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Abstract7

1. The effect of explanatory environmental variables on a species’8

distribution is often assessed using a count regression model.9

Poisson generalised linear models or negative binomial models10

are common, but the traditional approach of modelling the mean11

after log or square-root transformation remains popular and in12

some cases is even advocated.13

2. We propose a novel class of linear models for count data. Sim-14

ilar to the traditional approach, the new models apply a trans-15

formation to count responses; however, this transformation is16

estimated from the data and not defined a priori. In contrast17

to simple least-squares fitting and in line with Poisson or nega-18

tive binomial models, the exact discrete likelihood is optimised19

for parameter estimation and inference. Interpretation of linear20

predictors is possible at various scales depending on the model21

formulation.22

3. Count transformation models provide a new approach to regress-23

ing count data in a distribution-free yet fully parametric fashion,24

obviating the need to a priori commit to a specific parametric25

family of distributions or to a specific transformation. The model26

class is a generalisation of discrete Weibull models for counts and27

is thus able to handle over- and underdispersion. We demon-28
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strate empirically that the models are more flexible than Poisson29

or negative binomial models but still maintain interpretability of30

multiplicative effects. A re-analysis of deer-vehicle collisions and31

the results of artificial simulation experiments provide evidence32

of the practical applicability of the model class.33

4. In ecology studies, uncertainties regarding whether and how to34

transform count data can be resolved in the framework of count35

transformation models, which were designed to simultaneously36

estimate an appropriate transformation and the linear effects37

of environmental variables by maximising the exact count log-38

likelihood. The application of data-driven transformations al-39

lows over- and underdispersion to be addressed in a model-based40

approach. Models in this class can be compared to Poisson or41

negative binomial models using the in- or out-of-sample log-42

likelihood. Extensions to non-linear additive or interaction ef-43

fects, correlated observations, hurdle-type models and other, more44

complex situations are possible. A free software implementation45

is available in the cotram add-on package to the R system for46

statistical computing.47

Keywords conditional distribution function, conditional quantile function,48

count regression, deer-vehicle collisions, transformation model49
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1 Introduction50

Information represented by counts is ubiquitous in ecology. Perhaps the51

most obvious instance of ecological count data is animal abundances, which52

are determined either directly, for example by birdwatchers, or indirectly, by53

the counting of surrogates, for example the number of deer-vehicle collisions54

as a proxy for roe deer abundance. This information is later converted into55

models of animal densities or species distributions using statistical models56

for count data. Distributions of count data are, of course, discrete and right-57

skewed, such that tailored statistical models are required for data analysis.58

Here we focus on models explaining the impact of explanatory environmental59

variables x on the distribution of a count response Y ∈ {0, 1, 2, . . . }. In the60

commonly used Poisson generalised linear model Y | x ∼ Po(exp(α+x>β))61

with log-link, intercept α and linear predictor x>β, both the mean E(Y | x)62

and the variance V(Y | x) of the count response are given by exp(α+x>β).63

Overdispersion, i.e. the situation E(Y | x) < V(Y | x), is allowed in the64

more complex negative binomial model Y | x ∼ NB(exp(α + x>β), ν) with65

mean E(Y | x) = exp(α + x>β) and potentially larger variance V(Y | x) =66

E(Y | x)+E(Y | x)2/ν. For independent observations, the model parameters67

are obtained by maximising the discrete log-likelihood function, in which an68

observation (y,x) contributes the log-density log(P(Y = y | x)) of either the69
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Poisson or the negative binomial distribution.70

Before the emergence of these models tailored to the analysis of count data71

(generalised linear models were introduced by Nelder & Wedderburn 1972),72

researchers were restricted to analysing transformations of Y by normal linear73

regression models. Prominent textbooks at the time (Snedecor & Cochran74

1967; Sokal & Rohlf 1967) suggested log transformations log(y+1) or square-75

root transformations
√
y + 0.5 of observed counts y. The application of least-76

squares estimators to the log-transformed counts then leads to the mean77

E(log(y + 1) | x) = α + x>β. Implicitly, it is assumed that the variance78

after transformation V(log(y + 1) | x) = σ2 is constant and that errors79

are normally distributed. Although it is clear that the normal assumption80

log(Y +1) | x ∼ N(α+x>β, σ2) is incorrect (the count data are still discrete81

after transformation) and, consequently, that the wrong likelihood is max-82

imised by applying least-squares to log(y + 1) for parameter estimation and83

inference, this approach is still broadly used both in practice and in theory84

(e.g. Ives 2015; Dean, Voss & Draguljić 2017; Gotelli & Ellison 2013; De Fe-85

lipe, Sáez-Gómez & Camacho 2019; Mooney, Phillips, Tillberg, Sandrow,86

Nelson & Mooney 2016). Moreover, other deficits of this approach have been87

discussed in numerous papers (e.g. O’Hara & Kotze 2010; Warton, Lyons,88

Stoklosa & Ives 2016; St-Pierre, Shikon & Schneider 2018; Warton 2018).89

As a compromise between the two extremes of using rather strict count dis-90
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tribution models (such as the Poisson or negative binomial) and the analysis91

of transformed counts by normal linear regression models, we suggest a novel92

class of transformation models for count data that combines the strengths of93

both approaches. Briefly stated, in the newly proposed method appropriate94

transformations of counts Y are estimated simultaneously with regression95

coefficients β from the data by maximising the correct discrete form of the96

likelihood in models that ensure the interpretability of a linear predictor97

x>β on an appropriate scale. We describe the theoretical foundations of98

these novel count regression models in Section 2. Practical aspects of the99

methodology are demonstrated in Section 3 in a re-analysis of roe deer ac-100

tivity patterns based on deer-vehicle collision data, followed by an artificial101

simulation experiment contrasting the performance of Poisson, negative bi-102

nomial and count transformation models under certain conditions.103

2 Methods104

The core idea of our count transformation model for describing the impact of105

explanatory environmental variables x on counts Y ∈ {0, 1, 2, . . . } is the si-106

multaneous estimation of a fully parameterised smooth transformation α(Y )107

of the discrete response and the regression coefficients in a linear predictor108

x>β. The aim of the approach is to model the discrete conditional distribu-109

7



tion function FY |X=x directly.110

We develop the novel model starting with a generalised linear model (GLM)111

for a binary event Y ≤ k defined by some cut-off point k. Assuming a112

Bernoulli distribution 1(Y ≤ k) ∼ B(1, π(x)) with success parameter π(x),113

a binary GLM with link function g is given as114

g(1(E(Y ≤ k | x))) = α + x>β.115

The intercept α defines the probability of a “success” 1(Y ≤ k) for a baseline116

configuration x>β = 0 and, in a logistic regression model with g = logit, the117

regression coefficients β have an interpretation as odds ratios exp(β).118

Now, suppose the maximal possible number of counts Y one can observe119

is K, so Y ∈ {0, 1, 2, . . . , K}. For this scenario, the binary GLM can be120

extended to a cumulative model of the form121

g(1(E(Y ≤ k | x))) = αk + x>β, k = 1, . . . , K − 1122

as introduced by McCullagh (1980) for ordinal responses. The intercept123

thresholds αk are monotonically non-decreasing αk ≤ αk+1 and depend on124

the cut-off point k. With g = logit, the proportional odds logistic regression125

model is obtained, featuring constant odds ratios exp(β) independent of k.126

For count data, there is usually no such limit K to max(Y ) and thus the127

number of intercept thresholds αk may become quite large. The main aspect128
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of our count transformation models is a smooth and parsimonious parame-129

terisation of the intercept thresholds. To simplify notation, we note that the130

mean E(1(Y ≤ k | x)) = P(Y ≤ k | x) has an interpretation as a distribu-131

tion function. Furthermore, each link function g = F−1 corresponds to the132

quantile function of a specific continuous distribution function F (g = logit133

and F = g−1 = expit for logistic regression, g = Φ−1 for probit regression,134

etc.). Last, using a negative sign for the linear predictor x>β ensures that135

large values of x>β correspond to large means E(Y | x), however, in a non-136

linear way. For arbitrary cut-offs y, we introduce the count transformation137

model as a model for the conditional distribution function FY |X=x(y | x) of138

a count response Y given explanatory variables x, as139

FY |X=x(y | x) = P(Y ≤ y | x) = F
(
α (byc)− x>β

)
, y ∈ R+. (1)140

The intercept threshold function α : R+ → R is now a smooth continuous141

and monotonically increasing function applied to the greatest integer byc142

less than or equal to the cut-off point y. Hothorn, Möst & Bühlmann (2018)143

suggested the parameterisation of α in terms of basis functions a : R→ RP
144

and the corresponding parameters ϑ as145

α(y) = a(y)>ϑ.146

The only modification required for count data is to consider this transforma-147

tion function as a step function with jumps at integers 0, 1, 2, . . . only. This148
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is achieved in model (1) by the floor function byc. The very same approach149

was suggested by Padellini & Rue (2019) but to model quantile functions150

F−1Y |X=x of count data instead of the distribution functions we consider here.151

Figure 1 shows a distribution function FY (y) = F (α (byc)) and the corre-152

sponding transformation function α, both as discrete step-functions (flooring153

the argument first) and continuously (without doing so). The two versions154

are identical for integer-valued arguments. Thus, the transformation func-155

tion α, and consequently the transformation model (1), are parameterised156

continuously but evaluated and interpreted discretely. A computationally157

attractive, low-dimensional representation of a smooth function in terms of158

a few basis functions a and corresponding parameters is therefore the core159

ingredient of our novel model class. In addition to the baseline transforma-160

tion and distribution functions (that is, for a configuration with x>β = 0161

in model (1)), the conditional transformation and distribution function for162

some configuration x>β = 3 is also depicted. The impact of x>β = 3 on the163

transformation function is given by a vertical shift but is nonlinear on the164

scale of the distribution function.165

[Figure 1 about here.]166

On a more technical level, the basis a is specified in terms of aBs,P−1, with167

P -dimensional basis functions of a Bernstein polynomial (Farouki 2012) of168
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order P − 1. Specifically, the basis a(y) can be chosen as: aBs,P−1(y) or169

aBs,P−1(y+1), or as a Bernstein polynomial on the log-scale: aBs,P−1(log(y))170

or aBs,P−1(log(y+1)). The choice of a(y) = aBs,P−1(log(y+1)) is particularly171

well suited for modelling relatively small counts. For P = 1, the defined basis172

is equivalent to a linear function of either y, log(y) or log(y+1). Monotonicity173

of the transformation function α can be obtained under the constraint ϑ1 ≤174

ϑ2 ≤ · · · ≤ ϑP of the parameters ϑ = (ϑ1, . . . , ϑP )> ∈ RP (Hothorn et al.175

2018).176

Similar to binary GLMs or cumulative models, specific model types arise from177

the different a priori choices of the inverse link function g−1 = F : R→ [0, 1].178

This choice also governs the interpretation of the linear predictor x>β. The179

conditional distribution function FY |X=x(y | x) for different choices of the180

link function g = F−1 and any configuration x are given in Table 1, with181

FY (y) = F (α(byc)) denoting the distribution of the baseline configuration182

x>β = 0. Note that, with a sufficiently flexible parameterisation of the183

transformation function α(y) = a(y)>ϑ, every distribution can be written in184

this way such that the model is distribution-free (Hothorn et al. 2018).185

The parameters β describe a deviation from this baseline distribution in186

terms of the linear predictor x>β. For a probit link, the linear predictor is187

the conditional mean of the transformed counts α(Y ). This interpretation,188

except for the fact that the intercept is now understood as being part of189
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the transformation function α, is the same as in the traditional approach of190

first transforming the counts and only then estimating the mean using least-191

squares. However, the transformation α is not heuristically chosen or defined192

a priori but estimated from data through parameters ϑ, as explained below.193

For a logit link, exp(−x>β) is the odds ratio comparing the conditional odds194

FY |X=x/1−FY |X=x with the baseline odds FY/1−FY . The complementary log-log195

(cloglog) link leads to a discrete version of the Cox proportional hazards196

model, such that exp(−x>β) is the hazard ratio comparing the conditional197

cumulative hazard function log(1 − FY |X=x) with the baseline cumulative198

hazard function log(1 − FY ). The log-log link leads to the reverse time199

hazard ratio with multiplicative changes in log(FY ). All models in Table 1 are200

parameterised to relate positive values of x>β to larger means independent201

of the specified link g = F−1.202

[Table 1 about here.]203

In Section 3.1 of our empirical evaluation we consider a linear count trans-204

formation model for discrete hazards by specifying the cloglog link. The205

discrete Cox count transformation model206

FY |X=x(y | x) = P(Y ≤ y | x) (2)207

= 1− exp
(
− exp

(
aBs,P−1 (log(by + 1c))>ϑ− x>β

))
208

with P Bernstein basis functions aBs,P−1 relates positive linear predictors209
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to smaller hazards and thus larger means. The discrete hazard function210

P(Y = y | Y ≥ y,x) is the probability that y counts will be observed given211

that at least y counts were already observed. The model is equivalent to212

P(Y = y | Y ≥ y,x) = exp(−x>β)P(Y = y | Y ≥ y)213

and thus the hazard ratio exp(−x>β) gives the multiplicative change in214

discrete hazards.215

The Cox proportional hazards model with a simplified transformation func-216

tion α(y) = ϑ1 + ϑ2 log(y + 1) specifies a discrete form of a Weibull model217

(introduced by Nakagawa & Osaki 1975) that Peluso, Vinciotti & Yu (2019)218

recently discussed as an extension to other count regression models and that219

serves as a more flexible approach for both over- and underdispersed data.220

The discrete Weibull model is a special form of our Cox count transformation221

model (2), as the former features a linear basis function a with P = 2 param-222

eters defined by a Bernstein polynomial of order one. Thus, model (2) can be223

understood as a generalisation moving away from the low-parametric discrete224

Weibull distribution while maintaining both the interpretability of the effects225

as log-hazard ratios and the ability to handle over- and underdispersion.226

Simultaneous likelihood-based inference for ϑ and β for fully parameterised227

transformation models was developed by Hothorn et al. (2018); here we refer228

only to the most important aspects. The exact log-likelihood of the model229
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for independent observations (yi,xi), i = 1, . . . , N is given by the sum of the230

N contributions231

`i(ϑ,β) = log(P(Y = yi | xi)) =232 
log
[
F
{
a(0)>ϑ− x>i β

}]
yi = 0

log
[
F
{
a(yi)

>ϑ− x>i β
}
− F

{
a(yi − 1)>ϑ− x>i β

}]
yi > 0.

233

The corresponding log-likelihood is then maximised simultaneously with re-234

spect to both ϑ and β under suitable constraints:235

(ϑ̂N , β̂N) = arg max
ϑ,β

N∑
i=1

`i(ϑ,β) subject to ϑp ≤ ϑp+1, p ∈ 1, . . . , P − 1.236

Score functions and Hessians are available from Hothorn et al. (2018). The237

likelihood highlights an important connection to a recently proposed ap-238

proach to multivariate models (Clark, Nemergut, Seyednasrollah, Turner &239

Zhang 2017), where the main challenge is to make multiple response vari-240

ables measured at different scales comparable. Latent continuous variables241

are used to model discrete responses by means of appropriate censoring. For242

the univariate case, considered here, our likelihood is equivalent to censoring243

a latent continuous variable Y at integers 0, 1, 2, . . . . Different choices of244

the link function g define the latent variable’s distribution, e.g. for a probit245

model with g = Φ−1 a latent normal distribution is assumed.246
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3 Results247

In our empirical evaluation of the proposed count transformation models,248

we demonstrate practical aspects of the model class in Section 3.1, by re-249

analysing data on deer-vehicle collisions, and examine their properties in the250

context of conventional count regression models, assuming either a condi-251

tional Poisson or a negative binomial distribution. In Section 3.2, we use252

simulated count data to evaluate the robustness of count transformation253

models under model misspecification.254

3.1 Analysis of deer-vehicle collision data255

In the following, we re-analyse a time series of 341’655 deer-vehicle colli-256

sions involving roe deer (Capreolus capreolus) that were documented between257

2002–01–01 and 2011–12–31 in Bavaria, Germany. The roe deer-vehicle col-258

lisions, recorded in 30-minute time intervals in the whole of Bavaria, were259

originally analysed by Hothorn, Müller, Held, Möst & Mysterud (2015) with260

the aim of describing temporal patterns in roe deer activity. The raw data261

and a detailed description of their analysis are available in the original study.262

In our re-analysis, we explore the estimates and properties of count regression263

models explaining how the risk of roe deer-vehicle collisions varies over days264

(diurnal effects) as well as across weeks, seasons and the whole year. We265
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applied a Poisson generalised linear model with a log link, a negative binomial266

model with a log link and a discrete Cox count transformation model (2) with267

P = 7 parameters ϑ of a Bernstein polynomial. The latter two models allow268

for possible overdispersion. The temporal changes in the risk of roe deer-269

vehicle collisions were modelled as a function of the following explanatory270

variables: annual, weekly and diurnal effects, an interaction of the weekly271

and diurnal effects, and seasonal effects, encoded as interactions of diurnal272

effects with a smooth seasonal component s(d) (based on Held & Paul 2012).273

The three models were fitted to the data of the first eight years (2002 to274

2009) and evaluated based on the data from the remaining two years, 2010275

and 2011.276

For each model we computed the estimated multiplicative seasonal changes277

in risk depending on the time of day relative to baseline on January 1st,278

including 95% simultaneous confidence bands. We interpreted “risk” as a279

multiplicative change to baseline with respect to either the conditional mean280

(“expectation ratio”; Poisson and negative binomial models) or the condi-281

tional discrete hazard function (“hazard ratio”) for the Cox count transfor-282

mation model (2).283

[Figure 2 about here.]284

The results in Figure 2 show a rather strong agreement between the three285
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models with respect to the estimated risk (expectation ratio or hazard ratio).286

However, the uncertainty, assessed by the 95% confidence bands, was under-287

estimated in the Poisson model. The negative binomial and the Cox count288

transformation model (2) agree on the effects and the associated variability,289

with the possible exception of the risk at daylight (Day, am).290

To assess the performance of the three count regression models, we computed291

the out-of-sample log-likelihoods of each model based on the data of the292

validation sample (year 2010 and 2011). The out-of-sample log-likelihood of293

the Cox count transformation model (2) with a value of −58’164.47 was the294

largest across the three count regression models. The Poisson model, with an295

out-of-sample log-likelihood of −67’192.75, was the most inconsistent with296

the data. Allowing for possible overdispersion by the negative binomial model297

increased the out-of-sample log-likelihood to −58’234.72, which was closer to298

but did not match the out-of-sample log-likelihood of model (2). Practically,299

the count transformation model performed as good as the negative binomial300

model, however, the necessity to choose a specific parametric distribution301

was present in the latter model only owing to the distribution-free nature of302

the former.303

We further compared the three different models in terms of their conditional304

distribution functions for four selected time intervals of the year 2009. The305

discrete conditional distribution functions of the models, evaluated for all306
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integers between 0 and 38, are given in Figure 3. The conditional medians307

obtained from all three models are rather close, but the variability assessed308

by the Poisson model is much smaller than that associated with the negative309

binomial and count transformation models, thus indicating overdispersion.310

[Figure 3 about here.]311

3.2 Artificial count-data-generating processes312

We investigated the performance of the different regression models in a313

simulation experiment based on count data from various underlying data-314

generating processes (DGPs). Count responses Y were generated condition-315

ally on a numeric predictor variable x ∈ [0, 1] following a Poisson or negative316

binomial distribution or one of the discrete distributions underlying the four317

count transformation models corresponding to the four link functions from318

Table 1. For the Poisson model, the mean and variance were assumed to be319

E(Y | x) = V(Y | x) = exp(1.2 + 0.8x). The negative binomial data were320

chosen to be moderately overdispersed, with E(Y | x) = exp(1.2 + 0.8x) and321

V(Y | x) = E(Y | x) + E(Y | x)2/3. The four data-generating processes322

arising from the count transformation models were specified by the different323

link functions in Table 1, a Bernstein polynomial aBs,6(log(y + 1)) and a324

regression coefficient β1 = 0.8.325
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We repeated the simulation experiment for each count-data-generating pro-326

cess 100 times, with learning and validation sample sizes of N = 250 and327

Ñ = 750 respectively. The centred out-of-sample log-likelihoods, contrasting328

the model fit, were computed by the differences between the out-of-sample329

log-likelihoods of the models and the out-of-sample log-likelihoods of the true330

generating processes.331

[Figure 4 about here.]332

The results as given in Figure 4 follow a clear pattern. When misspecified,333

the model fit of the Poisson model is inferior to that of all other models. As334

expected, the negative binomial model well fits both the data arising from335

the Poisson distribution (limiting case of the negative binomial distribution336

with ν → ∞) and the moderately overdispersed data. However, it lacks ro-337

bustness for more complex data-generating processes, such as the underlying338

mechanisms specified by a count transformation model. The fit of the count339

transformation models is satisfactory across all DGPs, albeit with some dif-340

ferences within the model class.341

4 Discussion342

Motivated by the challenges posed by the statistical analysis of ecological343

count data, we present a novel class of count transformation models that344
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provide a unified approach tailored to the analysis of count responses. The345

model class, as outlined in Section 2, offers a diverse set of count models and346

can be specified, estimated and evaluated in a simple but flexible maximum347

likelihood framework. The direct modelling of the conditional discrete distri-348

bution, while preserving the interpretability of the linear predictor x>β, is349

a key feature of our count transformation model. Furthermore, it eliminates350

the need to impose restrictive distributional assumptions, to choose transfor-351

mations in a data-free manner or to rely on rough approximations of the exact352

likelihood. The models are flexible enough to handle different dispersion lev-353

els adaptively, without being restricted to either over- or underdispersion.354

Our results from the re-analysis of deer-vehicle collision data, presented in355

Section 3.1, demonstrate the favourable properties of count transformations356

in practice. They are especially compelling for the analysis of count responses357

arising from more complex data-generating processes, for which the Poisson358

and even the more flexible negative binomial distribution are of limited use359

(as illustrated in Section 3.2). Moreover, conditional quantiles can be easily360

extracted from the fitted model by numerical inversion of the smooth con-361

ditional distribution function F (α(y) − x>β). An additional advantage of362

count transformation models is that the model class allows researchers to363

flexibly choose the scale of the interpretation of the linear predictor x>β by364

specifying a link function g = F−1 from Table 1.365
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The model class can be easily tailored to the experimental design using strata-366

specific transformation functions α(byc | strata) or response-varying effects367

β(byc). Correlated observations arising from clustered data require the in-368

clusion of random effects with subsequent application of a Laplace approxi-369

mation to the likelihood. Accounting for varying observation times or batch370

sizes is straightforward by the inclusion of an offset in the model specifica-371

tion. Random censoring is easy to incorporate in the likelihood (Hothorn372

et al. 2018), which can then appropriately handle uncertain recordings (for373

example, the observation “more than three roe-deer vehicle collisions in half374

an hour” corresponds to right-censoring at three). The same applies to trun-375

cation. By contrast, hurdle-like transformation models require modifications376

of the basis functions as well as interactions between the response and ex-377

planatory variables (see Section 4.5 in Hothorn et al. 2018).378

Extensions to the proposed simple shift count transformation model can be379

made by boosting algorithms (Hothorn 2019b) that allow the estimation of380

conditional transformation models (Hothorn, Kneib & Bühlmann 2014) fea-381

turing complex, non-linear, additive or completely unstructured tree-based382

conditional parameter functions ϑ(x). Similarly, count transformation mod-383

els can be partitioned by transformation trees (Hothorn & Zeileis 2017),384

which in turn lead to transformation forests, as a statistical learning ap-385

proach for computing predictive distributions. The transformation approach386
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seems also promising for the development for multivariate species distribution387

models, because different marginal transformation models can be combined388

into a multivariate model on the same scale (the idea was developed for389

continuous responses by Klein, Hothorn & Kneib 2019, and recent research390

focuses on discrete or count variables).391

The greatest challenge in applying count transformation models is their in-392

terpretability. The effects of the explanatory environmental variables are not393

directly interpretable as multiplicative changes in the conditional mean of the394

count response, as is the case in Poisson or negative binomial models with a395

log link. For the logit, cloglog and log-log link functions, the effects are still396

multiplicative, but at the scales of the discrete odds ratio, hazard ratio or397

reverse time hazard ratio, which might be difficult to communicate to prac-398

titioners. If the probit link is used, the effects are interpretable as changes in399

the conditional mean of the transformed counts. This interpretation is the400

same as that obtained from running a normal linear regression model on, for401

example, log-transformed counts, with the important difference that (i) the402

transformation was estimated from data by optimising (ii) the exact discrete403

likelihood. Nonetheless, it is possible to plot the estimated transformation404

function a(y)>ϑ̂ against log(y + 1) ex post to assess the appropriateness of405

applying a log-transformation.406
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Computational details407

All computations were performed using R version 3.6.1 (R Core Team 2019).408

A reference implementation of transformation models is available in the mlt409

R add-on package (Hothorn 2019a; 2018). A simple user interface to lin-410

ear count transformation models is available in the cotram add-on package411

(Siegfried & Hothorn 2019). The package includes a introductory vignette412

and reproducibility material for the empirical results presented in Section 3.413

The following example demonstrates the functionality of the cotram pack-414

age in terms of a count transformation model with a cloglog link explaining415

how the number of tree pipits (Anthus trivialis) varies across different per-416

centages of canopy overstorey cover (coverstorey).417

418
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### package cotram available from CRAN.R-project.org

### install.packages(c("cotram", "coin"))

library("cotram")

### tree pipit data; doi: 10.1007/s10342-004-0035-5

data("treepipit", package = "coin")

### fit discrete Cox model to tree pipit counts

m <- cotram(counts ~ coverstorey, ### log-hazard ratio of

### coverstorey

data = treepipit, ### data frame

method = "cloglog", ### link = cloglog

order = 5, ### order of Bernstein poly.

prob = 1) ### support is 0...5

logLik(m) ### log-likelihood

## 'log Lik.' -38.27244 (df=7)

exp(coef(m)) ### hazard ratio

## coverstorey

## 0.9805453

exp(confint(m)) ### 95% confidence interval

## 2.5 % 97.5 %

## coverstorey 0.9697581 0.9914526

### more illustrations

# vignette("cotram", package = "cotram")

419

The data are shown in Figure 5 overlayed with the smoothed version of the420

estimated conditional distribution functions for varying values of coverstorey.421

[Figure 5 about here.]422
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Link F−1 Interpretation of x>β

probit E(αY (Y ) | x) = x>β

logit
FY |X=x(y|x)

1−FY |X=x(y|x)
= exp(−x>β) FY (y)

1−FY (y)

cloglog 1− FY |X=x(y | x) = (1− FY (y))exp(−x
>β)

loglog FY |X=x(y | x) = FY (y)exp(x
>β)

Table 1: Transformation Model. Interpretation of linear predictors x>β
under different link functions g = F−1.
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Figure 1: Transformation model. Illustration of a cumulative distribution
function (F , left panel) and of a transformation function (α, right panel)
of a count response (byc, red) and a corresponding continuous variable (y,
blue), both functions coinciding for counts 0, 1, 2, . . . . The curves are shown
both for the baseline configuration x>β = 0 and a configuration x>β = 3
governing a vertical shift on the scale of the transformation function α (right
panel) and corresponding change on the scale of the distribution function
(left panel).
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(A) Poisson model
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(B) Negative binomial model

Day of year

E
xp

ec
ta

tio
n 

ra
tio

1
2
3
4
5

Jan Apr Jul Oct Jan

Night (am) Pre−sunrise

Jan Apr Jul Oct Jan

Post−sunrise Day (am)

Day (pm)

Jan Apr Jul Oct Jan

Pre−sunset Post−sunset

Jan Apr Jul Oct Jan

1
2
3
4
5

Night (pm)

(C) Cox count transformation model
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Figure 2: Deer-vehicle collisions. Multiplicative seasonal changes (reference:
January 1 at the corresponding time of day) with simultaneous 95% confi-
dence bands for the expected number of deer-vehicle collisions (modelled by
the Poisson model with a log link (A) and the negative binomial model with
a log link (B)), and for the discrete hazard ratios modelled by the Cox count
transformation model (2) (C).
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Figure 3: Deer-vehicle collisions. Distributions of the deer-vehicle collision
counts conditional on the explanatory environmental parameters of four dif-
ferent time intervals of the year 2009 evaluated for the discrete Cox count
transformation model (2) (red), the Poisson model (blue) and the negative
binomial model (green). The actually observed deer-vehicle collision counts
are shown as a vertical black line.
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Figure 4: Artificial count-data-generating processes (DGPs). The perfor-
mance of the count regression models (Poisson, negative binomial and count
transformation models outlined in Table 1) assessed by the centered out-of-
sample log-likelihood of the corresponding model. Larger values of the out-
of-sample log-likelihood indicate a better performance of the corresponding
count regression model.
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Figure 5: Tree pipit illustration. Number of tree pipits counted at 86 different
plots with varying coverstorey. The sizes of the circles are proportional to the
square-root of the sample size. Observations are overlayed with the smoothed
conditional distribution functions. For a coverstorey of 20%, for example, the
probability of not observing any tree pipit is slightly larger than 0.65, the
probability of observing at most one tree pipit is somewhat larger than 0.70.
For a coverstorey of 60%, the probability of observing at least one tree pipit
is less than 0.1.
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