The deducorrect vignette

Mark van der Loo, Edwin de Jonge and Sander Scholtus
March 11, 2011

Abstract

This vignette is unfinished. Version 1.0 of the package will contain a
full vignette.

Contents
1 Introduction
2 The deducorrect object
3 Correcting for rounding errors
31 Howitworks
4 Correcting for tying errors
41 Howitworks
4.2 Some simple exampleso
5 Correcting for sign errors and value swaps

51 Howitworks
5.2 Some simple examples Lo
5.3 Sign errors in a profit-loss accounto

N DN

co ot NN

1 Introduction

Survey data is often plagued with internal inconsistencies wich have to be re-
paired before reliable statistical analysis can take place. Establishment surveys
in particular are prone to errors, since they can consist of many numerical vari-
ables, interelated by numerous mathematical relationships. In particular, this
package focuses on linear equalities and inequalities, which may be entered in
any of the forms

Az = b (1)
Az < b (2)
Az < b (3)
Az > b (4)
Az > b (5)

or combinations thereof. Here, every A is a matrix, a numerical data record
and b a constant vector. To read, store and manipulate these relationships, the
package relies on functionality of the editrules package.

The algorithms of this package are generalisations of the algorithms described
in Scholtus (2008) and Scholtus (2009). This vignette is aimend to point out
the generalisations and to provide the user with some coded examples, including
the examples mentioned in the references.

Both papers are included in the /doc directory of this package.

2 The deducorrect object

When transforming raw data to a form suitable for statistical processing, it is
important to keep track of the applied transformations so they can be taken into
account when interpreting the results of the statistical analyses. To facilitate
logging, every correct- function of the package returns does not only return
the corrected data, but also information on the applied corrections, a timestamp
and the user running R. See Table 1 for an overview.

3 Correcting for rounding errors

3.1 How it works

4 Correcting for tying errors

4.1 How it works

4.2 Some simple examples

5 Correcting for sign errors and value swaps

5.1 How it works

The function correctSigns tries to correct records violating equality contraints
as in Eq. (1) while making sure that possible inequality constraints as in Eqs.

Table 1: Contents of the deducorrect object. All slots can be accessed or
reassigned through the $ operator.

corrected The input data with records corrected where possible.

corrections A data.frame describing the corrections. Every record
contains a row number, labeling the row in the input
data, a variable name of the input data, the old value
and the new value.

status A data.frame with at least one column giving treat-
ment information of every record in the input data. De-
pending on the correct function, some extra columns
may be added.

timestamp The date and time when the deducorrect object was
created.

generatedby The name of the function that called newdeducorrect
to create the object.

user The name of the user running R, deduced from the en-
vironment variables of the system using R.

(2)-(5) are not violated in the process. To do so it tries to change the sign of
(combinations of) variables and/or swap the order of variables. Sign flips and
value swaps are closely related since

—(r—y)=y—u, (6)

These simple linear relations frequently occur in profit-loss accounts for exam-
ple. Basically, correctSigns first tries to correct a record by changing one sign,
if that doesn’t yield any solution, it tries changing two, and so on. If the user
allows value swaps as well, it starts by trying to correct the record with a single
sign flip or variable swap, if no solution is found, a combination is tried, and so
on. The algorithm only treats the variables which have nonzero coefficients in
one of the violated rows of Eq. (1). Since the number of combinations grows ex-
ponentially with the number of variables to treat, the user is given some control
over the volume of the search space to cover when trying solotions in a number
of ways. First of all, the variables which are allowed to flip signs or variable
pairs which may be interchanged simultaneously can be determined by the user.
Knowledge of the origin of the data and meaning of the questionaire will usually
give a good idea on which variables are prone to sign errors. For example, in
surveys on profit-loss accounts, respondents sometimes erroneously submit the
cost as a negative number. Secondly, the user may limit the maximum number
of simultaneous sign flips and or value swaps that may be tested. The third
option limiting the search space is to cut of the algorithm when the number of
combinations, given a number of actions to try becomes too large.

To account for sign errors and variable swap errors which are masked by
rounding errors, the user can provide a nonegative tolerance €, so the set of
equality constraints are checked as

|Ax — b] < e, (7)

where | -| indicates the elementwise absolute value. The default value of ¢ is the
machine accuracy (.Machine$double.eps). See Algorithm (1) on page 4 for a
more detailed description in pseudocode.

Algorithm 1 Record correction for correctSigns

Input:

— A numeric record x

— A tolerance, ¢

— A set of equality and inequality constraints of the form

Az —b = 0
Bx—c > 0,
— A list £1ip of variables whos signs may be fliped.
— A list swap of variable pairs whos values may be interchanged

— An integer maxActions
— An integer maxCombinations

if |[Az — b| < € (elementwise) then
Set status to valid and we are done.
else
Create a list actions, of length n containing those elements of £1ip and
swap that affect variables that occur in violated rows of A.
Create an empty list S.
k+0
while S = @ and k < min(maxActions,n) do
if not (Z) > maxCombinations then
k+—k+1
Generate all (Z) combinations of k£ actions.
Loop over those combinations, applying them to z. Add solutions
obeying |Axz —b| < e and Axr —c¢>0to S.
end if
end while
if not S=2 then
Compute solution weights and choose solution with minimum weight.
Choose the first solution in the case of degeneracy.
Set status to corrected
else
Set status to invalid
end if
end if

5.2 Some simple examples

In this section we walk through most of the options of the correctSigns func-
tion. Let’s generate some data!:

> (dat <- data.frame(

+ x=c(3, 14, 15, 1, 17, 12.3),

+ y =c(13, -4, 5, 2, 7, -2.1),

+ z = ¢(10, 10,-10, NA, 10, 10)))
X y z

1 3.0 13.0 10

2 14.0 -4.0 10

315.0 5.0 -10

4 1.0 2.0 NA

5 17.0 7.0 10

6 12.3 -2.1 10

We subject this data to the rule
z=x—y. (8)
With the editrules package, this rule can be parsed to an editmatrix.

> require(editrules)
> (E <- editmatrix(c("z == x-y")))

Edit matrix:
x y z CONSTANT

el -1 11 0
Edit rules:
el : z==x -y

Obviously, not all records in dat obey this rule. Let’s check it with a function
from the editrules package:

> cbind(dat, violatedEdits(E, dat))

X y oz el
1 3.0 13.0 10 TRUE
2 14.0 -4.0 10 TRUE
3 15.0 5.0 -10 TRUE
4 1.0 2.0 NA NA
517.0 7.0 10 FALSE
6 12.3 -2.1 10 TRUE

Records 1, 2, 3 and 6 violate the editrule, record 5 is valid and for record 4
validity cannot be established since it has no value for z. If correctSigns is
called without any options, all variables z, y and z can be sign-flipped:

> sol <- correctSigns(E, dat)
> cbind(sol$corrected, sol$status)

Ibrackets are included only to force R to print the result

X y oz status weight degeneracy nflip nswap
1 3.0 13.0 -10 corrected 1 1 1 0
2 14.0 4.0 10 corrected 1 1 1 0
3 15.0 5.0 10 corrected 1 1 1 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 -2.1 10 invalid 0 0 0 0

> sol$corrections

row variable old new

11 z 10 -10
2 2 y -4 4
3 3 z -10 10

So, the first three records have been correcte by flipping the sign of z, y and z
respectively. Since no weight parameter was given, the weight is just the number
of variables whose have been sign-flipped. Record 4 is not treated, since validity
could not be established, record 5 was valid to begin with and record 6 could
not be repaired with sign flips. However, record 6 seems to have a rounding
error. We can try to accomodate for that by allowing a tolerance when checking
equalities.

> sol <- correctSigns(E, dat, eps = 2)
> cbind(sol$corrected, sol$status)

X y z status weight degeneracy nflip nswap
1 3.0 13.0 -10 corrected 1 1 1 0
2 14.0 4.0 10 corrected 1 1 1 0
3 15.0 5.0 10 corrected 1 1 1 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0
> sol$corrections
row variable old new
1 1 z 10.0 -10.0
2 2 y -4.0 4.0
3 3 z -10.0 10.0
4 6 y -2.1 2.1

Indeed, changing the sign of y in the last record brings the record within the
allowed tolerance. Suppose that we have so much faith in the value of z, that
we do not wish to change it’s sign. This can be done with the fixate option:

> sol <- correctSigns(E, dat, eps = 2, fixate = "z")
> cbind(sol$corrected, sol$status)

X y z status weight degeneracy nflip nswap
1 -3.0 -13.0 10 corrected 2 1 2 0
2 14.0 4.0 10 corrected 1 1 1 0

3 -15.0 -5.0 -10 corrected 2 1 2 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new

11 x 3.0 -3.0
2 1 y 13.0 -13.0
3 2 y -4.0 4.0
4 3 x 15.0 -15.0
5 3 y 5.0 -5.0
6 6 y 2.1 2.1

Indeed, we now find solutions whitout changing z, but at the price of more sign
flips. By the way, the same result could have been obtained by

> correctSigns(E, dat, flip = c("x", "y"))

The sign flips in record 1 and three have the same effect of a variable swap.
Allowing for swaps can be done as follows.

> sol <- correctSigns(E, dat, swap=list(c("x","y")),
+ eps=2, fixate="z")
> cbind(sol$corrected, sol$status)

X y z status weight degeneracy nflip nswap
1 13.0 3.0 10 corrected 1 1 0 1
2 14.0 4.0 10 corrected 1 1 1 0
3 5.0 15.0 -10 corrected 1 1 0 1
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0
> sol$corrections

row variable old new

11 x 3.0 13.0
2 1 y 13.0 3.0
3 2 y -4.0 4.0
4 3 x 16.0 5.0
5 3 y 5.0 15.0
6 6 y -2.1 2.1

Notice that apart from swapping, the algorithm still tries to correct records by
flipping signs. What happens is that the algorithm first tries to flip the sign of z,
then of y, and then it tries to swap = and y. Each is counted as a single action.
If no solution is found, it starts trying combinations. In this relatively simple
example the result turned out well. In cases with more elaborate systems of
equalities and inequalities, the result of the algorithm becomes harder to predict
for users. It is therefore in general advisable to

e Use as much knowledge about the data as possible to decide which vari-
ables to flip sign and which variable pairs to swap. The problem treated
in section 5.3 is a good example of this.

e Keep flip and swap disjunct. It is better to run the data a few times
times through correctSigns with different settings.

Not allowing any sign flips can be done with the option flip=c().

> sol <- correctSigns(E, dat, flip = c(), swap = list(c("x", "y")))
> cbind(sol$corrected, sol$status)

X y z status weight degeneracy nflip nswap
1 13.0 3.0 10 corrected 1 1 0 1
2 14.0 -4.0 10 invalid 0 0 0 0
3 .0 15.0 -10 corrected 1 1 0 1
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 -2.1 10 invalid 0 0 0 0
> sol$corrections
row variable old new
1 1 X 3 13
2 1 y 13 3
3 3 x 15 5
4 3 y 5 15

This yields less corrected records. However running the data through

> correctSigns(E, sol$corrected, eps = 2)$status

status weight degeneracy nflip nswap

1 valid 0 0 0 0
2 corrected 1 1 1 0
3 valid 0 0 0 0
4 <NA> 0 0 0 0
5 valid 0 0 0 0
6 corrected 1 1 1 0

will fix the remaining edit violations, and yields code which is a lot easyer to
interpret.

5.3 Sign errors in a profit-loss account

Here, we will work through the example of chapter 3 of Scholtus (2009). This
example considers 4 records, labeled case a, b, ¢, and d, which can be defined
inR as

> dat <- data.frame(

+ case = c("a”,"b”,"c”,"d”),

+ x0r = ¢(2100,5100,3250,5726) ,
+ x0c = ¢(1950,4650,3550,5449) ,

+ + + + 4+ + + + + + +

x0 =
xlr =
xlc =
x1 =
xX2r =
x2c =
x2 =
x3r =
x3c =
=c(
x4 =

x3

c(
c(
c(
c(
c(
c(
c(
c(
c(

c(

150,
0,
10,
10,
20,
5,
15,
50,
10,
40,
195,

450, 300,
0, 110,
130, 10,
130, 100,
20, 50,
0, 90,
20, 40,
15, 30,
25, 10,
10, 20,
610,-140,

276),

1

7,

26),

1

0),
0),

46),
46),

0),
0),
0),

221))

A record consists of 3 balance accounts wose results have to add up to a total.
Each z; , denotes some kind of return, x;. some kind of cost and z; the difference
Z; r—Z;c. There are operating, financial, provisions and exeptional incomes and
expenditures. The differences xg, x1, T2 and x3 have to add up to a given total

Xrq.

package.

> require(editrules)
> E <-editmatrix(c(
== x0r - x0c",

V + + + + +

E

"XO
"Xl
IIX2
IIX3
"X4

= xlr - x1c",
= x2r - x2c",
= x3r - x3c",

These linear restrictions can be defined with the use of the editrules

== x0 + x1 + x2 + x3"))

Edit matrix:
x0 x0c xOr

el
e2
e3
el
eb

1
0
0
0
-1

1

O O O O

-1

O O O O

Edit rules:
: x0 ==
e2 :
e3 :
ed :
eb :

el

Checking

x1 ==
x2 ==
x3 ==
x4 ==

x0r
x1r
x2r
x3r

x0 + x1 + x2 + x3

x1 xlc xlr x2 x2c x2r x3 x3c x3r x4 CONSTANT

[EY

0

O O O =

- x0c
- xlc

- x2c
- x3c

0
1

O O O

0
0

1
0
1

edEdits function of editrules

> violatedEdits(E, dat)

el

e2

e3

ed

0

0
1
0
0

0 0 0 0 O 0
0 0 0 0 O 0
-1 0 0 0 O 0
0 1 1 -1 0 0
0 -1 0 0 1 0

which records violate what edit rules can be done with the violat-

eb

[1,] FALSE TRUE FALSE FALSE TRUE
[2,] FALSE TRUE FALSE TRUE FALSE
TRUE FALSE TRUE FALSE TRUE
TRUE TRUE TRUE FALSE TRUE

[3
(4

5]
»]

So record 1 (case a) for example, violates the restrictions e;: 1 = 21, — T1,¢
and es, x1 + T2 + sx3 = x4. We can try to solve the inconsistencies by allowing
the following flips and swaps:

> swap <- list(

+ C(“XlI‘“,"XlC"),
+ C(HXQI.H’ IIX2c ll) ,
+ C(”XBI.”’ IIX3C ll))

> flip <- C(”XO”, ”Xl ”’ HX2I” ”X3", ”X4”)

Trying to correct the records by just flipping and swapping variables indicated
above corresponds to trying to solve the system of equations

ZoSo
T181
T2S2
383
TyS4

Zo,r — T0,c
(1, — 1)1
(T2, — @2,)2
(x3,0 — T3,c)ts
ToSo + T181 + 282 + X353

(80, 81, 82,83,84,t1,t2, t3) S {—1, 1}8 ,

9)

where every s; corresponds to a sign flip and ¢; corresponds to a value swap, see
also Eqn. (3.4) in Scholtus (2009). Using the correctSigns function, we get

the following.

> cor <- correctSigns(E, dat, flip = flip, swap = swap)

> cor$status

status weight degeneracy nflip nswap

1 corrected
2 corrected
3 corrected
4 invalid

1
2
2
0

1

1
1
0

1 0
0 2
1 1
0 0

As expected from the example in the reference, the last record could not be
This can be

corrected because the solution is masked by a rounding errors.
solved by allowing a tolerance of two measurements units (in this case 1).

> cor <- correctSigns(E, dat, flip = flip, swap = swap, eps =

> cor$status

status weight degeneracy nflip nswap

corrected
corrected
corrected
corrected

S wWw N e

v

case x0r xOc
a 2100 1950
b 5100 4650
c 3250 3550
d 5726 5449

W N e

The latter table corresponds exactly to Table 2 in the reference.

cor$corrected

1

2
2
2

x0
150
450
300
276

x1r
0
130
110
17

1 1 0
1 0 2
1 1 1
1 2 0
xlc x1 x2r x2c x2
10 -10 20 5 15
0 130 20 0 20
10 100 90 50 40
26 -10 0 46 -46

10

x3r x3c
50 10
25 15
30 10
0 0

x3 x4
40 195
10 610
20 -140
0 221

2)

References

Scholtus, S. (2008). Algorithms for correcting obvious inconsistencies and round-
ing errors in business data. Technical Report 08015, Statistics Netherlands,
Den Haag. Accepted for publication in the Journal of Official Statistics.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical
data with balance edits. Technical Report 09046, Statistics Netherlands, Den
Haag. Accepted for publication in the Journal of Official Statistics.

11

