This is the R example code from ‘Weighted Cox Regression Using the R Package coxphw’ by Dunkler et. al (2015). It works with R >=3.2.2 and coxphw package 4.0.0.
##########################################################################################
### R code for
### 'Weighted Cox Regression using the R package coxphw'
### written by Daniela Dunkler, Dec. 2015
##########################################################################################
### This R example code works with R >=3.2.2 and coxphw-package 4.0.1.
### load R packages
library("coxphw")
## Loading required package: survival
library("survival")
library("splines") # for splines::ns used in plotzph
pdfind <- FALSE # indicator if plots should be saved as pdf
##########################################################################################
### additional function for nice plots of scaled Schoenfeld residuals versus time
##########################################################################################
plotcoxzph <- function(x, resid = TRUE, se = TRUE, df = 4, nsmo = 40, var, wd = 1,
limits = NULL, ...)
{
# plot.cox.zph function from survival package 2.37-4 slightly adapted
xx <- x$x
yy <- x$y
d <- nrow(yy)
df <- max(df)
nvar <- ncol(yy)
pred.x <- seq(from = min(xx), to = max(xx), length = nsmo)
temp <- c(pred.x, xx)
lmat <- ns(temp, df = df, intercept = TRUE)
pmat <- lmat[1:nsmo, ]
xmat <- lmat[-(1:nsmo), ]
qmat <- qr(xmat)
if (qmat$rank < df)
stop("Spline fit is singular, try a smaller degrees of freedom")
if (se) {
bk <- backsolve(qmat$qr[1:df, 1:df], diag(df))
xtx <- bk %*% t(bk)
seval <- d*((pmat%*% xtx) *pmat) %*% rep(1, df)
}
ylab <- paste("Beta(t) for", dimnames(yy)[[2]])
if (missing(var)) var <- 1:nvar
else {
if (is.character(var)) var <- match(var, dimnames(yy)[[2]])
if (any(is.na(var)) || max(var)>nvar || min(var) <1)
stop("Invalid variable requested")
}
if (x$transform == 'log') {
xx <- exp(xx)
pred.x <- exp(pred.x)
}
else if (x$transform != 'identity') {
xtime <- as.numeric(dimnames(yy)[[1]])
indx <- !duplicated(xx)
apr1 <- approx(xx[indx], xtime[indx],
seq(min(xx), max(xx), length = 17)[2*(1:8)])
temp <- signif(apr1$y, 2)
apr2 <- approx(xtime[indx], xx[indx], temp)
xaxisval <- apr2$y
xaxislab <- rep("", 8)
for (i in 1:8) xaxislab[i] <- format(temp[i])
}
for (i in var) {
y <- yy[,i]
yhat <- pmat %*% qr.coef(qmat, y)
if (resid) yr <-range(yhat, y)
else yr <-range(yhat)
if (se) {
temp <- 2* sqrt(x$var[i,i] * seval)
yup <- yhat + temp
ylow<- yhat - temp
yr <- range(yr, yup, ylow)
}
if (is.null(limits)) { limits <- yr }
if (x$transform == 'identity')
plot(range(xx), limits, type = 'n', xlab = "", ylab = "", lwd = 2, las = 1, ...)
else if (x$transform=='log')
plot(range(xx), limits, type = 'n', xlab = "", ylab = "", log = 'x', ...)
else {
plot(range(xx), limits, type ='n', xlab = "", ylab = "", lwd = 2, axes = FALSE, ...)
axis(1, xaxisval, xaxislab)
axis(2, las = 1)
box()
}
if (resid) points(xx, y)
lines(pred.x, yhat, lwd = wd, ...)
if (se) {
lines(pred.x, yup,lty = 2)
lines(pred.x, ylow, lty = 2)
}
}
}
data("gastric")
#head(gastric)
### time in years
gastric$yrs <- gastric$time / 365.25
nrow(gastric)
## [1] 90
### follow-up/observation time
survfit(Surv(yrs, abs(1 - status)) ~ 1, data = gastric)
## Call: survfit(formula = Surv(yrs, abs(1 - status)) ~ 1, data = gastric)
##
## n events median 0.95LCL 0.95UCL
## 90.00 11.00 4.34 4.00 NA
#survfit(Surv(yrs, status) ~ 1, data = gastric)
### descriptive analysis
gtable0 <- table(gastric$status, deparse.level = 2)
gtable0
## gastric$status
## 0 1
## 11 79
round(prop.table(gtable0) * 100, digits = 2)
## gastric$status
## 0 1
## 12.22 87.78
gtable1 <- table(gastric$radiation, gastric$status, deparse.level = 2)
addmargins(gtable1)
## gastric$status
## gastric$radiation 0 1 Sum
## 0 3 42 45
## 1 8 37 45
## Sum 11 79 90
round(prop.table(gtable1, margin = 1) * 100, digits = 2)
## gastric$status
## gastric$radiation 0 1
## 0 6.67 93.33
## 1 17.78 82.22
### check assumption of proportional hazards
gsurv <- survfit(Surv(yrs, status) ~ radiation, data = gastric)
# summary(gsurv)
# plot of cumulative survival probabilities
if (pdfind) { pdf(file = "figure1A.pdf", width = 10.2, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plot(gsurv, lty = 1:2, las = 1, lwd = 2)
mtext(side = 1, line = 2.5, text = "time (years)", cex = 1.2)
mtext(side = 2, line = 3, text = "survival distribution function", cex = 1.2)
legend("topright", title = "radiation", legend = c("no", "yes"),
lty = 1:2, inset = 0.05, bty = "n", cex = 1.4)
if (pdfind) { dev.off() }
# plots of scaled Schoenfeld residuals and test departure from proportional hazards
gfit1 <- coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastric, x = TRUE,
method = "breslow")
gfit1.ph <- cox.zph(fit = gfit1, transform = "km")
gfit1.ph
## rho chisq p
## radiation -0.401 12.8 0.000343
if (pdfind) { pdf(file = "figure1B.pdf", width = 5, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plotcoxzph(x = gfit1.ph, wd = 2, limits = c(-3, 4.3))
abline(a = 0, b = 0, lty = 3)
mtext(side = 1, line = 2.5, cex = 1.2,
text = expression(paste("time (years, ", hat(F), "(t) transformation)")))
mtext(side = 2, line = 2.2, cex = 1.2,
text = expression(paste(hat(beta), "(t) for radiation")))
# add the linear fit
abline(lm(gfit1.ph$y ~ gfit1.ph$x)$coefficients, lty = 3, col = "red", lwd = 2)
if (pdfind) { dev.off() }
gfit1.ph2 <- cox.zph(fit = gfit1, transform = "identity")
if (pdfind) { pdf(file = "figure1C.pdf", width = 5.2, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 2))
plotcoxzph(x = gfit1.ph2, wd = 2, limits = c(-3, 4.3))
mtext(side = 1, line = 2.5, text = "time (years)", cex = 1.2)
mtext(side = 2, line = 2.2, cex = 1.2,
text = expression(paste(hat(beta), "(t) for radiation")))
abline(a = 0, b = 0, lty = 3)
mtext(text = "radiation...", side = 4, line = 0.1, font = 3)
mtext(text = "protective", side = 4, line = 1, adj = 0, font = 3)
mtext(text = " harmful", side = 4, line = 1, adj = 1, font = 3)
if (pdfind) { dev.off() }
### ignore non-proportional hazards and apply a standard Cox proportional hazards model
summary(coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastric, x = TRUE,
method = "breslow"))
## Call:
## coxph(formula = Surv(yrs, status) ~ radiation + cluster(id),
## data = gastric, x = TRUE, method = "breslow")
##
## n= 90, number of events= 79
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## radiation 0.1415 1.1520 0.2263 0.2292 0.617 0.537
##
## exp(coef) exp(-coef) lower .95 upper .95
## radiation 1.152 0.8681 0.7351 1.805
##
## Concordance= 0.565 (se = 0.031 )
## Rsquare= 0.004 (max possible= 0.999 )
## Likelihood ratio test= 0.39 on 1 df, p=0.5325
## Wald test = 0.38 on 1 df, p=0.537
## Score (logrank) test = 0.39 on 1 df, p=0.5314, Robust = 0.37 p=0.5413
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
# or equivalently
# coxphw(Surv(yrs, status) ~ radiation, data = gastric, template = "PH")
data("biofeedback")
#head(biofeedback)
### descriptive analysis
nrow(biofeedback)
## [1] 33
btable0 <- table(biofeedback$bfb, deparse.level = 2)
btable0
## biofeedback$bfb
## 0 1
## 14 19
round(prop.table(btable0) * 100, digits = 2)
## biofeedback$bfb
## 0 1
## 42.42 57.58
### follow-up/observation time
# survfit(Surv(thdur, abs(1-success)) ~ 1, data = biofeedback)
survfit(Surv(thdur, success) ~ 1, data = biofeedback)
## Call: survfit(formula = Surv(thdur, success) ~ 1, data = biofeedback)
##
## n events median 0.95LCL 0.95UCL
## 33 23 25 21 89
btable1 <- table(biofeedback$bfb, biofeedback$success, deparse.level = 2)
addmargins(btable1)
## biofeedback$success
## biofeedback$bfb 0 1 Sum
## 0 4 10 14
## 1 6 13 19
## Sum 10 23 33
round(prop.table(btable1, margin = 1) * 100, digits = 2)
## biofeedback$success
## biofeedback$bfb 0 1
## 0 28.57 71.43
## 1 31.58 68.42
#hist(biofeedback$theal)
#hist(biofeedback$log2heal)
# Kaplan-Meier analysis
bsurv <- survfit(Surv(thdur, success) ~ bfb, data = biofeedback)
# summary(bsurv)
if (pdfind) { pdf(file = "figure2A.pdf", width = 10, height = 5) }
par(oma =c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plot(bsurv, fun = 'event', lty = 1:2, lwd = 2, las = 1, ylim = c(0, 1))
mtext(side = 1, line = 2.5, text = "duration of therapy (days)", cex = 1.2)
mtext(side = 2, line = 3, text = "cumulative propability of rehabilitation", cex = 1.2)
legend("topleft", title = "biofeedback (bfb)", legend = c("no", "yes"), lty = 1:2,
inset = 0.05, bty = "n", cex = 1.4)
if (pdfind) { dev.off() }
bfit1 <- coxph(Surv(thdur, success) ~ bfb + log2heal + cluster(id), data = biofeedback,
x = TRUE, method = "breslow")
summary(bfit1)
## Call:
## coxph(formula = Surv(thdur, success) ~ bfb + log2heal + cluster(id),
## data = biofeedback, x = TRUE, method = "breslow")
##
## n= 33, number of events= 23
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## bfb 0.2700 1.3099 0.4273 0.3453 0.782 0.434
## log2heal -0.5267 0.5906 0.2543 0.3636 -1.448 0.148
##
## exp(coef) exp(-coef) lower .95 upper .95
## bfb 1.3099 0.7634 0.6658 2.577
## log2heal 0.5906 1.6933 0.2896 1.205
##
## Concordance= 0.665 (se = 0.067 )
## Rsquare= 0.196 (max possible= 0.984 )
## Likelihood ratio test= 7.19 on 2 df, p=0.02753
## Wald test = 2.66 on 2 df, p=0.2648
## Score (logrank) test = 5.16 on 2 df, p=0.07595, Robust = 4.72 p=0.09426
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
bfit1.ph <- cox.zph(bfit1, transform = "km")
bfit1.ph
## rho chisq p
## bfb -0.553 4.39 0.03615
## log2heal -0.287 8.78 0.00305
## GLOBAL NA 13.46 0.00119
if (pdfind) { pdf(file = "figure2B.pdf", width = 5, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plotcoxzph(x = bfit1.ph[1], wd = 2)
mtext(side = 1, line = 2.5, text = "duration of therapy (days)", cex = 1.2)
mtext(side = 2, line = 2.2, text = expression(hat(beta)), cex = 1.2)
abline(a = 0, b = 0, lty = 3)
abline(lm(bfit1.ph$y[,1] ~ bfit1.ph$x)$coefficients, lty = 3, col = "red", lwd = 2)
legend("bottomleft", legend = "bfb", bty = "n", inset = 0.08, cex = 1.5)
if (pdfind) { dev.off() }
if (pdfind) { pdf(file = "figure2C.pdf", width = 5, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plotcoxzph(x = bfit1.ph[2], wd = 2, limits = c(-4.5, 4))
mtext(side = 1, line = 2.5, text = "duration of therapy (days)", cex = 1.2)
mtext(side = 2, line = 2.2, text = expression(hat(beta)), cex = 1.2)
abline(a = 0, b = 0, lty = 3)
abline(lm(bfit1.ph$y[,2] ~ bfit1.ph$x)$coefficients, lty = 3, col = "red", lwd = 2)
legend("topright", legend = "log2heal", bty = "n", inset = 0.08, cex = 1.5)
if (pdfind) { dev.off() }
simulation <- function(n1 = 100, n2 = 100, sim = 10, seed = 123,
type = c("ph", "nph1", "nph2", "nph3"), scalewei = NULL,
shapewei = NULL, beta = NULL, scaleexp = NULL, shapewei2 = NULL,
scalewei2 = NULL, shapegom = NULL, scalegom = NULL, scaleexpC,
admincens, npop = 10000, xmaxplot = NULL, addconstant = 1e-4)
{
#
# Simulate time-to-event data (following either an expoential, Weibuill or Gompertz
# distribution) with one binary explanatory variable, generate six versions of
# each simulated data set with differnt censoring patterns (no censoring, administrative
# censoring and loss-to-follow-up) and analyse these data sets with Cox regression
# and weighted Cox regression. Population-c is computed, as well.
#
# sim: number of simulations, 0 only population c is computed and plot is generated.
#
# type = "ph" : Weibull distributed distributions, proportional hazards
# "nph1" : exponential and Weibull distribution, non-proportional hazards
# "nph2" : exponential and Weibull distribution, non-proportional hazards
# "nph3" : exponential and Gompertz distribution, non-proportional hazards
#
# "ph" requires scalewei, shapewei and beta
# "nph1" requires scalewei, shapewei and scaleexp
# "nph2" requires scalewei, shapewei, scalewei2 and shapewei2
# "nph3" requires scaleexp, scalegom and shapegom
#
# scaleexpC and admincens: parameters for loss-to-follow-up and adminitrative censoring
#
# add.constant : this number will be added to all times to prevent survival times of
# exactly 0.
#
type <- match.arg(type)
if (type == "ph") {
stopifnot(!is.null(scalewei),!is.null(shapewei),!is.null(beta))
} else if (type == "nph1") {
stopifnot(!is.null(scalewei),!is.null(shapewei),!is.null(scaleexp))
} else if (type == "nph2") {
stopifnot(!is.null(scalewei),!is.null(shapewei),!is.null(scalewei2),!is.null(shapewei2))
} else if (type == "nph3") {
stopifnot(!is.null(scaleexp),!is.null(scalegom),!is.null(shapegom))
}
set.seed(seed)
# 1) compute population c
if (type != "ph") {
if (type == "nph1") {
integrandA <- function(x) { (scalewei * exp(-scalewei * x)) *
exp(-scalewei * x ^ scalewei) }
} else if (type == "nph2") {
integrandA <- function(x) { (scalewei2 * shapewei2 * x ^ (shapewei2 - 1) *
exp(-scalewei2 * x ^ shapewei2)) * exp(-scalewei *
x ^ shapewei) }
} else if (type == "nph3") {
integrandA <- function(x) { scaleexp * exp(-scaleexp * x) *
exp(scalegom / shapegom * (1 - exp(shapegom * x))) }
}
popc100 <- rep(c(integrate(integrandA, lower = 0, upper = Inf)$value,
integrate(integrandA, lower = 0, upper = admincens[1])$value,
integrate(integrandA, lower = 0, upper = admincens[2])$value) * 100,
each = 2)
} else { popc100 <- rep(exp(beta) / (1+exp(beta)), 6) * 100 }
if (sim == 0) { output <- list(results = NA, olist = NA, popc100 = popc100) }
# 2) Kaplan-Meier plot of scenario
xpop <- c(rep(0, npop / 2), rep(1, npop / 2))
u <- runif(n = npop, min = 0, max = 1)
if (type == "ph") {
time1pop <- (-log(u[1:(npop / 2)]) / (scalewei * exp(beta * 0))) ^ (1 / shapewei)
time2pop <- (-log(u[((npop / 2) + 1):npop]) / (scalewei * exp(beta * 1))) ^ (1 / shapewei)
} else if (type == "nph1") {
time1pop <- ((-log(u[1:(npop / 2)])) / scalewei) ^ (1 / shapewei)
time2pop <- -log(u[((npop / 2) + 1):npop]) / scaleexp
} else if (type == "nph2") {
time1pop <- ((-log(u[1:(npop / 2)])) / scalewei) ^ (1 / shapewei)
time2pop <- ((-log(u[((npop / 2) + 1):npop])) / scalewei2) ^ (1 / shapewei2)
} else if (type == "nph3") {
time1pop <- 1 / shapegom * log(1 - (shapegom * log(u[1:(npop / 2)])) / scalegom)
time2pop <- -log(u[((npop / 2) + 1):npop]) / scaleexp
}
time1pop <- time1pop + addconstant
time2pop <- time2pop + addconstant
datapop <- data.frame(cbind(time = c(time1pop, time2pop), event = 1, x = xpop))
fitpop <- coxph(Surv(time, event) ~ x, data = datapop)
if (is.null(xmaxplot)) { xmaxplot <- max(datapop$time) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plot(survfit(Surv(time, event) ~ x, data = datapop), lty = 1:2, lwd = 2,
las = 1, xlim = c(0, xmaxplot))
abline(v = admincens, col = "gray", lty = 2)
mtext(side = 1, line = 2.5, text = "time", cex = 1.2)
mtext(side = 2, line = 3, text = "survival distribution function",
cex = 1.2)
mtext(side = 3, line = -3, cex = 1.2, font = 2,
text = if (type == "ph") { "proportional hazards scenario" } else {
"non-proportional\nhazards scenario" } )
# 3) simulate data sets and analyse them
if (sim != 0) {
n <- n1 + n2
out <- data.frame(matrix(NA, nrow = sim, ncol = 7, dimnames = list(1:(sim),
c("cens", "cox_beta", "cox_c100", "wcox_beta", "wcox_c100",
"wilcox100", "prt0st1"))))
olist <- list(out = out, outC = out, out1 = out, outC1 = out, out2 = out, outC2 = out)
x <- c(rep(0, n1), rep(1, n2))
for (i in 1:sim) {
cat(paste(".", sep = ""))
### simulate data without censoring (data), type 1
u <- runif(n = n, min = 0, max = 1)
if (type == "ph") {
time1 <- (-log(u[1:n1]) / (scalewei * exp(beta * 0))) ^ (1 / shapewei)
time2 <- (-log(u[(n1 + 1):n]) / (scalewei * exp(beta * 1))) ^ (1 / shapewei)
} else if (type == "nph1") {
time1 <- ((-log(u[1:n1])) / scalewei) ^ (1 / shapewei)
time2 <- -log(u[(n1 + 1):n]) / scaleexp
} else if (type == "nph2") {
time1 <- ((-log(u[1:n1])) / scalewei) ^ (1 / shapewei)
time2 <- ((-log(u[(n1 + 1):n])) / scalewei2) ^ (1 / shapewei2)
} else if (type == "nph3") {
time1 <- 1 / shapegom * log(1 - (shapegom * log(u[1:n1])) / scalegom)
time2 <- -log(u[(n1 + 1):n]) / scaleexp
}
time1 <- time1 + addconstant
time2 <- time2 + addconstant
data <- data.frame(cbind(time = c(time1, time2), event = 1, x = x))
fit1 <- coxph(Surv(time, event) ~ x, data = data)
fit2 <-
coxphw(Surv(time, event) ~ x, data = data)
fit1zph <- cox.zph(fit = fit1, transform = "km")
eg <- expand.grid(time1, time2)
olist$out[i,] <- c(
0,
fit1$coefficients, concord(fit1)[1],
fit2$coefficients, concord(fit2)[1],
wilcox.test(time ~ x, data = data, correct = FALSE)$statistic /
(n1 * n2),
1 - (sum(eg[,1] < eg[,2]) / nrow(eg)))
### follow-up distribution
timecens <- (-log(runif(n = nrow(data), min = 0, max = 1)) / scaleexpC) + addconstant
### data with censoring (dataC), type 2
dataC <- data
dataC$time[data$time > timecens] <- timecens[data$time > timecens]
dataC$event[data$time > timecens] <- 0
censC <- sum(dataC$event == 0) / n * 100
fit1C <- coxph(Surv(time, event) ~ x, data = dataC)
fit2C <- coxphw(Surv(time, event) ~ x, data = dataC)
dataC$id <- 1:nrow(dataC)
wilcoxC <- wilcox.test(time ~ x, data = dataC, correct = FALSE)$statistic
egC <- expand.grid(dataC$event[dataC$x == 0], dataC$event[dataC$x == 1])
olist$outC[i,] <- c(censC,
fit1C$coefficients, concord(fit1C)[1],
fit2C$coefficients, concord(fit2C)[1],
wilcoxC / (length(dataC$x[dataC$x == 0]) *
length(dataC$x[dataC$x == 1])),
NA)
### data with administrative censoring 1 (data1), type 3
data1 <- data
data1$event[data$time > admincens[1]] <- 0
data1$time[data$time > admincens[1]] <- admincens[1]
cens1 <- sum(data1$event == 0) / n * 100
fit11 <- coxph(Surv(time, event) ~ x, data = data1)
fit21 <- coxphw(Surv(time, event) ~ x, data = data1)
fit11zph <- cox.zph(fit = fit11, transform = "km")
eg1 <- eg[!(eg[,1] >= admincens[1] & eg[,2] >= admincens[1]),]
wilcox1 <- wilcox.test(time ~ x, data = data1, correct = FALSE)$statistic
olist$out1[i,] <- c(cens1,
fit11$coefficients, concord(fit11)[1],
fit21$coefficients, concord(fit21)[1],
wilcox1 / (n1 * n2),
1 - ((sum(eg1[,1] < eg1[,2]) + sum(eg[,1] >= admincens[1] &
eg[,2] >= admincens[1]) / 2) / nrow(eg)))
### data1 with censoring (datacens1), type 4
dataC1 <- data1
dataC1$time[data1$time > timecens] <- timecens[data1$time > timecens]
dataC1$event[data1$time > timecens] <- 0
censC1 <- sum(dataC1$event == 0) / n * 100
fit1C1 <- coxph(Surv(time, event) ~ x, data = dataC1)
fit2C1 <- coxphw(Surv(time, event) ~ x, data = dataC1)
wilcoxC1 <- wilcox.test(time ~ x, data = dataC1, correct = FALSE)$statistic
egC1 <- expand.grid(dataC1$event[dataC1$x == 0], dataC1$event[dataC1$x == 1])
olist$outC1[i,] <- c(censC1,
fit1C1$coefficients, concord(fit1C1)[1],
fit2C1$coefficients, concord(fit2C1)[1],
wilcoxC1 / (length(dataC1$x[dataC1$x == 0]) *
length(dataC1$x[dataC1$x == 1])),
NA)
### data with administrative censoring 2 (data2), type 5
data2 <- data
data2$event[data$time > admincens[2]] <- 0
data2$time[data$time > admincens[2]] <- admincens[2]
cens2 <- sum(data2$event == 0) / n * 100
fit12 <- coxph(Surv(time, event) ~ x, data = data2)
fit22 <- coxphw(Surv(time, event) ~ x, data = data2)
fit12zph <- cox.zph(fit = fit12, transform = "km")
eg2 <- eg[!(eg[,1] >= admincens[2] & eg[,2] >= admincens[2]),]
wilcox2 <- wilcox.test(time ~ x, data = data2, correct = FALSE)$statistic
olist$out2[i,] <- c(cens2,
fit12$coefficients, concord(fit12)[1],
fit22$coefficients, concord(fit22)[1],
wilcox2 / (n1 * n2),
1 - ((sum(eg2[,1] < eg2[,2]) + sum(eg[,1] >= admincens[2] &
eg[,2] >= admincens[2]) / 2) / nrow(eg)))
### data2 with censoring (datacens2), type 6
dataC2 <- data2
dataC2$time[data2$time > timecens] <- timecens[data2$time > timecens]
dataC2$event[data2$time > timecens] <- 0
censC2 <- sum(dataC2$event == 0) / n * 100
fit1C2 <- coxph(Surv(time, event) ~ x, data = dataC2)
fit2C2 <- coxphw(Surv(time, event) ~ x, data = dataC2)
wilcoxC2 <- wilcox.test(time ~ x, data = dataC2, correct = FALSE)$statistic
egC2 <- expand.grid(dataC2$event[dataC2$x == 0], dataC2$event[dataC2$x == 1])
olist$outC2[i,] <- c(censC2,
fit1C2$coefficients, concord(fit1C2)[1],
fit2C2$coefficients, concord(fit2C2)[1],
wilcoxC2 / (length(dataC2$x[dataC2$x == 0]) *
length(dataC2$x[dataC2$x == 1])),
NA)
}
results <- matrix(NA, nrow = 6, ncol = 7, dimnames = list(c("No", "Loss-to-fup",
"Admin. 1", "Loss-to-fup & admin. 1", "Admin. 2", "Loss-to-fup & admin. 2"),
colnames(olist$out)))
for (j in 1:6) {
olist[[j]][, c("cox_c100", "wcox_c100", "wilcox100", "prt0st1")] <-
olist[[j]][, c("cox_c100", "wcox_c100", "wilcox100", "prt0st1")] * 100
r1 <- round(apply(olist[[j]], 2, mean), 3)
r2 <- round(apply(olist[[j]], 2, sd) / sqrt(sim), 3)
results[j,] <- t(paste(r1, " (", r2, ")", sep = ""))
}
output <- list(results = results, olist = olist, popc100 = popc100)
}
invisible(output)
}
## if (pdfind) { pdf("simph.pdf", width = 5, height = 5) }
## sim1 <- simulation(n1 = 1000, n2 = 1000, sim = 2000, seed = 3460, type = "ph",
## scalewei = 0.11, shapewei = 1.22, scaleexpC =0.06029,
## beta = log(0.55/(1-0.55)), admincens = c(11.21083, 9.549136),
## npop = 10000, xmaxplot = 23, addconstant = 1e-4)
## if (pdfind) { dev.off() }
## sim1$results[, 1:6]
## round(sim1$popc100[1], 2) # true population-c * 100
##
##
## if (pdfind) { pdf("simnph.pdf", width = 5, height = 5) }
## sim2 <- simulation(n1 = 1000, n2 = 1000, sim = 2000, seed = 3458, type ="nph3",
## scaleexp = 0.35653, shapegom = 1.6, scalegom = 0.0228,
## scaleexpC = 0.122, admincens = c(4.506223, 3.535000),
## npop = 10000, xmaxplot = 6)
## if (pdfind) { dev.off() }
## sim2$results[, 1:6]
## round(sim2$popc[1], 2) # true population-c * 100
### prepare Table 1
models <- c("Ignoring non-proportional hazards *", "HR Cox regression",
"Estimating piecewise constant HRs *", "HR 1st year", "HR >1st year",
"Including a time-by-covariate interaction", "HR at 0.5 years", "HR at 1 year",
"HR at 2 years", "Weighted Cox regression", "average HR", "c'%")
Table1 <- data.frame(matrix(NA, nrow = length(models), ncol = 4, dimnames = list(models,
c("HR", "HRlower", "HRupper", "p"))))
## ignore non-proportional hazards and apply a Cox proportional hazards model
gfit2 <- coxphw(Surv(yrs, status) ~ radiation, data = gastric, template = "PH",
robust = TRUE)
# or equivalently
coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastric, x = TRUE,
method = "breslow")
## Call:
## coxph(formula = Surv(yrs, status) ~ radiation + cluster(id),
## data = gastric, x = TRUE, method = "breslow")
##
## coef exp(coef) se(coef) robust se z p
## radiation 0.141 1.152 0.226 0.229 0.62 0.54
##
## Likelihood ratio test=0.39 on 1 df, p=0.532
## n= 90, number of events= 79
# extract estimates for Table 1: HR, 95% CI, p-value
Table1["HR Cox regression", ] <- c(exp(gfit2$coeff),
exp(confint(gfit2)),
summary(gfit2)$prob)
## coxphw(formula = Surv(yrs, status) ~ radiation, data = gastric,
## template = "PH", robust = TRUE)
##
## Model fitted by unweighted estimation (PH template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95 z
## radiation 0.141495 0.2292141 1.151995 0.7350944 1.805335 0.6173052
## p
## radiation 0.5370334
##
## Wald Chi-square = 0.3810657 on 1 df, p = 0.5370334
##
## Covariance-Matrix:
## radiation
## radiation 0.05253909
##
## Generalized concordance probability: Estimates may be biased!
## concordance prob. lower 0.95 upper 0.95
## radiation 0.5353 0.4237 0.6435
### estimating piecewise constant hazard ratios (by two separate Cox models)
### (two time periods with equal number of events)
table(gastric$status)
##
## 0 1
## 11 79
#79/2
nrow(subset(gastric, status == 1 & yrs < 1)) # breakpoint = 1 year
## [1] 39
## first time period
gastricp1 <- gastric
gastricp1$status[gastricp1$yrs > 1] <- 0
gastricp1$yrs[gastricp1$yrs > 1] <- 1
nrow(gastricp1)
## [1] 90
gtable0 <- table(gastricp1$status, deparse.level = 2)
gtable0
## gastricp1$status
## 0 1
## 51 39
round(prop.table(gtable0) * 100, digits = 2)
## gastricp1$status
## 0 1
## 56.67 43.33
gtable1 <- table(gastricp1$radiation, gastricp1$status, deparse.level = 2)
addmargins(gtable1)
## gastricp1$status
## gastricp1$radiation 0 1 Sum
## 0 31 14 45
## 1 20 25 45
## Sum 51 39 90
round(prop.table(gtable1, margin = 1) * 100, digits = 2)
## gastricp1$status
## gastricp1$radiation 0 1
## 0 68.89 31.11
## 1 44.44 55.56
gfit3 <- coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastricp1,
x = TRUE, method = "breslow")
gfit3.ph <- cox.zph(fit = gfit3, transform = "km")
gfit3.ph$table
## rho chisq p
## radiation -0.275521 2.652014 0.1034188
## plot of scaled Schoenfeld residuals in the first time period
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plotcoxzph(x = gfit3.ph, wd = 2)
abline(a = 0, b = 0, lty = 3)
mtext(side = 1, line = 2.5, text = "time (years, KM-transformation)", cex = 1)
mtext(side = 2, line = 2.5, text = expression(paste(beta, "(t) for radiation")), cex = 1)
abline(lm(gfit3.ph$y ~ gfit3.ph$x)$coefficients, lty = 3, col = "red", lwd = 2)
## plot of cumulative survival probabilities
## gsurv2 <- survfit(Surv(yrs, status) ~ radiation, data = gastricp1)
## par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
## plot(gsurv2, lty = 1:2, las = 1, lwd = 2)
## mtext(side = 1, line = 2.5, text = "time (years)")
## mtext(side = 2, line = 3, text = "survival distribution function")
## legend("bottomleft", title = "radiation", legend = c("yes", "no"),
## lty = 2:1, inset = 0.02, bty = "n", cex = 1.2)
## Cox proportional hazards model for the first time period
gfit4 <- coxphw(Surv(yrs, status) ~ radiation, data = gastricp1, template = "PH")
summary(gfit4)
## coxphw(formula = Surv(yrs, status) ~ radiation, data = gastricp1,
## template = "PH")
##
## Model fitted by unweighted estimation (PH template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95 z
## radiation 0.8774141 0.325826 2.404673 1.269733 4.55407 2.692892
## p
## radiation 0.007083531
##
## Wald Chi-square = 7.251665 on 1 df, p = 0.007083531
##
## Covariance-Matrix:
## radiation
## radiation 0.1061626
##
## Generalized concordance probability: Estimates may be biased!
## concordance prob. lower 0.95 upper 0.95
## radiation 0.7063 0.5594 0.82
Table1["HR 1st year", ] <- c(exp(gfit4$coeff),
exp(confint(gfit4)),
summary(gfit4, print = FALSE)$prob)
# or equivalently
# coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastricp1, method = "breslow")
## second time period
gastricp2 <- subset(gastric, yrs > 1)
nrow(gastricp2)
## [1] 51
gtable0 <- table(gastricp2$status, deparse.level = 2)
gtable0
## gastricp2$status
## 0 1
## 11 40
round(prop.table(gtable0) * 100, digits = 2)
## gastricp2$status
## 0 1
## 21.57 78.43
gtable1 <- table(gastricp2$radiation, gastricp2$status, deparse.level = 2)
addmargins(gtable1)
## gastricp2$status
## gastricp2$radiation 0 1 Sum
## 0 3 28 31
## 1 8 12 20
## Sum 11 40 51
round(prop.table(gtable1, margin = 1) * 100, digits = 2)
## gastricp2$status
## gastricp2$radiation 0 1
## 0 9.68 90.32
## 1 40.00 60.00
gfit5 <- coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastricp2, x = TRUE,
method = "breslow")
gfit5.ph <- cox.zph(fit = gfit5, transform = "km")
gfit5.ph$table
## rho chisq p
## radiation -0.1203536 0.5816761 0.4456561
# plot of scaled Schoenfeld residuals for the second time period
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plotcoxzph(x = gfit5.ph, wd = 2)
abline(a = 0, b = 0, lty = 3)
mtext(side = 1, line = 2.5, text = "time (years, KM-transformation)", cex = 1)
mtext(side = 2, line = 2.5, text = expression(paste(beta, "(t) for radiation")), cex = 1)
abline(lm(gfit5.ph$y ~ gfit5.ph$x)$coefficients, lty = 3, col = "red", lwd = 2)
## plot of cumulative survival probabilities
## gsurv3 <- survfit(Surv(yrs, status) ~ radiation, data = gastricp2)
## par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
## plot(gsurv3, lty = 1:2, las = 1, lwd = 2, xlim=c(1,5))
## mtext(side = 1, line = 2.5, text = "time (years)")
## mtext(side = 2, line = 3, text = "survival distribution function")
## legend("bottomleft", title = "radiation", legend = c("yes", "no"),
## lty = 2:1, inset = 0.02, bty = "n", cex = 1.2)
## Cox proportional hazards model for the second time period
gfit6 <- coxphw(Surv(yrs, status) ~ radiation, data = gastricp2, template = "PH")
summary(gfit6)
## coxphw(formula = Surv(yrs, status) ~ radiation, data = gastricp2,
## template = "PH")
##
## Model fitted by unweighted estimation (PH template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95 z
## radiation -0.6051688 0.3471071 0.5459823 0.2765161 1.078044 -1.743464
## p
## radiation 0.08125255
##
## Wald Chi-square = 3.039668 on 1 df, p = 0.08125255
##
## Covariance-Matrix:
## radiation
## radiation 0.1204833
##
## Generalized concordance probability: Estimates may be biased!
## concordance prob. lower 0.95 upper 0.95
## radiation 0.3532 0.2166 0.5188
Table1["HR >1st year", ] <- c(exp(gfit6$coeff),
exp(confint(gfit6)),
summary(gfit6, print = FALSE)$prob)
# or equivalently
# coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastricp2, method = "breslow")
### including a time-by-covariate interaction
fun <- function(t) { (t > 1) * 1 }
gfit7 <- coxphw(Surv(yrs, status) ~ radiation + fun(yrs):radiation, data = gastric, template = "PH")
summary(gfit7)
## coxphw(formula = Surv(yrs, status) ~ radiation + fun(yrs):radiation,
## data = gastric, template = "PH")
##
## Model fitted by unweighted estimation (PH template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95
## radiation 0.8774141 0.3258260 2.4046734 1.26973327 4.5540699
## fun(yrs):radiation -1.4825829 0.4758515 0.2270505 0.08934636 0.5769896
## z p
## radiation 2.692892 0.007083531
## fun(yrs):radiation -3.115642 0.001835452
##
## Wald Chi-square = 10.30011 on 2 df, p = 0.005799087
##
## Covariance-Matrix:
## radiation fun(yrs):radiation
## radiation 0.1061626 -0.1060570
## fun(yrs):radiation -0.1060570 0.2264347
##
## Generalized concordance probability: Estimates may be biased!
## concordance prob. lower 0.95 upper 0.95
## radiation 0.7063 0.5594 0.8200
## fun(yrs):radiation 0.1850 0.0820 0.3659
# 2.4046734 * 0.2270505
# exp(0.8774141 - 1.4825829)
# or equivalently
summary(coxph(Surv(yrs, status) ~ radiation + tt(radiation) + cluster(id), data = gastric,
tt = function(x, t, ...) x * (t > 1), method = "breslow"))
## Call:
## coxph(formula = Surv(yrs, status) ~ radiation + tt(radiation) +
## cluster(id), data = gastric, tt = function(x, t, ...) x *
## (t > 1), method = "breslow")
##
## n= 90, number of events= 79
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## radiation 0.8774 2.4047 0.3351 0.3258 2.693 0.00708 **
## tt(radiation) -1.4826 0.2271 0.4816 0.4759 -3.116 0.00184 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## radiation 2.4047 0.4159 1.26973 4.554
## tt(radiation) 0.2271 4.4043 0.08935 0.577
##
## Concordance= 0.6 (se = 0.248 )
## Rsquare= 0.11 (max possible= 0.999 )
## Likelihood ratio test= 10.49 on 2 df, p=0.005265
## Wald test = 10.3 on 2 df, p=0.005799
## Score (logrank) test = 10.45 on 2 df, p=0.005383, Robust = 10.73 p=0.004683
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
### extended Cox model - assume a linear time-dependent effect
fit1 <- coxphw(Surv(yrs, status) ~ radiation + yrs:radiation, data = gastric, template = "PH")
summary(fit1)
## coxphw(formula = Surv(yrs, status) ~ radiation + yrs:radiation,
## data = gastric, template = "PH")
##
## Model fitted by unweighted estimation (PH template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95
## radiation 1.2699606 0.4334889 3.5607124 1.5224762 8.3276657
## yrs:radiation -0.9652886 0.3409321 0.3808733 0.1952444 0.7429892
## z p
## radiation 2.929627 0.003393692
## yrs:radiation -2.831322 0.004635608
##
## Wald Chi-square = 9.047941 on 2 df, p = 0.01084588
##
## Covariance-Matrix:
## radiation yrs:radiation
## radiation 0.1879126 -0.1241715
## yrs:radiation -0.1241715 0.1162347
##
## Generalized concordance probability: Estimates may be biased!
## concordance prob. lower 0.95 upper 0.95
## radiation 0.7807 0.6036 0.8928
## yrs:radiation 0.2758 0.1634 0.4263
## or equivalently
coxph(Surv(yrs, status) ~ radiation + tt(radiation) + cluster(id), tt = function(x,t, ...) x * t,
data = gastric, method = "breslow")
## Call:
## coxph(formula = Surv(yrs, status) ~ radiation + tt(radiation) +
## cluster(id), data = gastric, tt = function(x, t, ...) x *
## t, method = "breslow")
##
## coef exp(coef) se(coef) robust se z p
## radiation 1.270 3.561 0.419 0.433 2.93 0.0034
## tt(radiation) -0.965 0.381 0.318 0.341 -2.83 0.0046
##
## Likelihood ratio test=13.5 on 2 df, p=0.00119
## n= 90, number of events= 79
## extract HR at 0.5, 1 and 2 years
fit1est <- predict(fit1, type = "slice.time", x = "yrs", z = "radiation", newx = c(0.5, 1, 2),
exp = TRUE, verbose = TRUE, pval = TRUE)
## yrs HR HR lower 0.95 HR upper 0.95 p
## 1 0.5 2.1975 1.2096 3.9924 0.0098
## 2 1.0 1.3562 0.8536 2.1547 0.1971
## 3 2.0 0.5165 0.2381 1.1207 0.0946
Table1[c("HR at 0.5 years", "HR at 1 year",
"HR at 2 years"), ] <- cbind(fit1est$estimates[, "HR"],
fit1est$estimates[, "HR lower 0.95"],
fit1est$estimates[, "HR upper 0.95"],
fit1est$estimates[, "p"])
## visualize the estimated linear time-dependent effect
fit1est2 <- predict(fit1, type = "slice.time", x = "yrs", z = "radiation",
newx = seq(from = 0.1, to = 3, by = 0.1))
if (pdfind) { pdf("figure3.pdf", width = 7, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar=c(2, 2, 0, 0))
plot(fit1est2, addci = TRUE)
mtext(side = 1, line = 2.5, text = "time (yrs)", cex = 1.3)
mtext(side = 2, line = 2.3, text = expression(paste(hat(beta), "(t) for radiation")),
cex = 1.3)
if (pdfind) { dev.off() }
### extended Cox model - assume a log-linear time-dependent effect
gfit8 <- coxphw(Surv(yrs, status) ~ radiation + log(yrs):radiation, data = gastric,
template = "PH")
summary(gfit8)
## coxphw(formula = Surv(yrs, status) ~ radiation + log(yrs):radiation,
## data = gastric, template = "PH")
##
## Model fitted by unweighted estimation (PH template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95
## radiation 0.03766302 0.2367992 1.0383813 0.6528193 1.651660
## log(yrs):radiation -0.66924556 0.4821178 0.5120948 0.1990540 1.317437
## z p
## radiation 0.1590504 0.8736291
## log(yrs):radiation -1.3881370 0.1650953
##
## Wald Chi-square = 1.97312 on 2 df, p = 0.372857
##
## Covariance-Matrix:
## radiation log(yrs):radiation
## radiation 0.056073853 0.004581723
## log(yrs):radiation 0.004581723 0.232437577
##
## Generalized concordance probability: Estimates may be biased!
## concordance prob. lower 0.95 upper 0.95
## radiation 0.5094 0.395 0.6229
## log(yrs):radiation 0.3387 0.166 0.5685
## or equivalently
coxph(Surv(yrs, status) ~ radiation + tt(radiation) + cluster(id),
tt = function(x, t, ...) x * log(t), data = gastric, method = "breslow")
## Call:
## coxph(formula = Surv(yrs, status) ~ radiation + tt(radiation) +
## cluster(id), data = gastric, tt = function(x, t, ...) x *
## log(t), method = "breslow")
##
## coef exp(coef) se(coef) robust se z p
## radiation 0.0377 1.0384 0.2396 0.2368 0.16 0.87
## tt(radiation) -0.6692 0.5121 0.2730 0.4821 -1.39 0.17
##
## Likelihood ratio test=8.02 on 2 df, p=0.0181
## n= 90, number of events= 79
## visualize and compare the linear and the log-linear time-dependent effects
## (superimpose the LOWESS of the scaled Schoenfeld residuals)
## plotx <- seq(from = quantile(gastric$yrs, probs = 0.05),
## to = quantile(gastric$yrs, probs = 0.95), length = 100)
## y1 <- predict(fit1, type = "slice.time", x = "yrs", z = "radiation", newx = plotx)
## y8 <- predict(gfit8, type = "slice.time", x = "yrs", z = "radiation", newx = plotx)
##
## if (pdfind) { pdf("figure6.pdf", width = 7, height = 5) }
## par(oma = c(2, 2, 0.5, 0.5), mar=c(2, 2, 0, 0))
## plotcoxzph(x = gfit1.ph2, se = FALSE, wd = 2, xlim = c(0, 3), las = 1, lty = 3)
## mtext(side = 1, line = 2.5, text = "time (yrs)", cex = 1.3)
## mtext(side = 2, line = 2.5, text = expression(paste(hat(beta), "(t) for radiation")),
## cex = 1.3)
## abline(a = 0, b = 0, lty = 3)
## lines(x = plotx, y = y1$estimates[, "coef"], col = "red", lty = 1, lwd = 2)
## lines(x = plotx, y = y8$estimates[, "coef"], col = "blue", lty = 2, lwd = 2)
## legend(x = 1.7, y = 1.6, title = "time-dependent effect", title.col = "black",
## legend = c("LOWESS", "linear", "log-linear"), col = c("black", "red", "blue"),
## lty = c(3, 1:2), bty = "n", lwd = 2, text.col = c("black", "red", "blue"),
## cex = 1.1)
## if (pdfind) { dev.off() }
## weighted Cox regression with truncation of weights
gfit9 <- coxphw(Surv(yrs, status) ~ radiation, data = gastric, template = "AHR",
trunc.weights = 0.95)
summary(gfit9)
## coxphw(formula = Surv(yrs, status) ~ radiation, data = gastric,
## template = "AHR", trunc.weights = 0.95)
##
## Model fitted by weighted estimation (AHR template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95 z
## radiation 0.4622282 0.2384041 1.587608 0.9949774 2.533221 1.938843
## p
## radiation 0.05252042
##
## Wald Chi-square = 3.759113 on 1 df, p = 0.05252042
##
## Covariance-Matrix:
## radiation
## radiation 0.05683651
##
## Generalized concordance probability:
## concordance prob. lower 0.95 upper 0.95
## radiation 0.6135 0.4987 0.717
if (pdfind) { pdf(file = "figure4.pdf", width = 6, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plot(x = gfit9, las = 1, lwd = 2)
mtext(side = 1, line = 2.5, text = "time (years)")
mtext(side = 2, line = 2.5, text = "weight")
if (pdfind) { dev.off() }
# range of normalized totatl weights
range(gfit9$w.matrix[, "w"])
## [1] 0.3134808 1.6534706
Table1["average HR", ] <- cbind(exp(gfit9$coeff),
exp(confint(gfit9)),
summary(gfit9, print = FALSE)$prob)
Table1["c'%", ] <- c(as.vector(concord(gfit9)), summary(gfit9, print = FALSE)$prob)
### finish Table 1
Table1["c'%", 1:3] <- 100 * Table1["c'%", 1:3]
Table1 <- round(Table1, digits = 3)
Table1[, 1] <- paste(Table1[, 1], " (", Table1[, 2], "-", Table1[, 3], ")", sep = "")
Table1[, 2] <- Table1[, 4]
Table1 <- Table1[, 1:2]
dimnames(Table1)[[2]] <- c("Estimate (95% CI)", "p")
Table1
## Estimate (95% CI) p
## Ignoring non-proportional hazards * NA (NA-NA) NA
## HR Cox regression 1.152 (0.735-1.805) 0.537
## Estimating piecewise constant HRs * NA (NA-NA) NA
## HR 1st year 2.405 (1.27-4.554) 0.007
## HR >1st year 0.546 (0.277-1.078) 0.081
## Including a time-by-covariate interaction NA (NA-NA) NA
## HR at 0.5 years 2.197 (1.21-3.992) 0.010
## HR at 1 year 1.356 (0.854-2.155) 0.197
## HR at 2 years 0.517 (0.238-1.121) 0.095
## Weighted Cox regression NA (NA-NA) NA
## average HR 1.588 (0.995-2.533) 0.053
## c'% 61.35 (49.87-71.7) 0.053
### ignore non-proportional hazards and apply a Cox model
### (use breslow weights to make it directly comparable to coxphw)
bfit2 <- coxphw(Surv(thdur, success) ~ bfb + log2heal, data = biofeedback, template = "PH")
summary(bfit2)
## coxphw(formula = Surv(thdur, success) ~ bfb + log2heal, data = biofeedback,
## template = "PH")
##
## Model fitted by unweighted estimation (PH template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95 z
## bfb 0.2699762 0.3453073 1.3099332 0.6657683 2.577361 0.7818433
## log2heal -0.5266649 0.3636448 0.5905713 0.2895592 1.204502 -1.4482949
## p
## bfb 0.4343067
## log2heal 0.1475346
##
## Wald Chi-square = 2.657646 on 2 df, p = 0.2647887
##
## Covariance-Matrix:
## bfb log2heal
## bfb 0.119237110 -0.002917929
## log2heal -0.002917929 0.132237551
##
## Generalized concordance probability: Estimates may be biased!
## concordance prob. lower 0.95 upper 0.95
## bfb 0.5671 0.3997 0.7205
## log2heal 0.3713 0.2245 0.5464
# or equivalently
coxph(Surv(thdur, success) ~ bfb + log2heal + cluster(id), data = biofeedback,
x = TRUE, method = "breslow")
## Call:
## coxph(formula = Surv(thdur, success) ~ bfb + log2heal + cluster(id),
## data = biofeedback, x = TRUE, method = "breslow")
##
## coef exp(coef) se(coef) robust se z p
## bfb 0.270 1.310 0.427 0.345 0.78 0.43
## log2heal -0.527 0.591 0.254 0.364 -1.45 0.15
##
## Likelihood ratio test=7.19 on 2 df, p=0.0275
## n= 33, number of events= 23
### two stage estimation
stage1 <- coxph(Surv(thdur, success) ~ strata(bfb) + log2heal + tt(log2heal) + cluster(id),
tt = function(x, t, ...) x * log(t), data = biofeedback, method = "breslow")
summary(stage1)
## Call:
## coxph(formula = Surv(thdur, success) ~ strata(bfb) + log2heal +
## tt(log2heal) + cluster(id), data = biofeedback, tt = function(x,
## t, ...) x * log(t), method = "breslow")
##
## n= 33, number of events= 23
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## log2heal 0.7368 2.0892 0.9008 0.3797 1.940 0.05233 .
## tt(log2heal) -0.4153 0.6602 0.3257 0.1490 -2.786 0.00533 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## log2heal 2.0892 0.4787 0.9926 4.3971
## tt(log2heal) 0.6602 1.5148 0.4929 0.8841
##
## Concordance= 0.664 (se = 0.301 )
## Rsquare= 0.228 (max possible= 0.96 )
## Likelihood ratio test= 8.53 on 2 df, p=0.01403
## Wald test = 7.84 on 2 df, p=0.01989
## Score (logrank) test = 6.59 on 2 df, p=0.03701, Robust = 7.71 p=0.02122
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
# for comparison linear time-dependent effect
coxph(Surv(thdur, success) ~ strata(bfb) + log2heal + tt(log2heal) + cluster(id),
tt = function(x, t, ...) x * t, data = biofeedback, method = "breslow")
## Call:
## coxph(formula = Surv(thdur, success) ~ strata(bfb) + log2heal +
## tt(log2heal) + cluster(id), data = biofeedback, tt = function(x,
## t, ...) x * t, method = "breslow")
##
## coef exp(coef) se(coef) robust se z p
## log2heal -0.0213 0.9789 0.4527 0.4330 -0.05 0.96
## tt(log2heal) -0.0196 0.9806 0.0222 0.0155 -1.26 0.21
##
## Likelihood ratio test=8.64 on 2 df, p=0.0133
## n= 33, number of events= 23
stage2 <- coxphw(Surv(thdur, success) ~ bfb + log2heal + log(thdur):log2heal, data = biofeedback,
template = "AHR", betafix = c(NA, coef(stage1)))
summary(stage2)
## coxphw(formula = Surv(thdur, success) ~ bfb + log2heal + log(thdur):log2heal,
## data = biofeedback, template = "AHR", betafix = c(NA, coef(stage1)))
##
## Model fitted by weighted estimation (AHR template)
##
## coef se(coef) exp(coef) lower 0.95 upper 0.95
## bfb 0.5967993 0.3732872 1.8162961 0.8738643 3.775107
## log2heal 0.7367590 NA 2.0891536 NA NA
## log(thdur):log2heal -0.4152653 NA 0.6601651 NA NA
## z p
## bfb 1.598767 0.1098724
## log2heal NA NA
## log(thdur):log2heal NA NA
##
## Wald Chi-square = 2.556056 on 1 df, p = 0.1098724 (based on: bfb )
##
## Covariance-Matrix:
## [1] 0.1393434
##
## Generalized concordance probability:
## concordance prob. lower 0.95 upper 0.95
## bfb 0.6449 0.4663 0.7906
## log2heal 0.6763 NA NA
## log(thdur):log2heal 0.3977 NA NA
if (pdfind) { pdf(file = "figure5.pdf", width = 6, height = 5) }
par(oma = c(2, 2, 0.5, 0.5), mar = c(2, 2, 0, 0))
plot(x = stage2, las = 1, legendxy = c(45, 1.15), lwd = 2)
mtext(side = 1, line = 2.5, text = "treatment duration (days)")
mtext(side = 2, line = 2.5, text = "weight")
if (pdfind) { dev.off() }