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Function Description

bscall European call
bsput European put
bsopt European call and put and associated Greeks: delta, gamma, vega,

theta, rho, psi, and elasticity

assetcall  Asset-or-nothing call
assetput  Asset-or-nothing put
cashcall ~ Cash-or-nothing call
cashput  Cash-or-nothing put
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Table 1: Black-Scholes related option pricing functions

Introduction

This vignette is an overview to the functions in the derivmkts package, which
was conceived as a companion to my book Derivatives Markets (McDonald,
2013). The material has an educational focus. There are other option pricing
packages for R, but this package has several distinguishing features:
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function names (mostly) correspond to those in Derivatives Markets.

vectorized Greek calculations are convenient both for individual options
and for portfolios

the quincunx function illustrates the workings of a quincunx (Galton board).

binomial functions include a plotting function that provides a visual de-
piction of early exercise

European Calls and Puts

Table 1 lists the Black-Scholes related functions in the package.! The functions
bscall, bsput, and bsopt provide basic pricing of European calls and puts. There
are also options with binary payoffs: cash-or-nothing and asset-or-nothing op-

tions.

All of these functions are vectorized. The function bsopt by default

provides option greeks. Here are some examples:

s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0
bscall(s, k, v, r, tt, d)

[1] 24.02

bsput(s, c(95, 100, 105), v, r, tt, d)

(1]

7.488 9.239 11.188

1See Black and Scholes (1973) and Merton (1973).



3 Barrier Options

There are pricing functions for the following barrier options:?

e down-and-in and down-and-out barrier binary options
e up-and-in and up-and-out barrier binary options

e more standard down- and up- calls and puts, constructed using the barrier
binary options

Naming for the barrier options generally follows the convention
[uld]l [ilo] [calllput]

which means that the option is “up” or “down”, “in” or “out”, and a call or
put.® An up-and-in call, for example, would be denoted by uicall. For binary
options, we add the underlying, which is either the asset or $1: cash:

[asset|cash] [uld] [ilo] [calllput]

H <- 115
bscall(s, c(80, 100, 120), v, r, tt, d)

[1] 35.28 24.02 15.88

uicall(s, c(80, 100, 120), v, r, tt, d, H)
[1] 34.55 23.97 15.88
bsput(s, c(80, 100, 120), v, r, tt, d)

[1] 3.450 9.239 18.141

uoput (s, c(80, 100, 120), v, r, tt, d, H)

[1] 2.328 5.390 9.070

4 Perpetual American Options

The functions callperpetual and putperetual price infinitely-lived American op-
tions.* The pricing formula assumes that all inputs (risk-free rate, volatility,
dividend yield) are fixed. This is of course usual with the basic option pricing

28ee Merton (1973, p. 175) for the first derivation of a barrier option pricing formula and
McDonald (2013, Chapter 14) for an overview.

3This naming convention differs from that in Derivatives Markets, in which names are
callupin, callupout, etc. Thus, I have made both names are available for these functions.

4Merton (1973) derived the price of a perpetual American put.



formulas, but it is more of a conceptual stretch for an infinitely-lived option
than for a 3-month option.

In order for the option to have a determined value, the dividend yield on the
underlying asset must be positive if the option is a call. If this is not true, the
call is never exercised and the price is undefined.” Similarly, the risk-free rate

must be positive if the option is a put.

By default, the perpetual pricing formulas return the price. By setting
showbarrier=TRUE, the function returns both the option price and the stock price at
which the option is optimally exercised (the “barrier”). Here are some examples:

s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0.04
callperpetual(s, c(95, 100, 105), v, r, d)

[1] 44.71 43.82 43.00

callperpetual(s, c(95, 100, 105), v, r, d, showbarrier=TRUE)

$price
[1] 44.71 43.82 43.00

$barrier
[1] 338.6 356.4 374.2

5 Option Greeks

Options greeks are mathematical derivatives of the option price with respect to
inputs; see McDonald (2013, Chapters 12 and 13) for a discussion of the greeks
for vanilla options. Greeks for vanilla and barrier options can be computed using
the greeks function, which is a wrapper for any pricing function that returns the
option price and which uses the default naming of inputs.®

H <- 105
greeks(uicall(s, k, v, r, tt, d, H))

uicall
Price 18.719815
Delta 0.605436
Gamma 0.008011
Vega 0.480722

5A well-known result (Merton, 1973) is that a standard American call is never exercised
before expiration if the dividend yield is zero and the interest rate is non-negative. A perpetual
call with § = 0 and r > 0 would thus never be exercised. The limit of the option price as
6 — 0 is s, so in this case the function returns the stock price as the option value.

6In this version of the package, I have two alternative functions that return Greeks:

e The bsopt function by default produces prices and Greeks for European calls and puts.

e The greeks2 function takes as arguments the name of the pricing function and then
inputs as a list.

These may be deprecated in the future. greeks2 is more cumbersome to use but may be more
robust. I welcome feedback on these functions and what you find useful.



Rho 0.836133
Theta -0.012408
Psi -1.210530
Elasticity 3.234200

The value of this approach is that you can easily compute Greeks for spreads
and custom pricing functions. Here are two examples. First, the value at time
0 of a prepaid contract that pays S¢ at time T is given by the powercontract ()
function:

powercontract <- function(s, v, r, tt, d, a) {

price <- exp(-r*tt)*s”a* exp((ax(r-d) + 1/2%ax(a-1)*v"2)*tt)
}

We can easily compute the Greeks for a power contract:

greeks (powercontract (s=40, v=.08, r=0.08, tt=0.25, d=0, a=2))

powercontract
Price 1634.936
Delta 81.747
Gamma 2.044
Vega 0.654
Rho 4.087
Theta -0.387
Psi -8.175
Elasticity 2.000

Second, consider a bull spread in which we buy a call with a strike of k;
and sell a call with a strike of k3. We can create a function that computes the
value of the spread, and then compute the greeks for the spread by using this
newly-created function together with greeks():

bullspread <- function(s, v, r, tt, d, ki, k2) {
bscall(s, k1, v, r, tt, d) - bscall(s, k2, v, r, tt, d)
}

greeks(bullspread(39:41, .3, .08, 1, 0, k1=40, k2=45))

bullspread_39 bullspread_40 bullspread_41

Price 2.0020318 2.1551927 2.306e+00
Delta 0.1542148 0.1519426 1.487e-01
Gamma -0.0017692 -0.0027545 -3.614e-03
Vega -0.0080732 -0.0132218 -1.822e-02
Rho 0.0401235 0.0392251 3.793e-02
Theta -0.0005476 -0.0003164 -8.246e-05
Psi -0.0601438 -0.0607771 -6.099e-02
Elasticity 3.0041376 2.8200287 2.645e+00

The Greeks function is vectorized, so you can create vectors of greek values
with a single call. This example plots, for a bull spread, the gamma as a function
of the stock price; see Figure 1.

sseq <- seq(1l, 100, by=0.5)
x <- greeks(bullspread(sseq, .3, .08, 1, 0, k1=40, k2=45))
plot(sseq, x['Gamma',], type='1l"')
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Figure 1: Gamma for a 40-45 bull spread.
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Figure 2: All option Greeks, computed using the greeks() function

This code produces the plots in Figure 2:

k <- 100; r <- 0.08; v <- 0.30; tt <- 2; 4 <- 0
S <- seq(.5, 250, by=.5)
Call <- greeks(bscall(S, k, v, r, tt, d))
Put <- greeks(bsput(S, k, v, r, tt, d))
y <- list(Call=Call, Put=Put)
par (mfrow=c(4, 4))
par (mar=c(2,2,2,2))
for (i in names(y)) {
for (j in rownames(y[[i]1)) {
plot(S, y[[il1[j, ], main=paste(i, j), ylab=j, type='1l')
}

6 Binomial Pricing of European and American
Options
There are two functions related to binomial option pricing:”

binomopt computes prices of American and European calls and puts. The
function has three optional parameters that control output:

7See Cox et al. (1979), Rendleman and Bartter (1979), and McDonald (2013, Chapter 11).



® returnparams=TRUE will return as a vector the option pricing inputs,
computed parameters, and risk-neutral probability.

® returngreeks=TRUE will return as a vector the price, delta, gamma, and
theta at the initial node.

® returntrees=TRUE will return as a list the price, greeks, the full stock
price tree, the exercise status (TRUE or FALSE) at each node, and the
replicating portfolio at each node.

binomplot displays the asset price tree, the corresponding probability of being
at each node, and whether or not the option is exercised at each node. This
function is described in more detail in Section 11.2.

Here are examples of pricing, illustrating the default of just returning the
price, and the ability to return the price plus parameters, as well as the price,
the parameters, and various trees:

s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0.03
binomopt(s, k, v, r, tt, d, nstep=3)

price
20.8

binomopt(s, k, v, r, tt, d, nstep=3, returnparams=TRUE)

price s k v r tt d nstep
20.7961 100.0000 100.0000 0.3000 0.0800 2.0000 0.0300 3.0000
P up dn h

0.4391 1.3209 0.8093 0.6667
binomopt(s, k, v, r, tt, d, nstep=3, putopt=TRUE)

price
12.94

binomopt(s, k, v, r, tt, d, nstep=3, returntrees=TRUE, putopt=TRUE)

$price
price
12.94

$greeks
delta gamma theta
-0.335722 0.010614 -0.007599

$params
s k v r tt d nstep P
100.0000 100.0000 0.3000 0.0800 2.0000 0.0300 3.0000 0.4391
up dn h

1.3209 0.8093 0.6667

$oppricetree

[,1] [,2] [,31 [,4]
[1,] 12.94 3.816 0.000 0.00
[2,] 0.00 21.338 7.176 0.00



[3,] 0.00 0.000 34.507 13.49
[4,] 0.00 0.000 0.000 47.00

$stree

[,1] [,2] [,3] [,4]
[1,] 100 132.09 174.47 230.45
[2,] 0 80.93 106.89 141.19
[3,] 0 0.00 65.49 86.51
[4,] 0 0.00 0.00 53.00

$probtree

[,1] [,2] [,3] [,4]
[1,] 1 0.4391 0.1928 0.08464
[2,] 0 0.5609 0.4926 0.32441
[3,1] 0 0.0000 0.3146 0.41445
[4,] 0 0.0000 0.0000 0.17650

$exertree

[,11 [,21 [,3]1 I[,4]
[1,] FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE FALSE FALSE TRUE

$deltatree

[,11 [,2] [,3]
[1,] -0.3357 -0.1041 0.0000
[2,] 0.0000 -0.6471 -0.2419
[3,] 0.0000 0.0000 -0.9802

$bondtree

[,11 [,21 [,3]
[1,] 46.51 17.56 0.00
[2,] 0.00 73.71 33.03
[3,] 0.00 0.00 94.81

7 Asian Options

There are analytical functions for valuing geometric Asian options and Monte
Carlo routines for valuing arithmetic Asian options.® Be aware that the greeks()
function at this time will not work with the Monte Carlo valuation for arithmetic
Asian options. I plan to address this in a future release.’

8See Kemna and Vorst (1990).

9As the functions are currently written, each invocation of the pricing function will start
with a different random number seed, resulting in price variation that is due solely to random
variation. Moreover, random number generation changes the random number seed globally.
In a future release I hope to address this by saving and restoring the seed within the greeks
function. For the curious, a Stackoverflow post discusses this issue.


http://stackoverflow.com/questions/14324096/setting-seed-locally-not-globally-in-r

7.1 Geometric Asian Options

Geometric Asian options can be valued using the Black-Scholes formulas for
vanilla calls and puts, with modified inputs. The functions return both call and
put prices with a named vector:

s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0.03; m <- 3
geomavgpricecall(s, 98:102, v, r, tt, d, m)

[1] 14.01 13.56 13.12 12.70 12.28

geomavgpricecall(s, 98:102, v, r, tt, d, m, cont=TRUE)
[1] 10.952 10.498 10.058 9.632 9.219
geomavgstrikecall(s, k, v, r, tt, d, m)

[1] 9.058

7.2 Arithmetic Asian Options

Monte Carlo valuation is used to price arithmetic Asian options. For efficiency,
the function arithasianmc returns call and put prices for average price and average
strike options. By default the number of simulations is 1000. Optionally the
function returns the standard deviation of each estimate

arithasianmc(s, k, v, r, tt, d, 3, numsim=5000, printsds=TRUE)

Call Put sd Call sd Put
Avg Price 14.022 8.042 22.37 11.401
Avg Strike 8.113 5.435 14.42 7.598
Vanilla 19.820 11.162 33.56 15.192

The function arithavgpricecv uses the control variate method to reduce the
variance in the simulation. At the moment this function prices only calls, and
returns both the price and the regression coefficient used in the control variate
correction:

arithavgpricecv(s, k, v, r, tt, d, 3, numsim=5000)

price beta
13.96 1.04

8 Compound Options

A compound option is an option where the underlying asset is an option.'® The
terminology associated with compound options can be confusing, so it may be
easiest to start with an example.

108ee Geske (1979) and McDonald (2013, Chapter 14).
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Buy compound option =~ Compound exercise decision Put exercise decision

Pay k., to buy put? Sell stock for k,,?

Figure 3: The timeline for a compound option: a call to buy a put. The
compound option expires at time t; and the underlying asset is a put option
that expires at time ¢5. At time ¢, the owner decides whether to pay k., to buy
a put option which has time to expiration to —¢1. At time ¢ the owner decides
whether to exercise the put, selling the stock for the strike price of ky,.

Figure 3 is a timeline for a compound option that is an option to buy a put.
The compound option expires at ¢; and the put expires at t5. The owner of the
compound option only acquires the put if at time ¢; it is worth at least k.,, and
only exercises the put if at time ¢5 the stock price is less than k,,.

8.1 Definition of a Compound Option

Based on the example, you can see that there are three prices associated with
a compound option:

e The price of an underlying asset.

e The price of the underlying option, which is an option to buy or sell the
underlying asset (we will refer to this as the price of the underlying option)

e The price of the compound option, which gives us the right to buy or sell
the underlying option

The definition of a compound option therefore requires that we specify
e whether the underlying option is a put or a call
e whether the compound option is a put or a call
e the strike price at which you can exercise the underlying option (k)
e the strike price at which you can exercise the compound option (k.,)

e the date at which you can exercise the compound option (first exercise
date, t1)

e the date at which you can exercise the underlying option expires, to > t;.

Given these possibilities, you can have a call on a call, a put on a call, a call on
a put, and a put on a put. The valuation procedure require calculating the un-
derlying asset price at which you are indifferent about acquiring the underlying
option.

The price calculation requires computing the stock price above or below
which you would optimally exercise the option at time ¢;.

11



8.2 Examples

As an example, consider the following inputs for a call option to buy a call
option:

s <- 100; kuo <- 95; v <- 0.30; r <- 0.08; t1 <- 0.50; t2 <- 0.75; d <- 0
kco <- 3.50

calloncall(s, kuo, kco, v, r, t1, t2, d, returnscritical=TRUE)

price scritical
13.12 88.68

With these parameters, after 6 months (t; = 0.5), the compound option
buyer decides whether to pay $3.50 to acquire a 3-month call on the underlying
asset. (The volatility of the underlying asset is 0.3.) It will be worthwhile to
pay the compound strike, $3.50, as long as the underlying asset price exceeds
88.68.

Similarly, there is a put on the call, and a call and put on the corresponding
put:

putoncall(s, kuo, kco, v, r, tl, t2, d, returnscritical=TRUE)

price scritical
0.5492  88.6800

callonput(s, kuo, kco, v, r, tl, t2, d, returnscritical=TRUE)

price scritical
3.425 98.298

putonput (s, kuo, kco, v, r, t1, t2, d, returnscritical=TRUE)

price scritical
1.384 98.298

9 Jumps and Stochastic Volatility

The mertonjump function returns call and put prices for a stock that can jump
discretely.'! A poisson process controls the occurrence of a jump and the size of
the jump is lognormally distributed. The parameter 1ambda is the mean number
of jumps per year, the parameter alphaj is the log of the expected jump, and
sigmaj is the standard deviation of the log of the jump. The jump amount is
thus drawn from the distribution

Y ~ N(ay —0.50%,0%)

11See Merton (1976).
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mertonjump(s, k, v, r, tt, d, lambda=0.5, alphaj=-0.2, vj=0.3)

Call Put
28.15 13.37

c(bscall(s, k, v, r, tt, d), bsput(s, k, v, r, tt, d))

[1] 24.025 9.239

10 Bonds

The simple bond functions provided in this version compute the present value of
cash flows (bondpv), the IRR of the bond (bondyield), Macaulay duration (duration
), and convexity (convexity).

coupon <- 8; mat <- 20; yield <- 0.06; principal <- 100;
modified <- FALSE; freq <- 2

price <- bondpv(coupon, mat, yield, principal, freq)
price

[1] 123.1

bondyield(price, coupon, mat, principal, freq)

[1] 0.06

duration(price, coupon, mat, principal, freq, modified)
[1] 11.23

convexity(price, coupon, mat, principal, freq)

[1] 170.3

11 Functions with Graphical Output

Several functions provide visual illustrations of some aspects of the material.

11.1 Quincunx or Galton Board

The quincunx is a physical device the illustrates the central limit theorem. A
ball rolls down a pegboard and strikes a peg, falling randomly either to the left
or right. As it continues down the board it continues to strike a series of pegs,
randomly falling left or right at each. The balls collect in bins and create an
approximate normal distribution.

The quincunx function allows the user to simulate a quincunx, observing the
path of each ball and watching the height of each bin as the balls accumulate.

13



20 40 60
|

. mm&ﬂﬁ

0 2 4 6 8 10 12 14 16 18 20

0
L

Figure 4: Output from the Quincunx function

More interestingly, the quincunx function permits altering the probability that
the ball will fall to the right.

Figure 4 illustrates the function after dropping 200 balls down 20 levels of
pegs with a 70% probability that each ball will fall right:

par(mar=c(2,2,2,2))
quincunx (n=20, numballs=200, delay=0, probright=0.7)

11.2 Plotting the Solution to the Binomial Pricing Model

The binomplot function calls binomopt to compute the option price and the various
trees, which it then uses in plotting:
The first plot, figure 5, is basic:

binomplot(s, k, v, r, tt, d, nstep=6, american=TRUE, putopt=TRUE)

The second plot, figure 6, adds a display of stock prices and arrows connect-
ing the nodes.

14
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Figure 5: Basic option plot showing stock prices and nodes at which the option
is exercised.
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American Put
Stock = 100, Strike = 100, Time = 2 years, Price = 11.22!
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Figure 6: Same plot as Figure 5 except that values and arrows are added to the
plot.

binomplot(s, k, v, r, tt, d, nstep=6, american=TRUE, putopt=TRUE,
plotvalues=TRUE, plotarrows=TRUE)

As a final example, consider an American call when the dividend yield is
positive and nstep has a larger value. Figure 7 shows the plot, with early exercise
evident.

d <- 0.06
binomplot(s, k, v, r, tt, d, nstep=40, american=TRUE)

The large value of nstep creates a high maximum terminal stock price, which
makes details hard to discern in the boundary region where exercise first occurrs.
We can zoom in on that region by selecting values for ylimval; the result is in
Figure 8.

d <- 0.06
binomplot(s, k, v, r, tt, d, nstep=40, american=TRUE, ylimval=c(75, 225))

16
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Figure 7: Binomial plot when nstep is 40.
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American Call
Stock = 100, Strike = 100, Time = 2 years, Price = 16.73.
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Figure 8: Binomial plot when nstep is 40 using the argument ylimval to focus
on a subset.
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