
An introduction to circlize package

Zuguang Gu <z.gu@dkfz.de>

German Cancer Research Center,
Heidelberg, Germany

July 5, 2013

1 Introduction

Circos layout (http://circos.ca) is very useful to represent complicated in-
formation, especially for genomic data. It is not only a way to visualize data,
but also enhances the representation of scientific results into a level of aesthet-
ics. The circlize package implements the circos layout in R. The advantage
is that R is natural born to draw statistical graphs, thus, types of plottings are
not restricted by the package but by user’s inspiration. The circlize package
allocates and illustrates data which is from a certain category into a cell inside
a circle and makes you felling that you are plotting figures in a normal plotting
coordinate.

Since most of the figures are composed of simple graphs, such as points,
lines, polygon (for filled color) et al, so we just need to implement those low-
level functions for drawing figures in circos layout.

Currently there are following functions that can be used for plotting, they
are similar to the functions without "circos." prefix from the traditional graph
engine:

• circos.points: draw points in a cell, similar as points.

• circos.lines: draw lines in a cell, similar as lines.

• circos.rect: draw rectangle in a cell, similar as rect.

• circos.polygon: draw polygon in a cell, similar as polygon.

• circos.text: draw text in a cell, similar as text.

• circos.axis: draw axis in a cell, functionally similar as axis but with
more features.

• circos.link: this maybe the unique feature for circos layout to represent
relationships between elements.

1

http://circos.ca

For drawing points, lines and text in cells through the whole track (among
several sectors), the following functions are available:

• circos.trackPoints: this can be replaced by circos.points through a
for loop.

• circos.trackLines: this can be replaced by circos.lines through a
for loop.

• circos.trackText: this can be replaced by circos.text through a for

loop.

Also, the function drawing histograms in the whole track is available:

• circos.trackHist

Functions to arrange the circos layout:

• circos.trackPlotRegion: create plotting regions of cells in one track

• circos.updatePlotRegion: update an existed cell

• circos.par: circos parameters

• circos.clear: reset circos parameters and internal variables

Theoretically, you are able to draw most kinds of circos figures by the above
functions. As you can see, all figures in the four vignettes are generated by
circlize package.

The following part of this vignette is structured as follows: First there is an
example to give a quick glance of how to draw a circos layout. Then it tells
you the basic principle (or the order of using the circos functions) for drawing.
After that there are detailed explainations of circos parameters, coordinates
and low-level functions. Finally it would tell you some tricks for drawing more
complicated circos plot.

2 A quick glance

Following is an example to show the basic feature and usage of circlize pack-
age. First generate some data. There needs to have a factor to represent cate-
gories, values on x-axis, and values on y-axis.

> set.seed(12345)

> n = 1000

> a = data.frame(factor = sample(letters[1:8], n, replace = TRUE),

+ x = rnorm(n), y = runif(n))

2

Initialize the layout. In this step, the circos.initialize function allocates
sectors along the circle according to ranges of x-values in different categories.
E.g, if there are two categories, range for x-values in the first category is c(0,

2) and range for x-values in the second category is c(0, 1), the first category
would hold approximately 67% areas of the circle. Here we only need x-values
because all cells in a sector share the same x-ranges.

> library(circlize)

> par(mar = c(1, 1, 1, 1), lwd = 0.1, cex = 0.7)

> circos.par("default.track.height" = 0.1)

> circos.initialize(factors = a$factor, x = a$x)

Draw the first track (figure 1, top left). Before drawing any track we need
to know that all tracks should firstly be created by circos.trackPlotRegion,
then those low-level functions can be applied. X-lims for cells in the track have
already been defined in the initialization step, so here we only need to specify
the y-lims for each cell, either by y or ylim argument.

We also draw axis for each cell in the first track, The axis for each cell
is drawn by panel.fun argument. circos.trackPlotRegion creates plotting
region cell by cell and the panel.fun is actually executed after the creation
of the plotting region for a cell immediately. So panel.fun actually means
drawing graphs in the “current cell”. After that, draw points through the whole
track by circos.trackPoints. Finally, add two texts in a certain cell (the
cell is specified by sector.index and track.index argument). In drawing the
second text, we do not specify track.index because the package knows we are
now in the first track.

Here what should be noted is that the first track has a index number of 1.
Then an internal variable which traces the tracks would set the current track
index to 1. So if the track index is not specified in the plotting functions such as
circos.trackPoints and circos.text which are called after the creation of
the track, the current track index would be assigned internally. (details would
be explained in the following sections).

> circos.trackPlotRegion(factors = a$factor, y = a$y,

+ panel.fun = function(x, y) {

+ circos.axis()

+ })

> col = rep(c("#FF0000", "#00FF00"), 4)

> circos.trackPoints(a$factor, a$x, a$y, col = col,

+ pch = 16, cex = 0.5)

> circos.text(-1, 0.5, "left", sector.index = "a", track.index = 1)

> circos.text(1, 0.5, "right", sector.index = "a")

Draw the second track (figure 1, top right). There are histograms among
the track. The circos.trackHist can also create a new track because drawing
histogram is really high-level. The track index for this track is 2.

3

> bgcol = rep(c("#EFEFEF", "#CCCCCC"), 4)

> circos.trackHist(a$factor, a$x, bg.col = bgcol, col = NA)

Draw the third track (figure 1, middle left). Different background colors for
cells can be assigned. So it may highlight some features of the circlize package.
Here some meta data for a cell can be obtained by get.cell.meta.data. This
function needs sector.index and track.index arguments, and if they are not
specified, it means it is the current sector index and the current track index.

> circos.trackPlotRegion(factors = a$factor, x = a$x, y = a$y,

+ panel.fun = function(x, y) {

+ grey = c("#FFFFFF", "#CCCCCC", "#999999")

+ i = get.cell.meta.data("sector.numeric.index")

+ circos.updatePlotRegion(bg.col = grey[i %% 3 + 1])

+ circos.points(x[1:10], y[1:10], col = "red", pch = 16, cex = 0.6)

+ circos.points(x[11:20], y[11:20], col = "blue", cex = 0.6)

+ })

You can update an existed cell by specifying sector.index and track.index

in circos.updatePlotRegion. The function erases graphs which have been
drawn. Here we erase graphs in one cell in track 2, sector d and re-draw some
points (figure 1, middle right). circos.updatePlotRegion can not modify the
xlim and ylim of the cell as well as other settings related to the position of the
cell.

> circos.updatePlotRegion(sector.index = "d", track.index = 2)

> circos.points(x = -2:2, y = rep(0, 5))

Draw the fouth track (figure 1, bottom left). Here you can choose different
line types.

> circos.trackPlotRegion(factors = a$factor, y = a$y)

> circos.trackLines(a$factor[1:100], a$x[1:100], a$y[1:100], type = "h")

Draw links (figure 1, bottom right). Links can be from point to point, point
to interval or interval to interval. Some of the arguments would be explained in
the following sections.

> circos.link("a", 0, "b", 0, top.ratio = 0.9)

> circos.link("c", c(-0.5, 0.5), "d", c(-0.5,0.5), col = "red",

+ border = "blue", top.ratio = 0.2)

> circos.link("e", 0, "g", c(-1,1), col = "green", lwd = 2, lty = 2)

> circos.clear()

The final figure looks like figure 1.

3 Details

In this section, more details of the package would be explained.

4

−
3

−2
−1

0

1

2

−2

−1

0

1
2

3−2

0

2

−2

0

2

−2
−1

0

1

2
−2

0

2 −2
−1

0

1

2

−2

−1

0

1
2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

left

right

−
3

−2
−1

0

1

2

−2

−1

0

1
2

3−2

0

2

−2

0

2

−2
−1

0

1

2

−2

0

2 −2
−1

0

1

2

−2

−1

0

1
2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

left

right

−
3

−2
−1

0

1

2

−2

−1

0

1
2

3−2

0

2

−2

0

2

−2
−1

0

1

2

−2

0

2 −2
−1

0

1

2

−2

−1

0

1
2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

left

right

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●
●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●
●

●

−
3

−2
−1

0

1

2

−2

−1

0

1
2

3−2

0

2

−2

0

2

−2
−1

0

1

2
−2

0

2 −2
−1

0

1

2

−2

−1

0

1
2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

left

right

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●
●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

−
3

−2
−1

0

1

2

−2

−1

0

1
2

3−2

0

2

−2

0

2

−2
−1

0

1

2

−2

0

2 −2
−1

0

1

2

−2

−1

0

1
2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

left

right

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●
●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

−
3

−2
−1

0

1

2

−2

−1

0

1
2

3−2

0

2

−2

0

2

−2
−1

0

1

2

−2

0

2 −2
−1

0

1

2

−2

−1

0

1
2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

left

right

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●
●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

Figure 1: An example for circos layout

5

circos.initialize circos.trackPlotRegion

circos.points
●

●

●

● ●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

circos.trackPlotRegion

●
●●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

circos.points
●

●
●
●

●

●
● ●

●●

●

●

●

●

●
●

●
●

●

●

● ● ●

●
●

●
●

●

●

● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●● ●

●
●

●●
●

●

●

●

●●

●
●

●
●

●

●

● ●

● ●●
● ●●

● ●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

● ● ●
●

●

●●●
●

●

●

...
circos.clear

Figure 2: Order of drawing circos layout

3.1 Rules to draw the circos layout

The rules for drawing the circos layout is rather simple. It follows the sequence
of “initialize - create track - draw graphs - create track - draw graphs - ... -
clear” (figure 2). See following:

1. Initialize the layout using circos.initialize. Since circos layout in fact
visualizes data which is in categories, there should be a factor and a x-
range to allocate categories into sectors.

2. Create plotting regions for the new track and apply plottings. The new
track is created just inside the previously created one and the index of the
track is added by 1 automatically. Only after the creation of the track can
you add other graphs on it. There are three ways to do the plotting job.

(a) After the creation of the track. use low-level function like cir-

cos.points, circos.lines, ... to draw graphs cell by cell. It allways
involves a for loop.

(b) Use circis.trackPoints, circos.trackLines, ... to draw same
style of graphs through all cells simultaneously. However, it is not
recommended because it would make you a little confused and also
it cannot draw complicated graphs.

6

text

2 4 6 8 10

tex
t

1

2
3

4 5 6 7
8

9

10

text
1 2 3 4 5

6

7
8

9
10

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 3: Transformation between different coordinates. Top: data coordinate;
Middle: polar coordinate; Bottom: canvas coordinate.

7

(c) Use panel.fun argument in circos.trackPlotRegion to draw graph-
s immediately after the creation of certain cell. panel.fun needs two
arguments x and y which are x-values and y-values that in the current
category. This subset operation of data would be applied internally.

Plotting regions for cells that have been created can be updated by cir-

cos.updatePlotRegion. circos.updatePlotRegion will erase every that
you have already plotted in the plotting region of the cell.

Low level functions such as circos.points can be applied on any created
cell by specifying sector.index and track.index.

3. Call circos.clear to do cleanings.

Codes for the circos layout drawing rules would look like (pseudo code):

> circos.initialize(factors, xlim)

> circos.trackPlotRegion(factors, ylim)

> for(sector.index in all.sector.index) {

+ circos.points(x1, y1, sector.index)

+ circos.lines(x2, y2, sector.index)

+ }

or like following:

> circos.initialize(factors, xlim)

> circos.trackPlotRegion(factors, ylim)

> circos.trackPoints(factors, x1, y1)

> circos.trackLines(factors, x2, y2)

or like following. This the most natural way I feel.

> circos.initialize(factors, xlim)

> circos.trackPlotRegion(factors, x, y, ylim,

+ panel.fun = function(x, y) {

+ circos.points(x, y)

+ circos.lines(x, y)

+ })

There is several internal variables keeping tracing of the current sector and
track when applying circos.trackPlotRegion and circos.updatePlotRegion.
So although functions like circos.points, circos.lines need to specify the
index for sector and track, they will take the current calculated ones by de-
fault. As a result, if you draw points, lines, text, et al just after the creation of
the track or cell, you do not need to set the sector index and the track index
explicitly and it is just drawn in the most nearly created cell. Note again, on-
ly circos.trackPlotRegion and circos.updatePlotRegion would reset the
current track index and sector index.

Finally, in circlize package, function with prefix circos.track would af-
fect all cells in a track.

8

c:1
c:2

c:3
c:4

a:1

a:2

a:3

a:4

e:1

e:2

e:3

e:4

i:1

i:2

i:3

i:4

h:1
h:2

h:3
h:4

j:1
j:2

j:3
j:4

f:1

f:2

f:3

f:4

g:1

g:2

g:3

g:4

d:1

d:2

d:3

d:4

b:1
b:2

b:3
b:4

Figure 4: Coordinate in circos layout

3.2 Coordinate transformation

There is a data coordinate in which the range for x-axis and y-axis is the range
of data, a polar coordinate to allocates different cells on a circle and a canvas
coordinate which really draws the figures (figure 3). The package would first
transform the data coordinate to a polar coordinate and finally transform into
the canvas coordinate.

The finnal canvas coordinate is in fact an ordinary coordinate in R plotting
system with x-range from -1 to 1 and y-range from -1 to 1 by default.

It should be noted that the circos layout is allways (or mostly
except you want to draw something out of the plotting region) drawn
inside the circle which has radius of 1 (unit circle), from outside to
inside.

However, for users, they only need to imagine that each cell is a normal
rectangular plotting region (data coordinate) in which x-lim and y-lim are ranges
of data in the category respectively. The circlize package would know which
cell you are drawing in and do the transformation.

9

a:1

b:1

c:1

d:1

e:1

f:1

g:1

factor(fa)

d:1

f:1

e:1

c:1

g:1

b:1

a:1

factor(fa,
levels = fa)

Figure 5: Different factor order in the initialization step.

3.3 Sectors and tracks

A circos layout is composed of sectors and tracks, as illustrated in figure 4. The
red circle is the track and the blue one is the sector. The intersection of a sector
and a track is called a cell which can be thought as an imaginary plotting region
for values in a certain category (data coordinate).

Sectors are first allocated and determined by circos.initialize and track
allocation is then determined by circos.trackPlotRegion. circos.initialize
needs a category variable and data value which implicates the range of data in
each category. The range of data can be specified either by x or xlim.

> circos.initialize(factors, x)

> circos.initialize(factors, xlim)

There are something very important that should be noted in the initialization
step. In this step, not only the width of each sector is assigned, but also the
order of each sector on the circle would be determined. Order of the sectors
are determined by the order of levels of the factor. So if you want to
change the order of the sectors, just change of the level of the factors variable.
The following codes would generate different figures (figure 5):

> fa = c("d", "f", "e", "c", "g", "b", "a")

> f1 = factor(fa)

> circos.initialize(factors = f1, xlim = c(0, 1))

> f2 = factor(fa, levels = fa)

> circos.initialize(factors = f2, xlim = c(0, 1))

If x which is the x-values corresponding to factors is specified, the range
for x-values in different category would be calculated according to factors

automatically. And if xlim is specified, it should be either a matrix which has
same number of rows as the length of the level of factors or a two-element

10

vector. If it is a two-element vector, it would be extended to a matrix which
has the same number of rows as the length of factors levels. Here, every row
in xlim corresponds to the x-ranges of a category and the order of rows in xlim

corresponds to the order of levels of factors.
Since all cells in one sector in different tracks share the same x-

ranges, for each track, we only need to specify the y-ranges for cells. Similar
as circos.initialize, circos.trackPlotRegion can also receive either y or
ylim argument to specify the range of y-values. There is also a force.ylim

argument to sepcify whether all cells in one track should share the same y-
ranges. force.ylim is only used along with y.

> circos.trackPlotRegion(factors, y)

> circos.trackPlotRegion(factors, ylim)

In the track creation step, since all sectors are already allocated in the circle,
if factors argument is not set, circos.trackPlotRegion would create plotting
regions for all available sectors. Also, levels of factors do not need to be
specified explicitly because the order of sectors has already be determined in
the initialization step. If factors is just a vector, it would be converted to
factor automatically. And finally if users just create cells in part of sectors in
the track (not all sectors), in fact, the cells in remaining unspecified sectors
would also be created, but with no borders (pretending they are not created).

3.4 Circos parameters

Some basic parameters for the circos layout can be set through circos.par.
The paramters are as follows, note some parameters can only be assigned before
the initialization of the circos layout.

• start.degree: The starting degree at which the circle begin to draw.
Note this degree is measured in the standard polar coordinate which means
it is always reverse clockwise. See figure 7.

• gap.degree: Gap between two neighbour sectors. It can be a single value
which means all gaps sharing same degree, or a vector which has same
length as levels of the factors. See figure 7 and figure 6.

• track.margin: Like margin in Cascading Style Sheets (CSS), it is the
blank area out of the plotting region, also outside of the borders. Since
left and right margin are controlled by gap.degree, only bottom and top
margin need to be set. The value for the track.margin is the percentage
according to the radius of the unit circle. See figure 6.

• cell.padding: Padding of the cell. Like padding in Cascading Style
Sheets (CSS), it is the blank area around the plotting regions, but within
the borders. The paramter has four values, which controls the bottom, left,
top and right padding respectively. The four values are all percentages in
which the first and the third padding values are the percentages according

11

plotting region
cell.padding[3]

cell.padding[1]

ce
ll.

pa
dd

in
g[

2]

cell.padding[4]

track.m
argin[1]

track.m
argin[2]

ga
p.

de
gr

ee

gap.degree

Figure 6: Regions for a cell

12

a
b

c
d

e
f

g
hcircos.par("clock.wise" = FALSE,

start.degree = 30)

a

b

c

d

e

f

g

hcircos.par("clock.wise" = TRUE,
start.degree = −30)

Figure 7: Sector directions. Sector orders are a, ..., h.13

to the range of values on y-axis and the second and fourth values are the
percentages according to the range of values on x-axis. See figure 6.

• unit.circle.segments: Since curves are simulated by a series of straight
lines, this parameter controls the amount of segments to represent a curve.
The minimal length of the line segment is the length of the unit circle
(2*pi) divided by unit.circle.segments.

• default.track.height: The default height of tracks. It is the percentage
according to the radius of the unit circle (1). The height includes the top
and bottom cell paddings but not the margins.

• points.overflow.warning: Since each cell is in fact not a real plotting
region but only an ordinary rectangle, it does not eliminate points that
are plotted out of the region. So if some points are out of the plotting
region, by default, the package would continue drawing the points and
print warnings. But in some circumstances, draw something out of the
plotting region is useful, such as draw some legend or text. Set this value
to FALSE to turn off the warnings.

• canvas.xlim: The coordinate for the canvas. The package is forced to
draw unit circle, so the xlim and ylim for the canvas would be c(-1,

1). However, you can set it to a more broad interval if you want to
draw other things out of the circle. By choose proper canvas.xlim and
canvas.ylim, you can draw part of the circle. E.g. setting canvas.xlim

to c(0, 1) and canvas.ylim to c(0, 1) would only draw circle in the
region of (0, pi/2).

• canvas.ylim: The coordinate for the canvas.

• clock.wise: The order of drawing sectors. Default is TRUE which means
clockwise (figure 7). But note that inside each cell, the direction of x-axis
is always clockwise and direction of y-axis is always from inside to outside
in the circle.

Parameters related to the allocation of sectors cannot be changed after the
initialization of the circos layout. So start.degree, gap.degree, canvas.xlim,
canvas.ylim and clock.wise can only be modified before circos.initialize.
The second and the fourth element of cell.padding (left and right paddings)
can not be modified either or the modification is effectiveless.

3.5 Points

Drawing points by circos.points is similar as points function. Possible usage
is:

> circos.points(x, y)

> circos.points(x, y, sector.index, track.index)

> circos.points(x, y, pch, col, cex)

14

ty
pe

 =
 'l

'

●

●

●
●

●

●
●

●
●

●

type = 'o'type = 'h'

type = 's'

ty
pe

 =
 'l

',
ar

ea
 =

 T
R

U
E

●

●

●

●

●

●

●

●

●

●

type = 'o', area = TRUE type = 's', area = TRUE

type = 'l', area = TR
U

E

area.baseline = 'top'

Figure 8: Line style settings

15

Since circos.points is a low-level function, it can only be applied to those
cells which have been created. If sector.index or track.index is not specified,
it would use the ’current’ index for sector and track which would be defined by
the nearest circos.trackPlotRegion or circos.updatePlotRegion.

circos.trackPoints can draw points in the whole cells on a same track.
However, it is the same if you use circos.points in a for loop.

3.6 Lines

Parameters for drawing lines by circos.lines are similar to lines function,
as illustrated in figure 8. One additional feature is that the areas under/above
lines can be specified by area argument which can help you identifying the
direction of y-axis. Also the base line for the area can be set by area.baseline.
area.baseline can be pre-defined string of bottom or top, or numeric values.

Straight lines will be transformed to curves when mapping to the circos
layout. Normally, curves can be approximated by a series of segmentations
of straight lines. With more segmentations, there would be better approx-
imations, but with larger size if you generate the graph as pdf format, es-
pecially for huge genomic data. So, in this package, the number of the seg-
mentation can be controlled by circos.par("unit.circle.segments"). The
length of minimal segment is the length of the unit circle divided by cir-

cos.par("unit.circle.segments"). If you do not want such curve-transformations
(such as radical lines), you can set straight argument to TRUE.

Possible usage for circos.lines is:

> circos.lines(x, y)

> circos.lines(x, y, sector.index, track.index)

> circos.lines(x, y, col, lwd, lty, type, straight)

> circos.lines(x, y, col, area, area.baseline, border)

Similar as circos.points, if no sector.index or track.index is specified,
’current’ index would be used. Also, there is a circos.trackLines which is
identical to circos.lines in a for loop.

3.7 Text

Only the direction of text by circos.text should be noted, as illustrated
in figure 9. Only six directions of text are allowed which are pre-defined in
c("default", "default2", "vertical_left", "vertical_right", "hori-

zontal", "arc").

• default: direction of the tangent, facing bottom at 90◦ position.

• default2: direction of the tangent, facing bottom at −90◦ position.

• vertical_left: direction of radius, facing left at 90◦ position.

• vertical_right: direction of radius, facing right at 90◦ position.

16

default

default2

vertical_left

vertical_right

horizontal

arc_arc_arc_arc_arc

default

default2

ve
rt

ic
al

_l
ef

t

vertical_right

horizontal arc_arc_
ar

c_
ar

c_
ar

c

de
fa

ul
t

default2

vertical_left

ve
rt

ic
al

_r
ig

ht

horizontal

ar
c_

ar
c_

ar

c_
arc_

arc

default

de
fa

ul
t2

vertical_left

vertical_right

horizontalarc_arc_arc_arc_arc

Figure 9: Text direction settings

17

• horizontal: horizontal direction in the canvas coordinate.

• arc: direction of the arc (not straight).

srt in text has been degenerated as direction in circos.text which only
support only six types of rotation. But adj argument is still applicable in
circos.text.

Possible usage for circos.text is:

> circos.text(x, y, labels)

> circos.text(x, y, labels, sector.index, track.index)

> circos.text(x, y, labels, direction, adj, cex, col, font)

There is also a circos.trackText in the package.

3.8 Rectangle

If you imagin the plotting region in a cell as Cartesian coordinate, then it draws
rectangles. In the polar coordinate, the up and bottom edge become two arcs.
Usage is similar as rect:

> circos.rect(xleft, ybottom, xright, ytop)

> circos.rect(xleft, ybottom, xright, ytop, sector.index, track.index)

> circos.rect(xleft, ybottom, xright, ytop, col, border, lty, lwd)

3.9 Polygon

Similar as circos.rect and polygon, it draws a polygon through a series of
points in a cell:

> circos.polygon(x, y)

> circos.polygon(x, y, sector.index, track.index)

> circos.polygon(x, y, col, border, lty, lwd)

In figure 10, the area of standard deviation of the smoothed line is drawn by
circos.polygon. (Source code is in the examples section of circos.polygon
help page.)

3.10 Axis

Because there may be no space to draw y-axis, only drawing x-axis for each cell
is supported by circos.axis, as illustrated in figure 11. A lot of styles for axis
can be set such as the position and length of major ticks, the number of minor
ticks, the position and direction of the axis labels and the position of the x-axis.
Note the adjustment of label strings is defined internally according to differnet
label directions to ensure the start/end position of the string is located near the
major tick.

In figure 11, axis styles in different sectors are :

18

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

Figure 10: Area of standard deviation of the smooth line

19

a

bc

d
e

f g

h
0

2
4

6
8

10

0
2

4
6810

0246
8

10

0
2

4
6

8
10

1
3

5
7

9

a
c

e g f
a1 c1 e1 g1

f1

a1

c1

e1

g1

f1

Figure 11: Axis settings

20

• a: Major ticks are calculated automatically, other settings are default.

• b: Ticks are pointing to inside of the circle, facing of tick labels is set to
default2.

• c: Position of x-axis is bottom of the cell.

• d: Ticks are pointing to inside of the circle, facing of tick labels is set to
vertical_left.

• e: Self-defined major ticks.

• f: Self-defined major ticks and tick labels, no minor ticks.

• g: No ticks for both major and minor ones, facing of tick labels is set to
vertical_left.

• h: Number of minor ticks between two major ticks is set to 2. Length of
ticks is longer and axis labels are more away from ticks. Facing of tick
labels is set to vertical_right.

For circos.axis, possible usage is as follows. h can be pre-defined string of
bottom or top, or numeric values.

> circos.axis(h)

> circos.axis(h, sector.index, track.index)

> circos.axis(h, major.at, labels, major.tick)

> circos.axis(h, major.at, labels, major.tick, labels.font, labels.cex,

+ labels.direction, labels.away.percentage)

> circos.axis(h, major.at, labels, major.tick, minor.ticks,

+ major.tick.percentage, lwd)

3.11 Links

Links can be drawn by circos.link from points and intervals (figure 12, top).
If both ends are points, then the link is represented as a line. If one of the ends
is an interval, the link would be a belt/ribbon. The link is in fact a quadratic
curve. Links do not hold any position of track. So links can be overlapping with
tracks.

The position of the ’root’ of the link is controlled by rou argument. By
default, it is the end position of the most recently created track. So normally,
you don’t need to care about this setting.

The height of the link can be controlled by top.ratio argument in cir-

cos.link which is the ratio between the length of blue line and the red line
(maximum of the link height), see figure 12, bottom. The default height looks
well from my view point, so you don’t need to change this value.

Possible usage for circos.link is:

21

●

Figure 12: Drawing links

22

> circos.link(sector.index1, 0, sector.index2, 0)

> circos.link(sector.index1, c(0, 1), sector.index2, 0)

> circos.link(sector.index1, c(0, 1), sector.index2, c(1, 2))

> circos.link(sector.index1, 0, sector.index2, 0, rou, top.ratio)

> circos.link(sector.index1, c(0, 1), sector.index2, 0,

+ col, lwd, lty, border)

circlize draws links as quadratic curves of which the symmetry axes pass
through the center of the circle, so the two ends of the link must locate in a
same circle. But sometimes drawing ends of links with different height is useful
to represent the direction of links. Anyway, if the difference of the height of two
ends are not too large, there is a way to approximate. The solution is add a
rectangle at one end of a link (see figure 12). Following is the code:

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:8]

> circos.initialize(factors = factors, xlim = c(0, 10))

>

> circos.par(track.margin = c(0.1, 0))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.col = "grey",

+ bg.border = NA, track.height = 0.05)

+

> circos.link("a", c(2, 3), "f", c(4, 6), border = "black")

>

> # the following codes calculate the position for the 'little rectangle'
> cell.ylim = get.cell.meta.data("cell.ylim", "a")

> d1 = circlize(2, cell.ylim[1], "a")

> theta1 = d1[1, 1]

> rou1 = d1[1, 2]

>

> d2 = circlize(3, cell.ylim[1], "a")

> theta2 = d2[1, 1]

> rou2 = d2[1, 2] - circos.par("track.margin")[1]

>

> # draw the 'little rectangle'
> draw.sector(start.degree = theta1, end.degree = theta2, rou1 = rou1,

+ rou2 = rou2, col = "black", border = "black")

>

> circos.clear()

Anyway, there are always some problems when implementing the link func-
tion. When the link represents as a belt/ribbon (i.e. link from point to interval
or from interval to interval), It can not ensure that one border is always below
or above the other. Which means, in some cases, the two borders would inter-
sect and it would make the link so ugly. It happens especially when position
of the two ends are too close or the width of one end is extremely large while
the width of the other end is too small. I did some optimization to control such

23

Figure 13: Adjust the links: right link is under default settings and the height
of the low border of left link is adjusted by hand.

circumstance but it is not valid for all cases. However, I think such situation
will not happen too often in real applications, but users can adjust the height
of the low border by hand if they really meet it. The not-so-good argument
top.ratio.low can control the height of the low border such as:

> circos.link("c", 1, "c", c(2, 8),

+ top.ratio = 0.5, top.ratio.low = 0.8)

The value of top.ratio.low must be larger than top.ratio. Example can
be found in figure 13. The design of the function is not friendly and I am sorry
for that. I would try to figure out a good solution in the future.

3.12 The panel.fun argument in circos.trackPlotRegion

panel.fun argument in circos.trackPlotRegion is useful to apply plottings as
soon as the cell has been created. This self-defined function need two arguments
x and y which are data points that belong to this cell. The value for such
values are automatically extracted from x and y in circos.trackPlotRegion

24

function according to the category argument factors. In the following example,
x in category a in panel.fun would be 1:3 and y values are 5:3. If x or y in
circos.trackPlotRegion is NULL, then x or y inside panel.fun is also NULL.

> factors = c("a", "a", "a", "b", "b")

> x = 1:5

> y = 5:1

> circos.trackPlotRegion(factors = factors, x = x, y = y,

+ panel.fun = function(x, y) {

+ circos.points(x, y)

+ })

In panel.fun, one thing important is that if you use any low-level circos
functions, you don’t need to specify sector.index and track.index explicitly.
Remember that when applying circos.trackPlotRegion, cells in the track are
created one after one. When a cell is created, the package would set the sector
index and track index of the cell as the ’current’ index for sector and track.
When the cell is created, panel.fun would be exceeded afterward immediately.
Without specifying sector.index and track.index, the ’current’ one would
be used.

Inside panel.fun, more information of the ’current’ cell would be obtained
through get.cell.meta.data. Also this funciton takes the ’current’ sector and
’current’ track by default, Explaination of get.cell.meta.data can be found
in following section.

3.13 High level plotting functions

With those low-level function such as circos.points, circos.lines, more
high-level functions can be easily written. The package provides a high-level
function circos.trackHist which draws histograms or the density distributions
of data (figure 14). So users would know how to implement other high-level
function to support graphs such as barplot, heatmap, ... accroding to the source
code of circos.trackHist.

In figure 14, the first track is histograms in which all the ylim are the same.
The second track is histograms in which force.ylim is FALSE. The third and
the fourth tracks are density distributions in which ylims are forced same or
not.

In figure 15 you would see heatmaps and cluster dendrograms in a circos
layout. Heatmaps are series of grids which can be drawn by circos.rect. Den-
drograms are series of lines which can be drawn by circos.lines. However,
x-values for heatmaps and dendrograms are not really x-values but just index
for the grid/leaf (i.e., 1, 2, ... for grid/leaf 1, 2, ...), so it would be hard (or not
proper) to make them as general functions for circos plotting. Thus we do not
provide such circos.heatmap or circos.dendrogram in the package for public
use. Anyway, we still wrote a not-full-functional circos.dendrogram in the
source code of this vignette. If you want to draw heatmap or dendrogram (like

25

Figure 14: Histograms

26

Figure 15: Heatmap with clustering

evolution tree) by your own, this may be helpful for you. (type help(package

= "circlize") in your R terminal, click link of “Overview of user guides and
package vignettes” in the browser, click link of “R code” corresponding to “cir-
clize::circlize”, and search for code chunk of “figheatmap”.)

3.14 Other functions

draw.sector can be used to draw sectors or part of a ring. This is useful if
you want to hightlight some part of your circos plot. As you can think, this
function needs arguments of the position of circle center, the start degree and
the end degree for sectors, and radius for two edges (or one edge) which may
be the up or bottom border of a cell. These information can be obtained by
get.cell.meta.data. E.g. the start degree and end degree can be obtained
through cell.start.degree and cell.end.degree, and the position of the
top border and bottom border on the circle radius can be obtained through
cell.top.radius and cell.bottom.radius. An example is as follows and see
figure 16 in which different colors correspond to different regions that need to
be highlighted.

27

Degrees and radius for any points in a given cell can be obtained by the core
function circlize, so you can highlight any region in the circos layout. Note
circlize always returns a matrix with two columns in which the first column
are degrees and the second column are radius for the points.

> circlize(x, y, sector.index, track.index)

> circlize(x, y)

Remember the color should be semi-transparent in the highlighted area.
Usage for draw.sector is:

> draw.sector(center, start.degree, end.degree, rou1)

> draw.sector(center, start.degree, end.degree, rou1, rou2)

> draw.sector(center, start.degree, end.degree, rou1, rou2,

+ col, border, lwd, lty)

get.cell.meta.cell can provide detailed information for a cell. It needs
the index of sector and track as arguments. As usually, it would use ’current’
index by default.

> get.cell.meta.data(name)

> get.cell.meta.data(name, sector.index, track.index)

Items that can be extracted by get.cell.meta.data are:

• sector.index: The name (label) for the sector

• sector.numeric.index: Numeric index for the sector

• track.index: Numeric index for the track

• xlim: Minimal and maximal values on the x-axis

• ylim: Minimal and maximal values on the y-axis

• xrange: Range of xlim

• yrange: Range of ylim

• cell.xlim: Minimal and maximal values on the x-axis extended by cell
paddings

• cell.ylim: Minimal and maximal values on the y-axis extended by cell
paddings

• xplot: Right and left border degree for the plotting region in the unit
circle. The first element corresponds to the start point of values on x-axis
(cell.xlm[1]) and the second element corresponds to the end point of
values on x-axis (cell.xlim[2]) Since x-axis in data coordinate in cells
are always clockwise, xplot[1] is larger than xplot[2].

28

a:1
a:2

a:3

b:1

b:2

b:3

c:1

c:2

c:3
d:1

d:2
d:3

e:1
e:2

e:3

f:1

f:2

f:3

g:1

g:2

g:3
h:1

h:2
h:3

Figure 16: Hightlight sectors

• yplot: Bottom and top radius value for borders of the plotting region. It
is the value of radius of arc corresponding to inner border or outer border.

• cell.start.degree: Same as xplot[1]

• cell.end.degree: Same as xplot[2]

• cell.bottom.radius: Same as yplot[1]

• cell.top.radius: Same as yplot[2]

• track.margin: Margins for the cell

• cell.padding: Paddings for the cell

3.15 Do not forget circos.clear

You should always call circos.clear to complete the circos plottings. Because
there are several parameters for circos plot which can only be set before cir-

cos.initialize. So before you draw the next circos plot, you need to reset
these parameters.

29

4 Advanced plottings

4.1 Draw part of the circos layout

canvas.xlim and canvas.ylim in circos.par is useful to draw only part of
circle. In the example, only sectors between 0◦ to 90◦ are plotted (figure 17).
First, four sectors with the same width are initialized. Then only the first sector
is drawn with points and lines. From figure 17, we in fact created the whole
circle, but only a quarter of the circle is in the canvas region. Codes are as
follows.

> par(mar = c(1, 1, 1, 1))

> circos.par("canvas.xlim" = c(0, 1), "canvas.ylim" = c(0, 1),

+ "clock.wise" = FALSE, "gap.degree" = 0)

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1),

+ bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> x1 = runif(100)

> y1 = runif(100)

> circos.points(x1, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1),

+ bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> circos.lines(1:100/100, y1, pch = 16, cex = 0.5)

In the second situation, you don’t need some sectors or cells but still y-
ou need to draw the whole circle. Remember when you are creating new
track with circos.trackPlotRegion and set bg.col and bg.border to NA,
it means create the new track and draw nothing. After that, you can use cir-

cos.updatePlotRegion to update these invisible cells of interest to add graphs
on it (figure 18).

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1),

+ bg.col = NA, bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> x1 = runif(100)

> y1 = runif(100)

> circos.points(x1, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1),

+ bg.col = NA, bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

30

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0 1

1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0 1

1

Figure 17: Part of the circos layout31

> x1 = runif(100)

> y1 = runif(100)

> circos.points(x1, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1))

> circos.clear()

4.2 Combine several parts of circos layouts

Since the circos layout by circlize is finally plotted in an ordinary R plotting
system. Two seperated circos layouts can be plotted together by some tricks.
Here the key is par(new = TRUE) which allows to draw a new figure on the
previous canvas region. Just remember the radius of the circos is always
1.

The first example is to draw one outer circos and an inner circos (figure 19).

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ circos.text(0.5, 0.5, "outer circos")

+ })

> circos.clear()

> par(new = TRUE)

> circos.par("canvas.xlim" = c(-2, 2), "canvas.ylim" = c(-2, 2))

> factors = letters[1:3]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ circos.text(0.5, 0.5, "inner circos")

+ })

> circos.clear()

The second example is drawing two seperated circos layouts in which every
circos only contains a half (figure 20).

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.par("canvas.xlim" = c(-1, 1.5), "canvas.ylim" = c(-1, 1.5),

+ start.degree = -45)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)

> circos.updatePlotRegion(sector.index = "a")

> circos.text(0.5, 0.5, "first one")

> circos.updatePlotRegion(sector.index = "b")

32

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1),

+ bg.col = NA, bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> x1 = runif(100)

> y1 = runif(100)

> circos.points(x1, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1),

+ bg.col = NA, bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> x1 = runif(100)

> y1 = runif(100)

> circos.points(x1, y1, pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1))

> circos.clear()

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

Figure 18: Part of the circos layout, situation 2.

33

outer circosou
te

r c
irc

os

ou
te

r c
irc

os

outer circos

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

inner circos

in
ne

r
ci

rc
os

inner circos

−2 −1 0 1 2

−
2

−
1

0
1

2

outer circosou
te

r c
irc

os

ou
te

r c
irc

os

outer circos

inner circos

in
ne

r
ci

rc
os

inner circos

Figure 19: An outer and an inner circos layout

34

first one

fir
st

 o
ne

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

second one

second one

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

first one

fir
st

 o
ne

second one

second one

Figure 20: Two seperated circos layouts

> circos.text(0.5, 0.5, "first one")

> circos.clear()

> par(new = TRUE)

> circos.par("canvas.xlim" = c(-1.5, 1), "canvas.ylim" = c(-1.5, 1),

+ start.degree = -45)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)

> circos.updatePlotRegion(sector.index = "d")

> circos.text(0.5, 0.5, "second one")

> circos.updatePlotRegion(sector.index = "c")

> circos.text(0.5, 0.5, "second one")

> circos.clear()

The third example is to draw sectors with different radius (figure 21). In fact,
it draws four circos graphs in which only one sector of each graphs is plotted.
Note links can not be drawn in these different sectors because links can only be
drawn in one circos layout.

It is different from example in “Draw part of the circos layout” section. In
that example, cells both visible and invisible are all in a same track and they

35

are in a same circos plot, so they should have same radius. But here, cells have
different radius to the center of the circle and they belong to different circos
plot (although only part of each circos plot is visible).

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> lim = c(1, 1.1, 1.2, 1.3)

> for(i in 1:4) {

+ circos.par("canvas.xlim" = c(-lim[i], lim[i]),

+ "canvas.ylim" = c(-lim[i], lim[i]),

+ "default.track.height" = 0.4)

+ circos.initialize(factors = factors, xlim = c(0, 1))

+ circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA)

+ circos.updatePlotRegion(sector.index = factors[i],

+ bg.border = "black")

+ circos.points(runif(10), runif(10), pch = 16)

+ circos.clear()

+ par(new = TRUE)

+ }

> par(new = FALSE)

4.3 Draw outside and combine with canvas coordinate

Sometimes it is very useful to draw something outside the plotting region of
cell. (You can think it is similar as par(xpd = NA) setting.) The following is
a simple example to illustrate such circumstance (figure 22). The text is drawn
outside the cell.

Since the finnal graph is drawn in an ordinary canvas plotting region, we can
add additional graphs through the traditional way. You can also see how text

and legend work in the example code.

> library(circlize)

> set.seed(12345)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.par("canvas.xlim" = c(-1.5, 1.5), "canvas.ylim" = c(-1.5, 1.5),

+ "gap.degree" = 10)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ circos.points(1:20/20, 1:20/20)

+ })

> circos.lines(c(1/20, 0.5), c(1/20, 3), sector.index = "d",

+ straight = TRUE)

> circos.text(0.5, 3, "mark", sector.index = "d", adj = c(0.5, 0))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

36

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

Figure 21: Sectors with different radius

37

●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●●●

●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●●●

●●●●●●●●●●●
●

●
●

●
●

●
●
●
●

mark

●
●
●
●
●
●
●
●
●

●
●

●
●

●
●●●●●●

●●●●●●●●●●●●●●●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●●●●●●●●●●●●●●
●
●
●
●
●

this is
the center

● this is the legend

Figure 22: Draw outside the cell and combine with canvas coordinate

+ circos.points(1:20/20, 1:20/20)

+ })

> text(0, 0, "this is\nthe center", cex = 1.5)

> legend("bottomleft", pch = 1, legend = "this is the legend")

> circos.clear()

4.4 Draw figures with layout

You can use layout to arrange multiple figures together (also it is available from
par(mfrow) or par(mfcol)) (figure 23).

> library(circlize)

> set.seed(12345)

> rand_color = function() {

+ return(rgb(runif(1), runif(1), runif(1)))

+ }

> layout(matrix(1:9, 3, 3))

> for(i in 1:9) {

38

Figure 23: Draw multiple figures by layout

+ factors = 1:8

+ par(mar = c(0.5, 0.5, 0.5, 0.5))

+ circos.par(cell.padding = c(0, 0, 0, 0))

+ circos.initialize(factors, xlim = c(0, 1))

+ circos.trackPlotRegion(ylim = c(0, 1), track.height = 0.05,

+ bg.col = sapply(1:8, function(x) rand_color()),

+ bg.border = NA)

+ for(i in 1:20) {

+ se = sample(1:8, 2)

+ col = rand_color()

+ col = paste(col, "40", sep = "")

+ circos.link(se[1], runif(2), se[2], runif(2), col = col)

+ }

+ circos.clear()

+ }

39

	Introduction
	A quick glance
	Details
	Rules to draw the circos layout
	Coordinate transformation
	Sectors and tracks
	Circos parameters
	Points
	Lines
	Text
	Rectangle
	Polygon
	Axis
	Links
	The panel.fun argument in circos.trackPlotRegion
	High level plotting functions
	Other functions
	Do not forget circos.clear

	Advanced plottings
	Draw part of the circos layout
	Combine several parts of circos layouts
	Draw outside and combine with canvas coordinate
	Draw figures with layout

