2(5, 3, 1)
[1] 16
cond2(5, 7, 1)
(11 1
cond2(3:7, 5, 1)
[11 1 1 13136
There will, however, be a problem if only k is a vector. Suppose we set a = 5,
b=17,k=1:3. Because a < b, we want to produce the output 1,2,3. The
following example does not work as desired because neither of the variables in
the conditional (a and b) are a vector. Thus the calculation is not vectorized:
cond2(5, 7, 1:3)

(11 1

The ifelse function returns output with the dimension of the conditional
expression, which in this case is a vector of length 1.
2.3 Three Solutions
One solution is to write the function so as to vectorize all the inputs to match
the vector length of the longest input. There are at least three ways to do this.
2.3.1 Use a Booleans in Place of ifelse

We can create a boolean variable that is true if ¢ > b. This will then control
which expression is returned:
cond2b <- function(a, b, k) {

agtb <- (a > b)

agtb*(a*b + k) + (1-agtb)*k

}

cond2b(5, 3, 1)
[1] 16
cond2b(5, 7, 1)
[1] 1

cond2b(3:7, 5, 1)

1] 1 1 13136
cond2b(5, 7, 1:3)
[11 123

Whether this solution works in other functions depends on the structure of
the calculation and the nature of the output. In particular, if the value of a
boolean controls the data structure the function returns (a vector vs a list, for
example), then this solution does not work.
2.3.2 Create a Data Frame

We can enforce the recycling rule for all variables by creating a data frame
consisting of the inputs and assigning the columns back to the original variables:

cond2c <- function(a, b, k) {
tmp <- data.frame(a, b, k)
for (i in names(tmp)) assign(i, tmp[[i]l])
ifelse(a > b,
axb + k,
k
)

}

cond2c(5, 3, 1)
[1] 16

cond2c(5, 7, 1)
[11 1

cond2c(3:7, 5, 1)
[1] 1 1 1 31 36
cond2c(5, 7, 1:3)

[11 123

One drawback of this solution is that we have to be careful to update the
data.frame() definition within the function if we change the function inputs. It
may be easy to overlook this when editing the function. The next solution is a
more robust version of the same idea.

2.3.3 Create a Vectorization Function

A final alternative is to create a vectorization function that exploits R’s func-
tional capabilities and does not require modifications if the function definition
changes. This approach can become quite complicated, but is relatively easy to

understand in simple cases. We create a vectorizeinputs() function that creates
a data frame and vectorizes all variables:

vectorizeinputs <- function(e) {
e is the result of match.call() in the calling function
e[[1]] <- NULL
e <- as.data.frame(as.list(e))
for (i in names(e)) assign(i, eval(e[[i]l]),
envir=parent.frame())

This function assumes that match.ca11() has been invoked in the calling func-
tion. The result of that invocation is manipulated to provide information about
the parameters passed to the function and used to create the data frame and
pass the variables back to the calling function.

cond3 <- function(a, b, k) {

vectorizeinputs(match.call())
ifelse(a > b, a*xb + k, k)

iondB(S, 7, 1:3)
[1] 1 2 3
cond3(3:7, 5, 1)
[1] 1 1 1 31 36
cond3(3:7, 5, 1:5)
[1] 1 2 3 34 40

cond3(k=1:5, 3:7, 5)

[11 1 2 3 34 40

This approach becomes more complicated if there are implicit parameters in
the function. If truly implicit, these will not be available via match.cal1(), but
they can affect the solution. Here is an example:

cond4 <- function(a, b, k, multby2=TRUE) {
vectorizeinputs(match.call())
ifelse(multby2,
2% (axb + k),
axb + k
)
cond4(5, 7, 1:3)
[1] 72
cond4(3:7, 5, 1)

[1] 32

cond4(3:7, 5, 1:5)
[1] 32

cond4(k=1:5, 3:7, 5)
[1] 32

The output is not vectorized because the implicit parameter multby2 is im-
plicit — it is not explicit in the function call — and therefore it is not vectorized.
One way to handle this case is to rewrite the vectorizeinputs function to retrieve
the full set of function inputs for the called function. The name of the function
is available through match.ca11() [[1]], and the function parameters are available
using the formals function. We can then add the implicit parameters to the
vectorized set of inputs. The function vectorizeinputs2 takes this approach:

vectorizeinputs2 <- function(e) {
funcname <- e[[1]]
fvals <- formals(eval(funcname))
fnames <- names(fvals)
e[[1]] <- NULL
e <- as.data.frame(as.list(e))
implicit <- setdiff (fnames, names(e))
if (length(implicit) > 0) e <- data.frame(e, fvals[implicit])
for (i in names(e)) assign(i, eval(e[[il]),
envir=parent.frame())

}

cond5 <- function(a, b, k, multby2=TRUE, altmult=1) {
vectorizeinputs2(match.call())
ifelse(multby2,
2% (axb + k),
altmult*(a*b + k)
)

cond5(5, 7, 1:3)

[1] 72 74 76

cond5(3:7, 5, 1)

[1] 32 42 52 62 72

cond5(3:7, 5, 1:5)

[1] 32 44 56 68 80

cond5(k=1:5, 3:7, 5)

[1] 32 44 56 68 80

cond5(k=1:5, 3:7, 5, multby2=FALSE)
[1] 16 22 28 34 40

cond5(k=1:5, 3:7, 5, multby2=FALSE, altmult=5)

[1] 80 110 140 170 200

2.4 Why Worry About Vectorization?

R provides looping constructs and apply functions. It might seem that it’s not
necessary to worry about vectorization. There are two reasons that I choose to
vectorize where feasible.

First, I personally find vectorization convenient and transparent. I find
vectorized code easier to read and it fits the way I like to work. This is an
aesthetic argument.

Second, in my experience the apply functions are a real hurdle for new
R users. Automatic vectorization makes it possible to perform complicated
calculations in a straightforward and intuitive way.

	Introduction
	Vectorization
	Automatic Vectorization
	Limitations of Automatic Vectorization
	Three Solutions
	Use a Booleans in Place of ifelse
	Create a Data Frame
	Create a Vectorization Function

	Why Worry About Vectorization?

