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Abstract

The R package cna provides comprehensive functionalities for causal inference and
modeling with Coincidence Analysis (CNA), which is a configurational comparative meth-
od of causal data analysis. In this vignette, we first review the theoretical and method-
ological foundation of CNA. Second, we introduce the data types processable by CNA,
the package’s core analytical functions with their arguments, and some auxiliary functions
for data simulations. Third, CNA’s output along with relevant fit parameters and output
attributes are discussed. Finally, guidance is provided for how to interpret that output
and, in particular, for how to proceed in case of model ambiguities.
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1. Introduction

Since the mid-1980ies, different variants of configurational comparative methods (CCMs) have
gradually been added to the toolkit for causal data analysis in the social sciences. The most
prominent CCM is Qualitative Comparative Analysis (QCA) with its main variants crisp-
set QCA (csQCA) Ragin (1987), multi-value QCA (mvQCA) Cronqvist and Berg-Schlosser
(2009), and fuzzy-set QCA (fsQCA) Ragin (2008, 2009) (see also Thiem 2014 for an attempt
to unify these variants). Since its first introduction, QCA has gained considerable popularity
and has been applied in areas as diverse as social and political science, international rela-
tions, business administration, management, environmental science, evaluation science, and
public health (for an overview over corresponding publications and detailed references see the
bibliography section on the http://compasss.org website).

Coincidence Analysis (CNA) was added to the family of CCMs in Baumgartner (2009a; 2009b)
for two main reasons:

1. At the time of CNA’s introduction, all variants of QCA built causal models using Quine-
McCluskey optimization (QMC, Quine 1959; McCluskey 1965), which is an algorithm
not designed for causal inference and which, accordingly, gives rise to various prob-
lems when nonetheless implemented for that purpose. For instance, data fragmentation
forces QMC to draw on counterfactual reasoning that goes beyond the data and some-
times requires assumptions contradicting the very causal structures under investigation
(cf. Baumgartner 2014); or QMC has built-in protocols for ambiguity reduction that
are inadequate in the context of causal discovery (cf. Baumgartner and Thiem 2017).

http://compasss.org
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CNA, by contrast, is relying on an algorithmic machinery that is tailor-made for causal
inference and, consequently, steers clear of the problems induced by QMC.

2. QCA focuses on the analysis of causal structures with single outcomes, for it standardly
treats exactly one variable in processed data as endogenous. CNA, by contrast, can
treat any number of variables as endogenous and, hence, is capable of analyzing multi-
outcome structures as causal chains or common-cause structures.

Some of the original differences between QCA and CNA have meanwhile been washed out. For
instance, the problems due to QMC have been diminished by the development of an algorithm
called enhanced QMC (eQMC, Duşa and Thiem 2015). The currently most dependable QCA
program, the QCApro package for R (Thiem 2018), implements eQMC in a way that avoids
both recourse to counterfactual reasoning and inadequate ambiguity reduction.1 Moreover,
apart from QCApro, also the QCA R package now provides functionalities for investigating
the causes of multiple outcomes (see also Thiem 2015). Still, no available QCA program
follows CNA in building causal models representing multi-outcome structures, in testing for
structural redundancies (cf. section 5.5 below) that may arise when single-outcome models are
combined to multi-outcome ones, and in measuring the latter’s model fit. Most importantly,
substantial algorithmic differences remain between CNA and these latest advancements of
QCA.

While QCA builds causal models from the top down by first identifying maximal dependency
structures and then gradually reducing them to minimal, that is, redundancy-free ones, CNA
uses a bottom-up approach that progressively combines atomic structural components to com-
plex but redundancy-free structures. When applied to noise-free data, the two approaches
yield the same results, but when applied to noisy data, they tend to come apart. While
the top-down approach runs a risk of failing to eliminate all redundant elements from causal
models and of abandoning an analysis prematurely, the bottom-up approach is not affected
by these problems (Baumgartner and Ambühl forthcoming).

In the broader methodological landscape, CCMs differ from other techniques as regression
analytical methods (RAMs) (e.g. Gelman and Hill 2007) or Bayes-nets methods (BNMs)
(e.g. Spirtes et al. 2000) in a number of respects. For instance, while RAMs and BNMs
search for causal dependencies among variables, CCMs search for causal dependencies among
concrete values of variables. More specifically, RAMs scrutinize covariation hypotheses as
“the more/less of X, the more/less of Y ” and BNMs analyze hypotheses about conditional
(in)dependencies as “X and Y can/cannot be rendered conditionally independent“. CCMs,
by contrast, study implication hypotheses as “X=χi is (non-redundantly) sufficient/necessary
for Y =γi”, where χi and γi are concrete values of X and Y . These types of hypotheses are
logically independent: certain values of X and Y may be implicationally dependent, while
X and Y themselves are covariationally or conditionally independent, or X and Y may be
covariationally and conditionally dependent, while none of their concrete values are implica-
tionally dependent (cf. Thiem and Baumgartner 2016; Thiem et al. 2016). Moreover, whereas
RAMs and BNMs quantify net effects and effect sizes,2 CCMs place a Boolean ordering on sets

1The other available QCA R package—QCA (Duşa 2007)—also uses eQMC but, unlike QCApro, still has
default parameter settings that follow QMC’s (causally inadequate) protocol for ambiguity reduction. All
other QCA programs continue to rely on standard QMC: fs/QCA (Ragin 2014), fuzzy (Longest and Vaisey
2008), Tosmana (Cronqvist 2011) and Kirq (Reichert and Rubinson 2014).

2For effect size estimation using BNMs see, for example, the R package pcalg (Kalisch et al. 2012).
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of causes by grouping their elements conjunctively, disjunctively, and sequentially. In short,
RAMs, BNMs, and CCMs study different properties/aspects of causal structures: RAMs and
BNMs study statistical and probabilistic properties as characterized by statistical or proba-
bilistic theories of causation (Simon 1954; Suppes 1970), CCMs scrutinize Boolean properties
as described by regularity theories of causation (Mackie 1974).

The Boolean properties of causation encompass three complexity dimensions. The first is
conjunctivity: to bring about an effect, say, liberal democracy in early modern Europe (D=1),
different factors need to be instantiated (or not instantiated) jointly; for instance, according
to Downing’s (1992) theory of the origins of liberal democracy, a country must have a history
of medieval constitutionalism (C=1) and absent military revolutions (R=0) (cf. Goertz 2006,
252-254). Only a coincident instantiation of the conjunction C=1 ∗ R=0 produces the effect
D. Disjunctivity is a second complexity dimension: an effect can be brought about along
alternative causal paths. Downing (1992, 78-79, 240) identifies four paths leading to R=0:
a geography that deters invading armies (G=1), commercial wealth (W =1), foreign resource
mobilization (M=1), and foreign alliances (A=1). Each condition in the disjunction G=1 +
W =1 + M=1 + A=1 can bring about R=0 independently of the other conditions. The third
complexity dimension is sequentiality: effects tend to cause further effects, propagating causal
influence along causal chains. In Downing’s theory there are multiple chains, for instance,
W =1 is causally relevant to R=0, which, in turn, is causally relevant to D=1, or there is a
chain from A=1 via R=0 to D=1. Overall, the theory entails the following Boolean model (cf.
Goertz 2006, 254), where “→” stands for the Boolean operation of implication:

(G=1 + W =1 + M=1 + A=1 → R=0) ∗ (C=1 ∗ R=0 → D=1) (1)

The cna package is currently the only available software for configurational causal data anal-
ysis that builds complex models as (1). This vignette provides a detailed introduction to cna.
We first exhibit cna’s theoretical and methodological background. Second, we discuss the
main inputs of the package’s core function cna() along with numerous auxiliary functions
for data review and simulation. Third, the working of the algorithm implemented in cna() is
presented. Fourth, we explain cna()’s output along with relevant fit parameters and output
attributes. Finally, guidance is provided for how to interpret that output and, in particular,
for how to proceed in case of model ambiguities.

2. CNA’s regularity theoretic background

Modern regularity theories of causation define causation in terms of Boolean difference-making
within a (comprehensive) set of fixed context factors. To this end, they rely on the meta-
physical background assumption that causation ultimately is a deterministic dependence re-
lation, meaning that the indeterminism often encountered in ordinary data is due to our
epistemic limitations and our resulting inability to sufficiently control for confounding and
noise. Against that metaphysical background (not further discussed here), X=χi is more
explicitly defined to be a regularity theoretic cause of Y =γi if there exists a fixed configu-
ration of context factors F such that, in F , a change from X=χi to X=χk, where χi 6= χk,
is systematically and non-redundantly associated with a change from Y =γi to Y =γk, where
γi 6= γk. If X=χi does not make a difference to Y =γi in any context F , X=χi is redundant to
account for Y =γi and, thus, no cause of Y =γi. The most influential theory defining causation
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along these lines is Mackie’s (1974) INUS-theory. Refinements of it have been proposed by
Graßhoff and May (2001) and Baumgartner (2008; 2013).

To further clarify CNA’s regularity theoretic background, a number of preliminaries are re-
quired.

2.1. Factors and their values

As reflected in the types of hypotheses scrutinized by CNA, regularity theoretic causation
is a relation that holds between variables/factors taking on specific values. (We will use the
terms “variable” and “factor” interchangeably.) Factors represent categorical properties that
partition sets of units of observation (cases) either into two sets, in case of binary properties,
or into more than two (but finitely many) sets, in case of multi-value properties. Factors
representing binary properties can be crisp-set (cs) or fuzzy-set (fs); the former can take on
0 and 1 as possible values, whereas the latter can take on any (continuous) values from the
unit interval [0, 1]. Factors representing multi-value properties are called multi-value (mv)
factors; they can take on any of an open (but finite) number of possible values {0, 1, 2, . . . , n}.

Values of a cs or fs factor X can be interpreted as membership scores in the set of cases
exhibiting the property represented by X. A case of type X=1 is a full member of that
set, a case of type X=0 is a (full) non-member, and a case of type X=χi, 0 < χi < 1, is
a member to degree χi. An alternative interpretation, which lends itself particularly well
for causal modeling, is that “X=1” stands for the full presence of the property represented
by X, “X=0” for its full absence, and “X=χi” for its partial presence (to degree χi). By
contrast, the values of an mv factor X designate the particular way in which the property
represented by X is exemplified. For instance, if X represents the education of subjects,
X=2 may stand for “high school”, with X=1 (“no completed primary schooling”) and X=3
(“university”) designating other possible property exemplifications. Mv factors taking on one
of their possible values also define sets, but the values themselves must not be interpreted as
membership scores; rather they denote the relevant property exemplification.

As the explicit “Variable=value” notation yields convoluted syntactic expressions with in-
creasing model complexity, the cna package uses the following shorthand notation, which is
conventional in Boolean algebra: membership in a set is expressed by italicized upper case and
non-membership by lower case Roman letters. Hence, in case of cs and fs factors, we write
“X” for X=1 and “x” for X=0. It must be emphasized that, while this notation significantly
simplifies the syntax of Boolean models, it introduces a risk of misinterpretation, for it yields
that the factor X and its taking on the value 1 are both expressed by “X”. Disambiguation
must hence be facilitated by the concrete context in which “X” appears. Therefore, when-
ever we do not explicitly characterize italicized Roman letters as “factors”, we use them in
terms of the shorthand notation. In case of mv factors, value assignments to variables are
not abbreviated but always written out, using the “Variable=value” notation.

2.2. Boolean operations

Regularity theories spell out causation in terms of the Boolean operations of negation (¬X, or
x), conjunction (X∗Y ), disjunction (X +Y ), implication (X → Y ), and equivalence (X ↔ Y ).
Negation is a unary truth function, the other operations are binary truth functions. That is,
they take one resp. two truth values as inputs and output a truth value. When applied to cs

factors, both their input and output set is {0, 1}. Negation is typically translated by “not”,
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Inputs Outputs

X Y ¬X X∗Y X + Y X → Y X ↔ Y

1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

Table 1: Classical Boolean operations applied to cs factors.

conjunction by “and”, disjunction by “or”, implication by “if . . . then”, and equivalence by “if
and only if (iff)”. Their classical definitions are given in Table 1.

These operations can be straightforwardly applied to mv factors as well, in which case they
amount to functions from the mv factors’ domain of values into the set {0, 1}. To illustrate,
assume that both X and Y are ternary factors with values from the domain {0, 1, 2}. The
negation of X=2, viz. ¬(X=2), then returns 1 iff X is not 2, meaning iff X is 0 or 1. X=2∗Y =0
yields 1 iff X is 2 and Y is 0. X=2 + Y =0 returns 1 iff X is 2 or Y is 0. X=2 → Y =0 yields
1 iff either X is not 2 or Y is 0. X=2 ↔ Y =0 issues 1 iff either X is 2 and Y is 0 or X is not
2 and Y is not 0.

For fs factors with continuous values from the interval [0, 1]—interpreted as membership
scores in fuzzy sets—the classical Boolean operations must be translated into fuzzy logic.
There exist numerous systems of fuzzy logic (for an overview cf. Hájek 1998), each of which
comes with its own rendering of Boolean operations. In the context of CCMs, the following
fuzzy-logic renderings have become standard: negation ¬X is translated in terms of 1 − X,
conjunction X∗Y in terms of the minimum membership score in X and Y , i.e. min(X, Y ),
disjunction X + Y in terms of the maximum membership score in X and Y , i.e. max(X, Y ),
an implication X → Y is taken to express that the membership score in X is smaller or equal
to Y (X ≤ Y ), and an equivalence X ↔ Y that the membership scores in X and Y are equal
(X = Y ).

Based on the implication operator the notions of sufficiency and necessity are defined, which
are the two Boolean dependencies exploited by regularity theories:

Sufficiency X is sufficient for Y iff X → Y (or equivalently: x + Y ; and colloquially: “if X

is given, then Y is given”);

Necessity X is necessary for Y iff Y → X (or equivalently: y + X; and colloquially: “if Y

is given, then X is given”).

Analogously for more complex expressions:

• X=3 ∗Z=2 is sufficient for Y =4 iff X=3∗Z=2 → Y =4;

• X=3 + Z=2 is necessary for Y =4 iff Y =4 → X=3 + Z=2;

• X=3 + Z=2 is sufficient and necessary for Y =4 iff X=3 + Z=2 ↔ Y =4.

2.3. Boolean causal models

Boolean dependencies of sufficiency and necessity amount to mere patterns of co-occurrence
of factor values; as such, they carry no causal connotations whatsoever. In fact, most Boolean
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dependencies do not reflect causal dependencies. To mention just two well-rehearsed examples:
the sinking of a (properly functioning) barometer is sufficient for bad weather but it does not
cause weather changes; or whenever the street is not wet, it does not rain, hence, wetness
of the street is necessary for rainfall but certainly not causally relevant for it. At the same
time, some dependencies of sufficiency and necessity are in fact due to underlying causal
dependencies: rainfall is sufficient for wet streets and also a cause thereof, or the presence of
oxygen is necessary for fires and also a cause thereof.

That means the crucial problem to be solved by a regularity theory is to filter out those
Boolean dependencies that are due to underlying causal dependencies and are, hence, amenable
to a causal interpretation. The main reason why most Boolean dependencies are not due to
causation is that the former are monotonic and, thus, tend to contain a host of redundant
elements. That is, if A is sufficient for E, so is A∗Γ (i.e. A → E |= A∗Γ → E), where Γ
is a placeholder for an arbitrary conjunction; and if A is necessary for E, so is A + Ω (i.e.
E → A |= E → A + Ω), where Ω is a placeholder for an arbitrary disjunction. But causal
structures do not feature redundant elements. Every part of a causal structure makes a dif-
ference to the behaviour of that structure in at least one context F . Accordingly, to filter out
the causally interpretable Boolean dependencies, regularity theories rely on a non-redundancy
principle:

Non-redundancy (NR) A Boolean dependency structure is causally interpretable only if
it does not contain any redundant elements.

Applied to sufficient and necessary conditions, (NR) entails that whatever can be removed
from such conditions without affecting their sufficiency and necessity is not a difference-
maker and, hence, not a cause (Baumgartner 2014). Causes are those elements of sufficient
and necessary conditions for which at least one configuration of background factors F exists
in which they are indispensable to account for a scrutinized outcome. Or in Mackie’s (1974,
62) words, causes are at least INUS conditions, viz. insufficient but non-redundant parts of
unnecessary but sufficient conditions.

Modern regularity theories formally cash this idea out on the basis of the notion of a minimal
theory. There are atomic and complex minimal theories. An atomic minimal theory of
an outcome Y is a minimally necessary disjunction of minimally sufficient conditions of Y

(Graßhoff and May 2001).

Minimal sufficiency A conjunction Φ of coincidently instantiated factor values (e.g. X1
∗X2

∗

. . . ∗Xn) is a minimally sufficient condition of Y iff Φ → Y and there does not exist a
proper part Φ′ of Φ such that Φ′ → Y , where a proper part Φ′ of Φ is the result of
eliminating one or more conjuncts from Φ.

Minimal necessity A disjunction Ψ of minimally sufficient conditions (e.g. Φ1 + Φ2 + . . . +
Φn) is a minimally necessary condition of Y iff Y → Ψ and there does not exist a
proper part Ψ′ of Ψ such that Y → Ψ′, where a proper part Ψ′ of Ψ is the result of
eliminating one or more disjuncts from Ψ.

An atomic minimal theory of Y states an equivalence of the form Ψ ↔ Y (where Ψ is
an expression in disjunctive normal form and Y is a single factor value). Atomic minimal
theories represent single-outcome structures. Conjunctions of atomic minimal theories that
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are themselves redundancy-free represent multi-outcome structures and are called complex
minimal theories.

Minimal theories connect Boolean dependencies, which—by themselves—are purely functional
and non-causal, to causal dependencies: only those Boolean dependencies are causally inter-
pretable that appear in minimal theories. That does not mean that every minimal theory
inferred from a data set δ is guaranteed to express the δ-generating causal structure. As we
shall see below, it frequently happens that multiple minimal theories can be inferred from
δ, in which case only one of these theories may truthfully reflect the δ-generating structure.
Or, as shown in Baumgartner (2013, 93-95), if the analyzed set of factors is underspecified,
minimal theories may be unfaithful to the δ-generating structure. It does mean, though, that
minimal theories inferred from a data set δ express the empirical evidence on causal depen-
dencies contained in δ. In other words, the data from which a minimal theory Ψ ↔ Y has
been inferred contain evidence—although possibly indeterminate or fallacious evidence—for
the causal relevance of all factors in Ψ.

To further clarify the causal interpretation of minimal theories, consider the following complex
example:

(A∗b + a∗B ↔ C) ∗ (C∗f + D ↔ E) (2)

Functionally put, (2) claims that the presence of A in conjunction with the absence of B (i.e.
b) as well as a in conjunction with B are two alternative minimally sufficient conditions of C,
and that C∗f and D are two alternative minimally sufficient conditions of E. Moreover, both
A∗b + a∗B and C∗f + D are claimed to be minimally necessary for C and E, respectively.
Against the background of a regularity theory, these functional relations entail the following
causal claims:

1. the factor values listed on the left-hand sides of “↔” are causally relevant for the factor
values on the right-hand sides;

2. A and b are jointly relevant to C and located on a causal path that differs from the
path on which the jointly relevant a and B are located; C and f are jointly relevant to
E and located on a path that differs from D’s path;

3. there is a causal chain from A∗b and a∗B via C to E.

More generally put, minimal theories ascribe causal relevance to their constitutive factor
values, place them on the same or different paths to the outcomes, and order them sequentially.
That is, they render transparent the three Boolean complexity dimensions of causality—which
is why they are also referred to as Boolean causal models.

Two fundamentals of the interpretation of Boolean causal models must be emphasized. First,
ordinary Boolean models make claims about causal relevance but not about causal irrelevance.
With some additional constraints that are irrelevant for our current purposes (for details see
Baumgartner 2013), a regularity theory defines X1 to be a cause of an outcome Y iff there
exists a fixed configuration of context factors F = X2

∗ . . . ∗Xn in which X1 makes a difference
to Y —meaning that X1

∗F and x1
∗F are systematically associated with different Y -values.

While establishing causal relevance merely requires demonstrating the existence of at least one
such difference-making context, establishing causal irrelevance would require demonstrating
the non-existence of such a context, which is impossible on the basis of the non-exhaustive
data samples that are typically analyzed in real-life studies. Correspondingly, the fact that
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G does not appear in (2) does not imply G to be causally irrelevant to C or E. The non-
inclusion of G simply means that the data from which (2) has been derived do not contain
evidence for the causal relevance of G. However, future research having access to additional
data might reveal the existence of a difference-making context for G and, hence, entail the
causal relevance of G to C or E after all.

Second, as anticipated above, Boolean models are to be interpreted relative to the data set δ

from which they have been derived. They do not purport to reveal all Boolean properties of
the data-generating causal structure. That is, Boolean models typically are incomplete. They
only detail those causally relevant factor values along with those conjunctive, disjunctive,
and sequential groupings for which δ contains evidence. By extension, two different Boolean
models mi and mj derived from two different data sets δi and δj are in no disagreement if
the causal claims entailed by mi and mj stand in a subset relation.

In the CCM literature, yet another term that signifies essentially the same as minimal theory
or Boolean causal model has become customary: solution formula. There is only a slight
meaning difference. While the terms minimal theory and Boolean model refer to any expres-
sions of the form (Ψ1 ↔ Y1)∗ . . . ∗(Ψn ↔ Yn), solution formula refers, more precisely, only
to those expressions of this form that are output by a CCM. That is, if Ψ1 ↔ Y is issued by
CNA, it is also called an atomic solution formula (asf ), whereas (Ψ1 ↔ Y ) ∗ (Ψ2 ↔ Z) as
issued by CNA is called a complex solution formula (csf ).

3. The input of CNA

The goal of CNA is thus to output all asf and csf that fit an input of configurational data
(relative to provided thresholds of model fit). The algorithm performing this task in the cna
package is implemented in the function cna(). Its most important arguments are:

cna(x, type, ordering = NULL, strict = FALSE, con = 1, cov = 1, con.msc = con,

notcols = NULL, maxstep = c(3, 3, 9), inus.only = FALSE, suff.only = FALSE,

what = if (suff.only) "m" else "ac", details = FALSE)

This section explains most of these inputs and introduces some auxiliary functions. The
arguments inus.only, what, and details will be discussed in the next section.

3.1. Data

Configurational data δ have the form of m × k matrices, where m is the number of units of
observation (cases) and k is the number of factors in δ. Data processed by CNA can either be
of type “crisp-set” (cs), “multi-value” (mv) or “fuzzy-set” (fs). Data that feature cs factors
only are cs. If the data contain at least one mv factor, they count as mv. Data featuring at
least one fs factor are fs.3 Examples of each data type are given in Table 2.

Data is given to the cna() function via the argument x, which is the name of a data frame or
of an object of class “truthTab” as output by the truthTab() function (see section 3.1.1 be-
low). The cna package contains a number of exemplary data sets from published CCM stud-
ies: d.autonomy, d.educate, d.irrigate, d.jobsecurity, d.minaret, d.pacts, d.pban,
d.performance, d.volatile, d.women. For details on their contents and sources, see the cna

3Mixing mv and fs factors in one analysis is (currently) not supported.
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A B C D

c1 0 0 0 0
c2 0 1 0 0
c3 1 1 0 0
c4 0 0 1 0
c5 1 0 0 1
c6 1 0 1 1
c7 0 1 1 1
c8 1 1 1 1

(a) cs data

A B C D

c1 1 3 3 1
c2 2 2 1 2
c3 2 1 2 2
c4 2 2 2 2
c5 3 3 3 2
c6 2 4 3 2
c7 1 3 3 3
c8 1 4 3 3

(b) mv data

A B C D E

c1 0.17 0.02 0.15 0.26 0.09
c2 0.97 0.23 0.73 0.08 0.10
c3 0.10 0.72 0.61 0.38 0.08
c4 0.64 0.73 0.82 0.12 0.66
c5 0.11 0.30 0.06 0.99 0.78
c6 0.69 0.23 0.91 0.98 0.84
c7 0.31 0.80 0.62 0.65 0.74
c8 0.65 0.87 0.92 0.82 0.85

(c) fs data

Table 2: Data types processable by CNA.

reference manual. After having loaded the cna package, all of them are directly (i.e. without
separate loading) available for processing:

R> library(cna)

R> cna(d.educate)

R> cna(d.women)

If the data are not of type cs, cna() must be told explicitly what type of data x contains
using the type argument, which takes the values "mv" for mv data and "fs" for fs data.
The functions mvcna(x, ...) and fscna(x, ...) are available as shorthands for cna(x,

type = "mv", ...) and cna(x, type = "fs", ...), respectively.

R> cna(d.jobsecurity, type = "fs")

R> fscna(d.jobsecurity)

R> cna(d.pban, type = "mv")

R> mvcna(d.pban)

Truth tables

To facilitate the reviewing of data, the truthTab() function assembles cases with identical
configurations in a table called a truth table.4

truthTab(x, type = c("cs", "mv", "fs"), case.cutoff = 0)

The first input x is a data frame. The function then merges multiple rows of x featuring
the same configuration into one row, such that each row of the resulting table corresponds
to one determinate configuration of the factors in x. The number of occurrences of a con-
figuration and an enumeration of the cases instantiating it are saved as attributes “n” and
“cases”, respectively. When not applied to cs data, the data type must be specified with the

4Note that a truth table is a very different type of object in the context of CNA than it is in the context
of QCA. While a QCA truth table is a list indicating whether a minterm (i.e. a configuration of all exogenous
factors) is sufficient for the outcome or not, a CNA truth table is simply an integrated representation of the
data that lists all configurations exactly once. A CNA truth table does not express relations of sufficiency.

https://cran.r-project.org/web/packages/cna/cna.pdf
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type argument. Alternatively, the shorthand functions cstt(x), mvtt(x) and fstt(x) are
available.

R> truthTab(d.women)

R> mvtt(d.pban)

Finally, truthTab() provides a numeric argument called case.cutoff, which allows for set-
ting a minimum frequency cutoff determining that configurations with less instances in the
data are not included in the truth table and the ensuing analysis. For instance, truthTab(x,

case.cutoff = 3) entails that configurations that are instantiated in less than 3 cases are
excluded.

Truth tables produced by truthTab() can be directly passed on to cna(). Moreover, as truth
tables generated by truthTab are objects that are very particular to the cna package, the
function tt2df() is available to transform truth tables back into ordinary R data frames.

R> pact.tt <- truthTab(d.pacts, type = "fs", case.cutoff = 2)

R> cna(pact.tt)

R> tt2df(pact.tt)

Data simulations

The cna package provides extensive functionalities for data simulations—which, in turn, are
essential for inverse search trials investigating the correctness of CNA’s output. In a nutshell,
the function allCombs() generates the space of all logically possible configurations over a
given set of factors, selectCases() selects, from this space, the configurations that are
compatible with a given data-generating causal structure, makeFuzzy() introduces noise into
that data, and some() randomly selects cases, for instance, to produce data fragmentation.

More specifically, allCombs(x) takes an integer vector x as input and generates a data frame
of all possible value configurations of length(x) factors, the first factor having x[1] values,
the second x[2] values etc. The factors are labeled using capital letters in alphabetical order.
The input of selectCases(cond, x) is a character string cond specifying a Boolean function,
which typically (but not necessarily) expresses a data-generating causal structure, as well as
a data frame or truth table x. It then selects the cases that are compatible with cond from x.

R> dat1 <- allCombs(c(2, 2, 2)) - 1

R> selectCases("A + B <-> C", dat1)

The closely related function selectCases1(cond, x, con = 1, cov = 1) additionally al-
lows for providing consistency (con) and coverage (cov) thresholds (see section 3.2), such that
some cases that are incompatible with cond—viz. outliers—are also selected, as long as cond

still meets con and cov in the resulting data.

R> dat2 <- allCombs(c(3, 3, 3))

R> selectCases1("A=1*B=3 + A=3 <-> C=2", mvtt(dat2), con = .75, cov = .75)

makeFuzzy(x, fuzzvalues = c(0, 0.05, 0.1)) generates fs data by simulating the ad-
dition of random noise from the uncontrolled causal background to a cs data frame x. In
addition to x, it takes as input a vector of fuzzvalues to be randomly added to the 0’s and
subtracted from the 1’s in x.
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R> dat3 <- allCombs(c(2, 2, 2)) - 1

R> makeFuzzy(tt2df(selectCases("A + B <-> C", dat3)),

+ fuzzvalues = seq(0, 0.4, 0.05))

Finally, some(x, n = 10, replace = TRUE) randomly selects n cases from a data frame or
truth table x, with or without replacement. If x features all configurations that are compatible
with a data-generating structure and n < nrow(x), the data frame or truth table issued by
some() is fragmented, meaning it does not contain all empirically possible configurations. For
example:

R> dat4 <- allCombs(c(3, 4, 5))

R> dat5 <- selectCases("A=1*B=3 + A=3 <-> C=2", mvtt(dat4))

R> some(dat5, n = 10, replace = FALSE)

3.2. Consistency and coverage

As real-life data tend to feature noise induced by unmeasured causes of endogenous factors,
strictly sufficient or necessary conditions for an outcome often do not exist. To still extract
some causal information from such data, Ragin (2006) imported so-called consistency and
coverage measures (with values from the interval [0, 1]) into the QCA protocol. Both of
these measures are also serviceable for the purposes of CNA. Informally put, consistency
reflects the degree to which the behavior of an outcome obeys a corresponding sufficiency
or necessity relationship or a whole model, whereas coverage reflects the degree to which
a sufficiency or necessity relationship or a whole model accounts for the behavior of the
corresponding outcome. As the implication operator underlying the notions of sufficiency and
necessity is defined differently in classical and in fuzzy logic, the two measures are defined
differently for crisp-set and multi-value data (which both have a classical footing), on the one
hand, and fuzzy-set data, on the other. Cs-consistency (concs) of X → Y is defined as the
number of cases featuring X∗Y divided by the number of cases featuring X, and cs-coverage
(covcs) of X → Y amounts to the number of cases featuring X∗Y divided by the number of
cases featuring Y (where | . . . | represents the cardinality of the set of cases instantiating the
corresponding expression):

concs(X → Y ) =
|X∗Y |

|X|
covcs(X → Y ) =

|X∗Y |

|Y |

Fs-consistency (confs) and fs-coverage (covfs) of X → Y are defined as follows, where n is
the number of cases in the data:

confs(X → Y ) =

∑n
i=1 min(Xi, Yi)

∑n
i=1 Xi

covfs(X → Y ) =

∑n
i=1 min(Xi, Yi)

∑n
i=1 Yi

Although defined differently, the cs and fs variants of these measures are not logically inde-
pendent: concs and covcs are special cases of confs and covfs where all membership scores are
equal to 0 or 1. As the data type processed in a concrete analysis determines the appropriate
consistency and coverage measures, we will henceforth not explicitly distinguish between the
cs and fs measures.

Consistency and coverage thresholds can be given to the cna() function using the arguments
con.msc, con, and cov that take values from the interval [0, 1]. con.msc sets the consistency
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threshold for minimally sufficient conditions (msc), con does the same for asf and csf, while
cov sets the coverage threshold for asf and csf (no coverage threshold is imposed on msc). As
illustrated on pp. 15-16 of the cna reference manual, setting different consistency thresholds
for msc and asf/csf can enhance the informativeness of cna()’s output in certain cases but
is non-standard. The standard setting is con = con.msc.

The default numeric value for all thresholds is 1, i.e. perfect consistency and coverage. Con-
trary to QCA, which often issues solutions that do not comply with the chosen consistency
threshold and which does not impose a coverage threshold at all, CNA uses consistency and
coverage as authoritative model building criteria such that, if they are not met, CNA abstains
from issuing solutions. That means, if the default thresholds are used, cna() will only output
perfectly consistent msc, asf, and csf and only perfectly covering asf and csf.

Frequently, though, the default thresholds will not yield any solution formulas—due to noise
and outliers. In such cases, con and cov may be gradually lowered (e.g. in steps of 0.1) until
cna() builds solution formulas. For example, by lowering con to 0.8 in a cs analysis, cna()

is given permission to treat X as sufficient for Y , even though in 20% of the cases X is not
associated with Y . Or by lowering cov to 0.8 in an fs analysis, cna() is allowed to treat X

as necessary for Y , even though the sum of the membership scores in Y over all cases in the
data exceeds the sum of the membership scores in min(X, Y ) by 20%.

To illustrate, cna() does not build solutions for the d.jobsecurity data at the following con

and cov thresholds:

R> fscna(d.jobsecurity, con = 1, cov = .9)

R> fscna(d.jobsecurity, con = .9, cov = 1)

R> fscna(d.jobsecurity, con = .9, cov = .9)

But if con is lowered further, multiple equally well fitting solutions are issued (the function
csf() used below merely extracts the csf from a cna() solution object; cf. section 5):

R> ana.job.1 <- fscna(d.jobsecurity, con = .8, cov = .9)

R> printCols <- c("condition", "consistency", "coverage")

R> csf(ana.job.1)[printCols]

condition consistency coverage

1 S*R + C*L + C*l <-> JSR 0.804 0.910

2 C*L + C*l + c*R <-> JSR 0.808 0.902

3 S*R + C*V + s*C*v <-> JSR 0.825 0.914

4 c*R + C*V + s*C*v <-> JSR 0.822 0.912

5 S*R + C*L + s*C*r <-> JSR 0.804 0.910

Lowering con and cov must be done with great caution, for the lower these thresholds, the
higher the chance that causal fallacies are committed, i.e. that spurious associations are
mistaken for causal ones. The aim of CNA is to find the solutions with maximal consistency
and coverage scores. Neither threshold should be lowered below 0.75. If cna() does not find
solutions at con = cov = .75, the corresponding data feature such a high degree of noise
that causal inferences become too hazardous (cf. Baumgartner and Ambühl forthcoming).

https://cran.r-project.org/web/packages/cna/cna.pdf
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3.3. Ordering

CNA does not need to be told which factors in the analyzed data δ are endogenous (i.e.
effects) and which ones are exogenous (i.e. causes). It attempts to infer that from δ. But if
prior causal knowledge is available as to which factors can figure as effects and which ones
cannot, this information can be given to CNA via a causal ordering. A causal ordering is a
relation Xi ≺ Xj defined on the factors in δ entailing that Xj cannot be a cause of Xi (e.g.
because Xi is instantiated temporally before Xj). That is, an ordering excludes certain causal
dependencies but does not stipulate any. If an ordering is provided, CNA only searches for
Boolean models in accordance with the ordering; if no ordering is provided, CNA treats all
values of the factors in δ as potential outcomes and explores whether a causal model for them
can be inferred.

An ordering is given to cna() via the argument ordering, which takes as value a list of
character vectors specifying the causal ordering of the factors in x. For example, ordering =

list(c("A","B"),"C") determines that C is causally located after A and B (i.e. A, B ≺ C),
meaning that C is not a potential cause of A and B. The latter are located on the same
level of the ordering, for A and B are unrelated by ≺, whereas C is located on a level that
is downstream of the A, B-level. cna() then only checks whether values of A and B can be
modeled as causes of values of C; the test for a causal dependency in the upstream direction is
skipped. If the argument ordering is not specified, cna() searches for dependencies between
all factors in x. An ordering does not need to explicitly mention all factors in x. If only a
subset of the factors are included in the ordering, the non-included factors are entailed to be
causally before the included ones. Hence, ordering = list("C") means that C is causally
located after all other factors in x.

Additionally, the logical argument strict is available. It determines whether the elements
of one level in an ordering can be causally related or not. For example, if ordering =

list(c("A","B"),"C") and strict = TRUE, then A and B are excluded to be causally re-
lated and cna() skips corresponding tests. By contrast, if ordering = list(c("A","B"),"C")

and strict = FALSE, then cna() also searches for dependencies among A and B.

Let us illustrate with the data set d.autonomy. Relative to the following function call, which
stipulates that AU cannot be a cause of EM, SP , and CO and that the latter factors are not
mutually causally related, cna() infers that SP is causally relevant to AU (i.e. SP ↔ AU):

R> dat.aut.1 <- d.autonomy[15:30, c("AU","EM","SP","CO")]

R> ana.aut.1 <- fscna(dat.aut.1, ordering = list(c("EM","SP","CO"), "AU"),

+ strict = TRUE, con = .91, cov = .91)

R> csf(ana.aut.1)[printCols]

condition consistency coverage

1 SP <-> AU 0.935 0.915

If we set strict to FALSE and, thereby, allow for causal dependencies among EM, SP , and
CO, it turns out that SP not only causes AU , but, on another causal path, also makes a
difference to EM :

R> ana.aut.2 <- fscna(dat.aut.1, ordering = list(c("EM","SP","CO"), "AU"),

+ strict = FALSE, con = .91, cov = .91)

R> csf(ana.aut.2)[printCols]
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condition consistency coverage

1 (SP <-> AU)*(SP + CO <-> EM) 0.912 0.915

3.4. Maxstep

As anticipated in section 1 and as will be exhibited in more detail in section 4, cna() builds
minimally necessary disjunctions of minimally sufficient conditions (i.e. asf ) from the bottom
up by gradually permutating and testing conjunctions and disjunctions of increasing complex-
ity for sufficiency and necessity. The combinatorial search space that this algorithm has to
scan depends on a variety of different aspects, for instance, on the number of factors in x, on
the number of values these factors can take, on the number and length of the msc recovered
in the first computational phase, etc. As the search space may be too large to be exhaustively
scanned in reasonable time, the argument maxstep allows for setting an upper bound for the
complexity of the generated asf. maxstep takes a vector of three integers c(i, j, k) as input,
entailing that the generated asf have maximally j disjuncts with maximally i conjuncts each
and a total of maximally k factors. The default is maxstep = c(3,3,9). The user can set it
to any complexity level if computational time is not an issue.

The maxstep argument is particularly relevant for the analysis of data featuring severe model
ambiguities. A telling case in point is the data set d.volatile. At the default maxtep, cna()

recovers 416 csf. By increasing maxstep, this number increases rapidly (from 2860 to 4264 to
30012 csf ).

R> cna(d.volatile, ordering = list("VO2"))

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(4,3,10))

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(4,3,11))

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(4,4,11))

If the values of maxstep are further increased, the analysis will quickly fail to terminate in
reasonable time. When a complete analysis cannot be completed, cna() can be told to only
search for minimally sufficient conditions (msc) by setting the argument suff.only to its
non-default value TRUE. As the search for msc is the part of a CNA analysis that is least
computationally demanding, it will typically terminate quickly and, thus, shed some light on
the dependencies among the factors in x even when a complete analysis is infeasible.

R> cna(d.volatile, ordering = list("VO2"), maxstep = c(8,10,40),

+ suff.only = TRUE)

While the maxstep argument is very valuable for controlling the search space in case of large
and ambiguous data sets, it also comes with a pitfall: it may happen that cna() fails to
find a model because of a maxstep that is too low. An example is d.women. At the default
maxstep, cna() does not build a solution, but if maxstep is increased, two solutions with
perfect consistency and coverage are found.

R> ana.wom.1 <- cna(d.women)

R> csf(ana.wom.1)[printCols]

[1] condition consistency coverage

<0 rows> (or 0-length row.names)
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R> ana.wom.2 <- cna(d.women, maxstep = c(3,4,10))

R> csf(ana.wom.2)[printCols]

condition consistency coverage

1 WS + ES*WM + es*LP + QU*LP <-> WNP 1 1

2 WS + ES*WM + QU*LP + WM*LP <-> WNP 1 1

In sum, there are two possible reasons for why cna() fails to build a solution: (i) the chosen
maxstep is too low; (ii) the chosen con and/or cov values are too high, meaning the processed
data x are too noisy. Accordingly, in case of a null result, two paths should be explored (in
that order): (i) gradually increase maxstep; (ii) gradually lower con and cov, as described in
section 3.2 above.

3.5. Notcols

In classical Boolean logic, the law of Contraposition ensures that an expression of type Ψ ↔ Y

is equivalent to the expression that results from negating both sides of the double arrow:
¬Ψ ↔ ¬Y . Applied to the context of configurational causal modeling that entails that an
asf for Y can be transformed into an asf for the negation of Y , viz. y, based on logical
principles alone, i.e. without a separate data analysis. However, that transformability only
holds for asf with perfect consistency and coverage (con = cov = 1) that are inferred from
exhaustive (non-fragmented) data (cf. section 5.3 for details on exhaustiveness). If an asf of
an outcome Y does not reach perfect consistency or coverage or is inferred from fragmented
data, identifying the causes of y requires a separate application of cna() explicitly targeting
the causes of the negated outcome.

To this end, the argument notcols allows for negating the values of factors in cs and fs

data (in case of mv data, cna() automatically searches for models of all possible values of
endogenous factors, thereby rendering notcols redundant). If notcols = "all", all factors
are negated, i.e. their membership scores i are replaced by 1−i. If notcols is given a character
vector of factors in the data, only the factors in that vector are negated. For example, notcols

= c("A", "B") determines that only factors A and B are negated.

When processing cs or fs data, CNA should first be applied to recover causal models for the
positive outcomes. If resulting asf and csf do not reach perfect consistency, coverage, and
exhaustiveness scores, a second CNA should be run negating the values of all factors that
have been modeled as outcomes in the first CNA. To illustrate, we revisit our analyses of
d.jobsecurity from section 3.2, which identified JSR as outcome, and of d.autonomy from
section 3.3, which identified AU and EM as outcomes.

R> fscna(d.jobsecurity, con = .8, cov = .9, notcols = "JSR")

R> fscna(dat.aut.1, ordering = list(c("EM","SP","CO"), "AU"),

+ strict = FALSE, con = .88, cov = .82, notcols = c("AU", "EM"))

4. The CNA algorithm

This section explains the working of the algorithm implemented in the cna() function. We
first provide an informal summary and then a detailed outline in four stages. The aim of
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cna() is to find all msc, asf, and csf that meet con.msc, con and cov in the input data x

in accordance with ordering and maxstep. The algorithm starts with single factor values
and tests whether they meet con.msc; if that is not the case, it proceeds to test conjunctions
of two factor values, then to conjunctions of three, and so on. Whenever a conjunction
meets con.msc (and no proper part of it has previously been identified to meet con.msc),
it is automatically redundancy-free, meaning an msc, and supersets of it do not need to be
tested any more. Then, it tests whether single msc meet con and cov; if not, it proceeds to
disjunctions of two, then to disjunctions of three, and so on. Whenever a disjunction meets
con and cov (and no proper part of it has previously been identified to meet con and cov), it
is automatically redundancy-free, viz. a minimally necessary disjunction of msc, and supersets
of it do not need to be tested any more. All and only those disjunctions of msc that meet
both con and cov are then issued as redundancy-free asf, which, finally, are concatenated to
csf.

The cna() algorithm can be more specifically broken down into four stages.

Stage 1 On the basis of ordering, cna() first builds a set of potential outcomes
O = {Oh=ωf , . . . , Om=ωg} from the set of factors F = {O1, . . . , On} in x,5 where
1 ≤ h ≤ m ≤ n, and second assigns a set of potential cause factors COi

from F \ Oi

to every element Oi=ωk of O. If no ordering is provided, all value assignments to all
elements of F are treated as possible outcomes in case of mv data, whereas in case of
cs and fs data O is set equal to {O1=1, . . . , On=1}.

Stage 2 cna() attempts to build a set mscOi
=ωk

of minimally sufficient conditions that meet
con.msc for each Oi=ωk ∈ O. To this end, it first checks for each value assignment
Xh=χj of each element of COi

, such that Xh=χj has a membership score above 0.5 in
at least one case in x, whether the consistency of Xh=χj → Oi=ωk meets con.msc, i.e.
whether con(Xh=χj → Oi=ωk) ≥ con.msc. If, and only if, that is the case, Xh=χj

is put into the set mscOi
=ωk

. Next, cna() checks for each conjunction of two factor
values Xm=χj ∗ Xn=χl from COi

, such that Xm=χj ∗ Xn=χl has a membership score
above 0.5 in at least one case in x and no part of Xm=χj ∗ Xn=χl is already contained
in mscOi

=ωk
, whether con(Xm=χj ∗ Xn=χl → Oi=ωk) ≥ con.msc. If, and only if, that

is the case, Xm=χj ∗ Xn=χl is put into the set mscOi
=ωk

. Next, conjunctions of three
factor values with no parts already contained in mscOi

=ωk
are tested, then conjunctions

of four factor values, etc., until either all logically possible conjunctions of the elements
of COi

have been tested or maxstep is reached. Every non-empty mscOi
=ωk

is passed
on to the third stage.

Stage 3 cna() attempts to build a set asfOi
=ωk

of atomic solution formulas for every Oi=ωk ∈
O, which has a non-empty mscOi

=ωk
, by disjunctively concatenating the elements of

mscOi
=ωk

to minimally necessary conditions of Oi=ωk that meet con and cov. To
this end, it first checks for each single condition Φh ∈ mscOi

=ωk
whether con(Φh →

Oi=ωk) ≥ con and cov(Φh → Oi=ωk) ≥ cov. If, and only if, that is the case, Φh is
put into the set asfOi

=ωk
. Next, cna() checks for each disjunction of two conditions

Φm +Φn from mscOi
=ωk

, such that no part of Φm +Φn is already contained in asfOi
=ωk

,
whether con(Φm + Φn → Oi=ωk) ≥ con and cov(Φm + Φn → Oi=ωk) ≥ cov. If, and

5Note that if x is a data frame, cna() first transforms x into a truth table using truthTab(x), thereby
passing the argument type (and the two additional arguments rm.dup.factors and rm.const.factors) to the
truthTab() function.
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only if, that is the case, Φm + Φn is put into the set asfOi
=ωk

. Next, disjunctions of
three conditions from mscOi

=ωk
with no parts already contained in asfOi

=ωk
are tested,

then disjunctions of four conditions, etc., until either all logically possible disjunctions
of the elements of mscOi

=ωk
have been tested or maxstep is reached. Every non-empty

asfOi
=ωk

is passed on to the fourth stage.

Stage 4 cna() attempts to build a set csfO of complex solution formulas encompassing all
elements of O. To this end, all logically possible conjunctions of exactly one element
from every non-empty asfOi

=ωk
are constructed. If there is only one non-empty set

asfOi
=ωk

, that is, if only one potential outcome can be modeled as an actual outcome,
the set of complex solution formulas csfO is identical to asfOi

=ωk
.

To illustrate, the following code chunk, first, simulates the data in Table 2c, p. 9, and second,
runs cna() on that data with con = .8 and cov = .9, with default maxstep, and without
ordering.

R> dat6 <- allCombs(c(2, 2, 2, 2, 2)) -1

R> dat7 <- selectCases("(A + B <-> C)*(A*B + D <-> E)", dat6)

R> set.seed(28)

R> tab2c <- makeFuzzy(tt2df(dat7), fuzzvalues = seq(0, 0.4, 0.01))

R> fscna(tab2c, con = .8, cov = .9, what = "mac")

Table 2c contains data of type fs, meaning that the values in the data matrix are interpreted
as membership scores in fuzzy sets. As is customary for this data type, we use uppercase
letters for membership in a set and lowercase letters for non-membership. In the absence of
an ordering, the set of potential outcomes is determined to be O = {A, B, C, D, E} in stage
1, that is, the presence of each factor in Table 2c is treated as a potential outcome. Moreover,
all other factors are potential cause factors of every element of O, hence, CA = {B, C, D, E},
CB = {A, C, D, E}, CC = {A, B, D, E}, CD = {A, B, C, E}, and CE = {A, B, C, D}.

In stage 2, cna() succeeds in building non-empty sets of minimally sufficient conditions for
all elements of O: mscA = {b∗C, d∗E}, mscB = {a∗C, A∗E, d∗E}, mscC = {A, B, d∗E},
mscD = {E, a∗C}, mscE = {D, A∗B}. But only the elements of mscC and mscE can
be disjunctively combined to atomic solution formulas that meet cov in stage 3: asfC =
{A + B ↔ C} and asfE = {D + A∗B ↔ E}. For the other three factors in O, the coverage
threshold of 0.9 cannot be satisfied. cna() therefore abstains from issuing asf for A, B and
D.

Finally, stage 4 conjunctively concatenates the asf in asfC and asfE to the csf in the set
csfO, which constitutes cna()’s final output for Table 2c:

(A + B ↔ C) ∗ (D + A∗B ↔ E) con = 0.808; cov = 0.925 (3)

5. The output of CNA

5.1. Customizing the output

The default output of cna() first lists the provided ordering, second, the asf that were
recovered in accordance with the ordering, and third, the csf. For asf and csf, three attributes
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are standardly computed: consistency, coverage, and complexity. Consistency and coverage,
have been explained in section 3.2 above; the complexity score simply amounts to the number
of factors on the left-hand side of "→" or "↔" in a formula expressing a Boolean dependency.

cna() can compute a number of additional solution attributes, all of which will be explained
below: inus, exhaustiveness, and faithfulness for both asf and csf, as well as coherence

and redundant for csf. These attributes are accessible via the details argument, which can
be given the values TRUE/FALSE, for computing all/none of the additional attributes, or a
character vector specifying the specific attributes to be computed: for example, details =

c("inus", "exhaustiveness")—the strings can also be abbreviated, e.g. "i" for "inus",
"f" for "faithfulness", etc.

R> cna(d.educate, details = TRUE)

R> cna(d.educate, details = c("i", "e", "r"))

The output of the cna() function can be further customized through the argument what

that controls which solution items to print. It can be given a character string specifying
the requested solution items: "t" stands for the truth table, "m" for minimally sufficient
conditions (msc), "a" for asf, "c" for csf, and "all" for all solution items.

R> cna(d.educate, what = "tm")

R> cna(d.educate, what = "mac")

R> cna(d.educate, what = "all")

As shown in section 3.4, it can happen that many asf and csf fit the data equally well. cna()

standardly only returns 5 solution items of each type. All msc, asf and csf can be recovered
using the functions msc(x), asf(x), and csf(x), where x is a solution object generated by
cna().

R> vol1 <- cna(d.volatile, ordering = list("VO2"))

R> msc(vol1)

R> asf(vol1)

R> csf(vol1)

5.2. INUS vs. non-INUS solutions

Regularity theories of causation as Mackie’s (1974) INUS-theory have been developed for
strictly Boolean discovery contexts, meaning for noise-free data that feature perfectly sufficient
and necessary conditions. In such contexts, Boolean functions can be identified as non-
minimal (i.e. as featuring redundant elements) on mere logical grounds, that is, independently
of data. For instance, in an expression as

A + a∗B ↔ C (4)

a in the second disjunct is redundant, for (4) is logically equivalent to A + B ↔ C. These
two formulas state exactly the same. Under no conceivable circumstances could a as contained
in (4) ever make a difference to C. To see this, note that a necessary condition for a∗B to
be a complex cause of C is that there exists a fixed configuration of context factors F such
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that C is only instantiated when both a and B are given. That means that, in F , C is not
instantiated if B is given but a is not, which, in turn, means that C is not instantiated if B is
given and A (viz. not-a) is given. But such an F cannot possibly exist, for A itself is sufficient
for C according to (4). It follows that in every context where B is instantiated, a change from
A to a is not associated with a change in C (which takes the value 1 throughout the change
in the factor A), meaning that a cannot possibly make a difference to C and, hence, cannot
be a cause of C, subject to a regularity theory of causation. That is, (4) can be identified as
non-minimal independently of all data. (4) does not represent a well-formed causal model. It
is not a minimal theory—it is not an INUS solution.

Correspondingly, the solution attribute inus indicates whether an asf or csf is an INUS
solution.

When CNA is applied to noise-free data, it will never build a solution that is not INUS. This
can be illustrated by simulating noise-free data on the non-INUS solution in (4); cna() will
always, i.e. upon an open number of re-runs of the following code chunk, return A + B ↔ C,
regardless of selectCases1("A + a*B <-> C", ...).

R> dat.inu.1 <- allCombs(c(2, 2, 2)) -1

R> dat.inu.2 <- some(dat.inu.1, 40, replace = TRUE)

R> dat.inu.3 <- selectCases1("A + a*B <-> C", con = 1, cov = 1, dat.inu.2)

R> printCols <- c("condition", "consistency", "coverage", "complexity",

+ "inus")

R> asf(cna(dat.inu.3, con = 1, cov = 1, details = TRUE))[printCols]

condition consistency coverage complexity inus

1 A + B <-> C 1 1 2 TRUE

But as soon as we leave the strictly Boolean discovery context and introduce noise by lowering
con and cov in selectCases1(), it is no longer guaranteed that only INUS solutions are
returned.

R> set.seed(4)

R> dat.inu.4 <- some(dat.inu.1, 40, replace = TRUE)

R> dat.inu.5 <- selectCases1("A + a*B <-> C", con = .8, cov = .8, dat.inu.4)

R> asf(cna(dat.inu.5, con = .8, cov = .8, details = TRUE))[printCols]

condition consistency coverage complexity inus

1 A + a*B <-> C 0.81 0.81 3 FALSE

In scenarios where con and cov are smaller than 1 it can happen that a is needed to lift the
consistency of B above the chosen thresholds. In such a case, a can indeed be argued to make
a difference to C: only in conjunction with a does B reach the con threshold; and this holds
notwithstanding the fact that A itself also meets con. Or put differently, when con is smaller
than 1, there exist cases where A is instantiated and C is not, which, in turn, yields that it
becomes possible for change from A to a, while B is constantly instantiated, to be associated
with a change in C, meaning that a can turn out to be a difference-maker for C.

That factors may count as difference-makers for outcomes in noisy contexts, which could not
make a difference to these outcomes in noise-free contexts, is a phenomenon that not only
occurs in stimulated but also in real-life data, for instance, in d.jobsecurity:
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R> ana.job.3 <- fscna(d.jobsecurity, con = .8, cov = .9, details = TRUE)

R> asf(ana.job.3)[printCols]

condition consistency coverage complexity inus

1 S*R + C*L + C*l <-> JSR 0.804 0.910 6 FALSE

2 C*L + C*l + c*R <-> JSR 0.808 0.902 6 FALSE

3 S*R + C*V + s*C*v <-> JSR 0.825 0.914 7 FALSE

4 c*R + C*V + s*C*v <-> JSR 0.822 0.912 7 FALSE

5 S*R + C*L + s*C*r <-> JSR 0.804 0.910 7 TRUE

The first non-INUS asf in ana.job.3 is logically reducible to the INUS solution S∗R + C ↔
JSR, the second is reducible to C + R ↔ JSR, while in the third and fourth non-INUS
asf, v is logically redundant in the last disjunct s∗C∗v.

If cna() returns non-INUS solutions, the crucial follow-up question is whether the scrutinized
causal structure is known (or can be assumed) to be of deterministic nature and, thus, to
obey the standards imposed by a regularity theory of causation. If that is the case, the
difference-making relations stipulated by non-INUS solutions should be disregarded as being
mere artifacts of the noise in the data, meaning that they would disappear if the corresponding
causal structure were investigated under less noisy discovery circumstances. In that case, the
logical argument inus.only can be set to its non-default value TRUE in the cna() function
such that non-INUS solutions are not built to being with:

R> ana.job.4 <- fscna(d.jobsecurity, con = .8, cov = .9, details = TRUE,

+ inus.only = TRUE, what = "a")

R> asf(ana.job.4)[printCols]

condition consistency coverage complexity inus

1 S*R + C*L + s*C*r <-> JSR 0.804 0.91 7 TRUE

5.3. Exhaustiveness and faithfulness

Exhaustiveness and faithfulness are two measures of model fit that quantify the degree of
correspondence between the configurations that are, in principle, compatible with a solution
and the configurations actually contained in the data from which that solution is derived.
Exhaustiveness is high when all or most configurations compatible with a solution are in the
data. More specifically, it amounts to the ratio of the number of configurations in the data that
are compatible with a solution to the number of configurations in total that are compatible
with a solution. To illustrate, consider d.educate, which contains all configurations that are
compatible with the two csf issued by cna():

R> printCols <- c("condition", "consistency", "coverage", "exhaustiveness")

R> csf(cna(d.educate, details = TRUE))[printCols]

condition consistency coverage exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1



Michael Baumgartner, Mathias Ambühl 21

If, say, the first configuration in d.educate (viz. U∗D∗L∗G∗E) is not observed or removed—
as in d.educate[-1,]—, cna() still builds the same solutions (with perfect consistency and
coverage). In that case, however, the resulting csf are not exhaustively represented in the
data, for one configuration that is compatible with both csf is not contained in the data.

R> csf(cna(d.educate[-1,], details = TRUE))[printCols]

condition consistency coverage exhaustiveness

1 (L + G <-> E)*(U + D <-> L) 1 1 0.875

2 (U + D + G <-> E)*(U + D <-> L) 1 1 0.875

In a sense, faithfulness is the complement of exhaustiveness. It is high when no or only few
configurations that are incompatible with a solution are in the data. More specifically, faith-
fulness amounts to the ratio of the number of configurations in the data that are compatible
with a solution to the total number of configurations in the data. The two csf resulting from
d.educate also reach perfect faithfulness:

R> printCols <- c("condition", "consistency", "coverage", "faithfulness")

R> csf(cna(d.educate, details = TRUE))[printCols]

condition consistency coverage faithfulness

1 (L + G <-> E)*(U + D <-> L) 1 1 1

2 (U + D + G <-> E)*(U + D <-> L) 1 1 1

If we add a configuration that is not compatible with these csf, say, U∗D∗l∗G∗e and lower the
consistency threshold, the same solutions along with two others result—this time, however,
with non-perfect faithfulness scores.

R> csf(cna(rbind(d.educate,c(1,1,0,1,0)), con=.8, details = TRUE))[printCols]

condition consistency coverage faithfulness

1 (L + G <-> E)*(E <-> L) 0.857 1 0.778

2 (L + G <-> E)*(U + D <-> L) 0.857 1 0.889

3 (U + D + G <-> E)*(E <-> L) 0.857 1 0.778

4 (U + D + G <-> E)*(U + D <-> L) 0.857 1 0.889

If both exhaustiveness and faithfulness are high, the configurations in the data are all and
only the configurations that are compatible with the solution. Low exhaustiveness and/or
faithfulness, by contrast, means that the data do not contain many configurations compatible
with the solution and/or the data contain many configurations not compatible with the so-
lution. In general, solutions with higher exhaustiveness and faithfulness scores are preferable
over solutions with lower scores.

5.4. Coherence

Coherence is a measure for model fit that is custom-built for csf. It measures the degree to
which the asf combined in a csf cohere, that is, are instantiated together in the data rather
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than independently of one another. Coherence is intended to capture the following intuition.
Suppose a csf entails that A is a sufficient cause of B, which, in turn, is entailed to be a
sufficient cause of C. Corresponding data δ should be such that the A − B link of that causal
chain and the B − C link are either both instantiated or both not instantiated in the cases
recored in δ. By contrast, a case in δ such that, say, only the A − B link is instantiated but
the B −C link is not, pulls down the coherence of that csf. The more such non-cohering cases
are contained in δ, the lower the overall coherence score of the csf.

Coherence is more specifically defined as the ratio of the number of cases satisfying all asf
contained in a csf to the number of cases satisfying at least one asf in the csf. More formally,
let a csf contain asf1, asf2, . . . , asfn, coherence then amounts to (where | . . . | represents the
cardinality of the set of cases instantiating the corresponding expression):

|asf1
∗asf2

∗ . . . ∗asfn|

|asf1 + asf2 + . . . + asfn|

To illustrate, we add a case of type U∗d∗L∗g∗e to d.educate. When applied to the resulting
data (d.edu.exp1), cna() issues four csf.

R> d.edu.exp1 <- rbind(d.educate, c(1,0,1,0,0))

R> printCols <- c("condition", "consistency", "coverage", "coherence")

R> csf(cna(d.edu.exp1, con = .8, details = TRUE))[printCols]

condition consistency coverage coherence

1 (L + G <-> E)*(U + D <-> L) 0.875 1 0.889

2 (L + G <-> E)*(U + E <-> L) 0.875 1 0.778

3 (U + D + G <-> E)*(U + D <-> L) 0.875 1 0.889

4 (U + D + G <-> E)*(U + E <-> L) 0.875 1 0.778

In the added case, none of these four csf cohere, as only one of their component asf is
instantiated. Moreover, for the second and the fourth csf there is yet another non-cohering
case in d.edu.exp1 (case #7).

Coherence is an additional parameter of model fit that allows for selecting among multi-
ple solutions: the higher the coherence score of a csf, the better the overall model fit. In
d.edu.exp1, thus, the first and the third csf are preferable over the other solutions subject
to their superior coherence.

5.5. Structural redundancies

The last cna() solution attribute that requires explanation is redundant, which identifies csf
containing so-called structural redundancies. It is not only possible that Boolean functions
describing the behaviour of single endogenous factors contain redundant proper parts, but
such functions can themselves—as a whole—be redundant in superordinate structures, in
violation of (NR). More concretely, when asf are conjunctively concatenated to csf, it can
happen that the resulting conjunction of asf contains a structural redundancy because it is
logically equivalent to a proper part of itself.6

6We are indebted to Christoph Falk for pointing this problem out to us.
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This problem is best introduced with an example. Consider the following causal model:

(A∗B + C ↔ D) ∗ (a + c ↔ E) (5)

(5) represents a causal structure such that A∗B and C are the two alternative causes of D

and a and c are the two alternative causes of E. That is, factors A and C are positively
relevant to D and negatively relevant to E. The following data frame (dat.redun) contains
all and only the configurations that are compatible with (5):

R> (dat.redun <- tt2df(selectCases("(A*B + C <-> D)*(a + c <-> E)",

+ allCombs(c(2, 2, 2, 2, 2)) -1)))

A B C D E

14 1 0 1 1 0

16 1 1 1 1 0

17 0 0 0 0 1

18 1 0 0 0 1

19 0 1 0 0 1

28 1 1 0 1 1

29 0 0 1 1 1

31 0 1 1 1 1

The problem now is that dat.redun does not only entail the two asf contained in (5), viz.
(6) and (7), but also a third one, viz. (8):

A∗B + C ↔ D (6)

a + c ↔ E (7)

a∗D + e ↔ C (8)

That means the behavior of factor C, which is exogenous in the data-generating causal struc-
ture (5), can be expressed as a redundancy-free Boolean function of its two effects D and
E. (8), hence, amounts to a backtracking (or upstream) asf, which, obviously, must not be
causally interpreted. Indeed, when (8) is embedded in the superordinate dependency struc-
ture (9) that results from a conjunctive concatenation of all asf that follow from dat.redun,
it turns out that (8) is redundant. The reason is that (9) has a proper part which is logically
equivalent to (9), namely (5).

(A∗B + C ↔ D) ∗ (a + c ↔ E) ∗ (a∗D + e ↔ C) (9)

(9) and (5) state exactly the same about the behavior of the factors in dat.redun, meaning
that (8) is not needed to exhaustively and faithfully model that data with perfect consistency
and coverage. The backtracking dependency is a structural redundancy in (9), which must
not be causally interpreted due to a violation of (NR).

Accordingly, the cna() function tests all csf for structural redundancies. If a csf contains
a structurally redundant asf, the solution attribute redundant is set to TRUE. To illustrate
with dat.redun:
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R> ana.redun <- cna(dat.redun, details = TRUE)

R> printCols <- c("condition", "consistency", "coverage", "exhaustiveness",

+ "faithfulness", "redundant")

R> csf(ana.redun)[printCols]

condition consistency coverage

1 (e + a*D <-> C)*(C + A*B <-> D)*(a + c <-> E) 1 1

exhaustiveness faithfulness redundant

1 1 1 TRUE

Csf with redundant = TRUE must never be causally interpreted; rather, they must be further
processed with the function minimalizeCsf(x), whose input x is a solution object generated
by cna(). minimalizeCsf() reduces the csf contained in x by recursively testing their
component asf for redundancy and eliminating the redundant ones. The function outputs
all redundancy-free csf that are logically equivalent to the csf in x, that is, it builds the csf
from x that satisfy (NR) and, thus, express well-formed causal structures.

R> minimalizeCsf(ana.redun)

Object of class 'minimalizeCsf' containing 1 solution(s)

=== Solution 1 ===

Condition:

(C+A*B<->D)*(a+c<->E)

outcome con cov n.asf

1 D,E 1 1 2

redundant parts:

(e+a*D<->C)

6. Interpreting the output

The ultimate output of cna() and, if applicable, minimalizeCsf() is a set of csf. The causal
inferences that are warranted based on the data input x relative to the chosen con and cov

thresholds and the provided ordering and maxstep have to be read off that issued csf set.
This section explains this final interpretative step of a CNA analysis.

There are three possible types of outputs:

1. a csf set with no element (and, correspondingly, no asf );

2. a csf set with exactly one element (and, correspondingly, exactly one asf for each
endogenous factor);

3. a csf set with more than one element (and, correspondingly, more than one asf for at
least one endogenous factor).
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6.1. No solution

As indicated in section 3.4, a null result can have two sources: either the data are too noisy
to render the chosen con and cov thresholds satisfiable or the selected maxstep is too low. If
increasing the maxstep does not induce cna() to build solutions at the chosen con and cov

thresholds, the latter should be gradually lowered. If no solutions are recovered at con = cov

= .75, the data are too noisy to warrant reliable causal inferences. Users are then advised
to go back to the data and follow standard guidelines (known from other methodological
frameworks) to improve data quality, e.g. by integrating further relevant factors into the
analysis, enhancing the control of unmeasured causes, expanding the population of cases
or disregarding inhomogeneous cases, correcting for measurement error, supplying missing
values, etc.

It must be emphasized again (cf. section 2.3) that, under normal circumstances, an empty csf
set does not warrant the conclusion that the factors contained in the data input x are causally
irrelevant to one another. The inference to causal irrelevance is much more demanding than
the inference to causal relevance. While the latter inference merely requires evidence for the
existence of at least one difference-making context, the former inference requires evidence for
the non-existence of such a context. A null result only furnishes evidence for causal irrelevance
if there are strong independent reasons to assume that all potentially relevant factors are
measured in x and that x exhausts the space of empirically possible configurations.

6.2. A unique solution

That cna() (or minimalizeCsf()) outputs a csf set with exactly one element amounts to
the optimal completion of a CNA analysis. It means that the data input x contains sufficient
evidence for a determinate causal inference. The factor values on the left-hand sides of “↔”
in the asf constituting that csf can be interpreted as causes of the factor values on the right-
hand sides. Moreover, their conjunctive, disjunctive, and sequential groupings reflect the
Boolean properties of the data-generating causal structure.

Plainly, as with any other method of causal inference, the reliability of CNA’s causal conclu-
sions essentially hinges on the quality of the processed data. If the data are free of deficiencies
as confounding, measurement error, fragmentation etc., a unique solution is guaranteed to
correctly reflect the data-generating structure. With increasing data deficiencies, the (induc-
tive) risk of committing causal fallacies inevitably increases as well. For details on the degree
to which the reliability of CNA’s causal conclusions decreases with increasing data deficiencies
see Baumgartner and Ambühl (forthcoming).

6.3. Multiple solutions

If cna() (or minimalizeCsf()) outputs a csf set with more than one element, the processed
data underdetermine their own causal modeling. That means the evidence contained in
the data is insufficient to determine which of the issued solutions corresponds to the data-
generating causal structure. An output set of multiple solutions {csf1, csf2, ..., csfn} is to be
interpreted disjunctively: the data-generating causal structure is

csf1 OR csf2 OR ... OR csfn

but, based on the evidence contained in the data, it is ambiguous which disjunct is actually
operative.
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That empirical data underdetermine their own causal modeling is a very common phenomenon
in all methodological traditions (Simon 1954; Spirtes et al. 2000, 59-72; Kalisch et al. 2012;
Eberhardt 2013; Baumgartner and Thiem 2017). But while some methods are designed to
automatically generate all fitting models, e.g. Bayes nets methods and CCMs, other methods
require their users to manually vary the available model building parameters in order to
generate the whole space of fitting models, e.g. regression analytic methods. Whereas model
ambiguities are a thoroughly investigated topic in certain traditions, e.g. Bayes nets methods,
the literature on CCMs, in particular on QCA, has unfortunately sidestepped the issue for too
long. Accordingly, there is a widespread practice of model-underreporting in QCA studies.
In fact, most QCA software regularly fails to find all data-fitting models. The only currently
available QCA program that recovers the whole model space by default is QCApro (Thiem
2018).

CNA—on a par with any other method—cannot disambiguate what is empirically underde-
termined. Rather, it draws those and only those causal conclusions for which the data de facto
contain evidence. In cases of empirical underdetermination it therefore renders transparent
all data-fitting models and leaves the disambiguation up to the analyst.

That cna() issues multiple solutions for some data input x does not necessarily mean that x

is deficient. In fact, even data that is ideal by all quality standards of configurational causal
modeling can give rise to model ambiguities. The following simulates a case in point:

R> dat8 <- allCombs(c(2, 2, 2, 2)) - 1

R> dat9 <- selectCases("A*b + a*B + B*C <-> D", dat8)

R> printCols <- c("condition", "consistency", "coverage", "inus",

+ "exhaustiveness")

R> csf(cna(dat9, details = TRUE))[printCols]

condition consistency coverage inus exhaustiveness

1 A*b + a*B + A*C <-> D 1 1 TRUE 1

2 A*b + a*B + B*C <-> D 1 1 TRUE 1

dat9 is free of inconsistencies or data fragementation; it contains all and only the configu-
rations that are compatible with the target structure, which accordingly is exhaustively and
faithfully reflected in dat9. Nonetheless, two csf can be inferred. The causal structures
expressed by these two csf generate the exact same configurational data, meaning they are
configurationally indistinguishable.

Although, a unique solution is more determinate and, thus, preferable to multiple solutions,
the fact that cna() generates multiple equally data-fitting models is not generally an unin-
formative result. In the above example, both resulting csf feature A∗b + a∗B. That is, the
data contain enough evidence to establish the joint relevance of A∗b and of a∗B for D (on
alternative paths). What is more, it can be conclusively inferred that D has a further complex
cause, viz. either A∗C or B∗C. It is merely an open question which of these candidate causes
is actually operative.

That different model candidates have some msc in common is a frequent phenomenon. Here’s
a real-life example, where two alternative causes, viz. C=1 + F =2, are present in all solutions:

R> csf(mvcna(d.pban, cov = .95, maxstep = c(4,5,12)))["condition"]



Michael Baumgartner, Mathias Ambühl 27

condition

1 C=1 + F=2 + C=0*F=1 + C=2*V=0 <-> PB=1

2 C=1 + F=2 + C=0*T=2 + C=2*V=0 <-> PB=1

3 C=1 + F=2 + C=2*F=0 + C=0*F=1 + F=1*V=0 <-> PB=1

4 C=1 + F=2 + C=2*F=0 + C=0*T=2 + F=1*V=0 <-> PB=1

5 C=1 + F=2 + C=0*F=1 + C=2*T=1 + T=2*V=0 <-> PB=1

6 C=1 + F=2 + C=0*F=1 + T=1*V=0 + T=2*V=0 <-> PB=1

7 C=1 + F=2 + C=0*T=2 + C=2*T=1 + T=2*V=0 <-> PB=1

8 C=1 + F=2 + C=0*T=2 + T=1*V=0 + T=2*V=0 <-> PB=1

Such commonalities can be reported as conclusive results.

Moreover, even though multiple solutions do not permit pinpointing the causal structure
behind an outcome, they nonetheless allow for constraining the range of possibilities. In a
context where the causes of some outcome are unknown it amounts to a significant gain of
scientific insight when a study can show that the structure behind that outcome has one of a
small number of possible forms, even if it cannot determine which one exactly.

However, the larger the amount of data-fitting solutions and the lower the amount of com-
monalities among them, the lower the overall informativeness of a cna() output. Indeed, the
ambiguity ratio in configurational causal modeling can reach dimensions where nothing at all
can be concluded about the data-generating structure any more. Hence, a highly ambiguous
result is on a par with a null result. A telling example of this sort is d.volatile which was
discussed in section 3.4 above (see also Baumgartner and Thiem 2017).

As the problem of model ambiguities is still underinvestigated in the CCM literature, there
do not yet exit explicit guidelines for how to proceed in cases of ambiguities. The model fit
scores and solution attributes reported in the output of cna() often provide some leverage to
narrow down the space of model candidates. For instance, if, in a particular discovery context,
there is reason to assume that data have been exhaustively collected, to the effect that all
configurations that are compatible with an investigated causal structure are contained in the
data, the model space may be restricted to csf with a high score on exhaustiveness. By way
of example, for d.pacts a total of 240 csf are built at con = cov = .8:

R> ana.pact.1 <- fscna(d.pacts, ordering = list("PACT"), con = .8, cov = .8,

+ maxstep = c(4,4,12), details = TRUE)

R> csf.pact.1 <- csf(ana.pact.1, .Machine$integer.max)

R> length(csf.pact.1$condition)

[1] 240

If only csf with exhaustiveness == 1 are considered, the amount of candidate csf is divided
in half:

R> csf.pact.1.ex <- subset(csf.pact.1, exhaustiveness==1)

R> length(csf.pact.1.ex$condition)

[1] 115
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To further reduce the model space, coherence may be brought to bear as well. The higher
the coherence of a csf, the higher its overall model fit. In the above example, if a coherence
score of at least 0.85 is imposed, the 115 candidate csf can be reduced to 2:

R> csf.pact.1.ex.co <- subset(csf.pact.1.ex, coherence >= 0.85)

R> length(csf.pact.1.ex.co$condition)

[1] 2

If the whole analysis is moreover run with a restriction to INUS solutions, the initial ambiguity
with 240 csf can be resolved completely, with only one csf satisfying all of exhaustiveness

== 1, coherence >= 0.85, and inus = TRUE:

R> ana.pact.2 <- fscna(d.pacts, ordering = list("PACT"), con = .8, cov = .8,

+ maxstep = c(4,4,12), details = TRUE, inus.only = TRUE)

R> csf.pact.2 <- csf(ana.pact.2, .Machine$integer.max)

R> csf.pact.2.inus.ex.co <- subset(csf.pact.2,

+ exhaustiveness==1 & coherence >= 0.85)

R> csf.pact.2.inus.ex.co

outcome condition consistency coverage

2 E,PACT (w + p <-> E)*(E + P <-> PACT) 0.844 0.835

complexity inus exhaustiveness faithfulness coherence redundant

2 4 TRUE 1 0.615 0.854 FALSE

Clearly though, the fit parameters and solution attributes provided by cna() will not always
provide a basis for ambiguity reduction. The evidence contained in analyzed data may simply
be insufficient to draw determinate causal conclusions. Maybe background theories or case
knowledge can be brought to bear to select among the model candidates (cf. section 6.4).
Nevertheless, the most important best practice in the face of ambiguities is to render them
transparent. By default, readers of CCM publications should be presented with all data-fitting
models and if space constraints do not permit so, readers must at least be informed about
the degree of ambiguity. Full transparency with respect to model ambiguities, first, allows
readers to determine for themselves how much confidence to have in the conclusions drawn
in a study, and second, paves the way for follow-up studies that are purposefully designed to
resolve previously encountered ambiguities.

6.4. “Back to the cases”

When CCMs are applied to small- or intermediate-N data, researchers may be familiar with
some or all of the cases in their data. For instance, they may know that in a particular case
certain causes of an outcome are operative while others are not. Or they may know why
certain cases are outliers or why others feature an outcome but none of the potential causes.
A proper interpretation of the cna() output may therefore require that the performance of
the obtained models be assessed on the case level and against the background of the available
case knowledge.
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The function that facilitates the evaluation of recovered msc, asf, and csf on the case level is
condition(x, tt, type). Its first input is a character vector x specifying Boolean expres-
sions—typically asf or csf —and its second input a truth table tt. In case of cs or mv

data, the output of condition() then highlights in which cases x is instantiated, whereas for
fs data, the output lists relevant membership scores in exogenous and endogenous factors.
Moreover, if x is an asf or csf, condition() issues their consistency and coverage scores.

Instead of a truth table, it is also possible to give condition() a data frame as second input.
In this case, the data type must be specified using the type argument. To abbreviate the
specification of the data type, the functions cscond(x, tt), mvcond(x, tt), and fscond(x,

tt) are available as shorthands.

To illustrate, we re-analyse d.autonomy:

R> dat.aut.2 <- d.autonomy[15:30, c("AU","EM","SP","CO","RE","DE")]

R> ana.aut.3 <- fscna(dat.aut.2, con = .91, cov = .91,

+ ordering = list(c("RE", "DE","SP","CO"),"EM","AU"),

+ strict = TRUE)

R> fscond(csf(ana.aut.3)$condition, dat.aut.2)

That function call returns a list of three tables, each corresponding to one of the three csf
contained in ana.aut.3 and breaking down the relevant csf to the case level by contrasting
the membership scores in the left-hand and right-hand sides of the component asf. A case
with a higher left-hand score is one that pulls down consistency, whereas a case with a higher
right-hand score pulls down coverage. For each csf, condition() moreover returns overall
consistency and coverage scores as well as consistency and coverage scores for the component
asf.

The three csf in ana.aut.3 differ only in regard to their component asf for outcome AU . The
function group.by.outcome(condlst), which takes an output object condlst of condition()

as input, lets us more specifically compare these different asf with respect to how they fare
on the case level.

R> group.by.outcome(fscond(asf(ana.aut.3)$condition, dat.aut.2))$AU

SP EM*RE+re*DE EM*RE+CO*DE AU | n.obs

ENacg1 1.0 1.0 1.0 1.0 | 1

ENacg2 0.6 0.4 0.4 0.4 | 1

ENacg3 0.8 0.6 0.9 0.8 | 1

ENacg4 0.6 1.0 1.0 1.0 | 1

ENacg5 0.4 0.4 0.4 0.4 | 1

ENacg6 0.6 0.7 0.7 0.6 | 1

ENacg7 1.0 0.8 0.8 1.0 | 1

ENacg8 1.0 1.0 1.0 1.0 | 1

ENacto1 0.4 0.4 0.6 0.4 | 1

ENacto2 0.4 0.4 0.4 0.4 | 1

ENacosa1 0.4 0.4 0.2 0.4 | 1

ENacosa2 0.4 0.4 0.4 0.2 | 1

ENacosa3 0.4 0.4 0.4 0.6 | 1

ENacat1 0.4 0.4 0.4 0.2 | 1
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ENacat2 0.4 0.4 0.4 0.6 | 1

ENacat3 0.4 0.6 0.4 0.4 | 1

The first three columns of that table list the membership scores of each case in the left-
hand sides of the asf, and the fourth column reports the membership scores in AU . The
table shows that the first asf (SP ↔ AU) outperforms the other asf in cases ENacg3/6/7,
ENacto1, ENacosa1, and ENacat3, while it is outperformed by another asf in cases ENacg2
and ENacg4. In all other cases, the three solution candidates fare equally. If prior knowledge is
available about some of these cases, this information can help to choose among the candidates.
For instance, if it is known that in case ENacg7, no other relevant factors are operative than
the ones contained in dat.aut.2, it follows that ENacg7’s full membership in AU must be
brought about by SP—which, in turn, disqualifies the other solutions. By contrast, if the
absence of other relevant factors can be assumed for case ENacg4, the asf featuring SP as
cause of AU is disqualified.

7. Summary

This vignette introduced the theoretical foundations as well as the main functions of the cna R

package for configurational causal inference and modeling with Coincidence Analysis (CNA).
Moreover, we explained how to interpret the output of CNA and provided some guidance for
how to use various model fit parameters for the purpose of ambiguity reduction.

CNA is currently the only CCM that builds multi-outcome models and, hence, uncovers all
Boolean dimensions of causality: conjunctivity, disjunctivity, and sequentiality. Moreover, it
builds causal models on the basis of a bottom-up algorithm that is unique among CCMs and
gives CNA an edge over CCMs building models from the top down not only with respect to
multi- but also single-outcome structures. Overall, CNA constitutes a powerful methodolog-
ical alternative for researchers interested in the Boolean dimensions of causality, and the cna
package makes that inferential power available to end-users.
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