
An introduction of the circlize package

Zuguang Gu <z.gu@dkfz.de>

German Cancer Research Center,
Heidelberg, Germany

May 26, 2013

1 Introduction

Circos layout (http://circos.ca) is very useful to represent complicated in-
formations, especially for genomic data. The circlize package implements the
circos layout in R. The advantage is that R is nature-born to draw statistical
graphs, thus, types of plottings are not restricted by the package but by user’s
inspiration. The circlize package allocates and illustrates data which is from
a certain category into a cell inside a circle and makes you felling that you are
plotting figures in a normal plotting coordinate.

Since most of the figures are composed of simple graphs, such as points,
lines, polygon (for filled color) et al, so we just need to implement those low
level functions to draw figures in circos layout.

Currently there are following functions that can be used for plotting, they
are similar to the functions without circos. prefix from the traditional graph
engine:

• circos.points: draw points in a cell

• circos.lines: draw lines in a cell

• circos.rect: draw rectangle in a cell

• circos.polygon: draw polygon in a cell

• circos.text: draw text in a cell

• circos.axis: draw axis in a cell

• circos.link: this maybe the unique feature for circos layout to represent
relationships between elements.

For drawing points, lines and text through the whole track (among several
sectors), the following functions are available:

• circos.trackPoints: this can be replaced by circos.points through a
for loop.

1

http://circos.ca

• circos.trackLines: this can be replaced by circos.lines through a
for loop.

• circos.trackText: this can be replaced by circos.text through a for

loop.

Also, the function drawing histograms in the whole track is available:

• circos.trackHist

Functions to arrange the circos layout:

• circos.trackPlotRegion: create plotting regions of cells in one track

• circos.updatPlotRegion: update one specified cell

• circos.par: circos parameters

• circos.clear: reset circos parameters and internal variables

Theoretically, you are able to draw most kinds of circos figures by the above
functions. As you can see, all figures in the three vignettes are generated by
circlize package.

The following part of this vignette is structured as follows: First there is an
example to give a quick glance of how to draw a circos layout. Then it tells
you the basic principle (or the order of using the circos functions) for drawing.
After that a detailed explaination of circos parameters, coordinates and low
level functions. Finally it would tell some tricks for drawing more complicated
circos plot.

2 A quick glance

Following is an example. First generate some data. There needs to have a factor
to represent categories, values on x-axis, and values on y-axis.

> set.seed(12345)

> n = 10000

> a = data.frame(factor = sample(letters[1:8], n, replace = TRUE),

+ x = rnorm(n), y = runif(n))

Initialize the layout. In this step, the function allocates sectors along the
circle according to ranges of x-values in different categories. E.g, if there are
two categories, range for x-values in the first category is c(0, 2) and range
for x-values in the second category is c(0, 1), the first category would hold
approximately 67% areas of the circle. Here we only need x-values because all
cells in a sector share the same x-ranges. The order of the sectors in the circle
is the order of levels of factors.

2

> library(circlize)

> par(mar = c(1, 1, 1, 1), lwd = 0.1, cex = 0.7)

> circos.par("default.track.height" = 0.1)

> circos.initialize(factors = a$factor, x = a$x)

Draw the first track. Before drawing any track we need to know that all
tracks should firstly be created by circos.trackPlotRegion, then those low
level functions can be applied. X-lims for cells in the track have been already
defined by the initialization step, so here we only need to specify the y-lims for
each cell, either by y or ylim argument.

We also draw axis for each cell in the first track, The axis for each cell is
drawn by panel.fun argument. circos.trackPlotRegion creates plotting re-
gion cell by cell and the panel.fun is actually executed after the creation of
the plotting region for the cell. So panel.fun actually means drawing graphs
in the “current cell”. After that, draw points through the whole track by cir-

cos.trackPoints. Finally, add two texts in a certain cell (the cell is specified
by sector.index argument).

Here what should be note is that the first track has a index number of 1.
Then an internal variable which traces the tracks would set the current track
index to 1. So if the track index is not specified in the plotting functions such as
circos.trackPoints and circos.text which are called after the creation of the
track, the current track index would be assigned internally. So if track.index
is not specifed, it means the track index is the current track index (it would be
explained in the following sections).

> circos.trackPlotRegion(factors = a$factor, y = a$y,

+ panel.fun = function(x, y) {

+ circos.axis()

+ })

> circos.trackPoints(a$factor, a$x, a$y, col = col,

+ pch = 16, cex = 0.5)

> circos.text(-1, 0.5, "left", sector.index = "a")

> circos.text(1, 0.5, "right", sector.index = "a")

Draw the second track. It is histograms among the track. The circos.trackHist
can also create a new track because drawing histogram is really high level. So
the track index for this track is 2.

> circos.trackHist(a$factor, a$x, bg.col = bgcol, col = NA)

Draw the third track. Different background colors for cells can be assigned.
So it may highlight some feature of the circlize package. Here some meta
data for a cell can be obtained by get.cell.meta.data. This function needs
sector.index and track.index arguments, and if they are not specified, it
means it is the current sector index and the current track index.

> circos.trackPlotRegion(factors = a$factor, x = a$x, y = a$y,

+ panel.fun = function(x, y) {

3

+ grey = c("#FFFFFF", "#CCCCCC", "#999999")

+ i = get.cell.meta.data("sector.numeric.index")

+ circos.updatePlotRegion(bg.col = grey[i %% 3 + 1])

+ circos.points(x[1:10], y[1:10], col = "red", pch = 16, cex = 0.6)

+ circos.points(x[11:20], y[11:20], col = "blue", cex = 0.6)

+ })

You can update an existed cell by specifying sector.index and track.index.
The function erases graphs which have been drawn. Here we erase graphs in
one cell in track 2, sector d and re-draw some points.

> circos.updatePlotRegion(sector.index = "d", track.index = 2)

> circos.points(x = runif(100), y = runif(100))

Draw the fouth track. Here you can choose different line types.

> circos.trackPlotRegion(factors = a$factor, y = a$y)

> circos.trackLines(a$factor[1:100], a$x[1:100], a$y[1:100], type = "h")

Draw links. Links can be from point to point, point to interval or interval to
interval. Some of the arguments would be explained in the following sections.

> circos.link("a", 0, "b", 0, top.ratio = 0.9)

> circos.link("c", c(-0.5, 0.5), "d", c(-0.5,0.5), col = "red",

+ border = "blue", top.ratio = 0.2)

> circos.link("e", 0, "g", c(-1,1), col = "green", lwd = 2, lty = 2)

The final figure looks like figure 1.

3 Details

In this section, more details of the package would be explained.

3.1 Rules to draw the circos layout

The rules for drawing the circos layout is rather simple. It follows the sequence
of “initialize - create track - draw graphs - create track - draw graphs - ... -
clear”.

1. Initialize the layout using circos.initialize. Since circos layout in fact
visualizes data which is in categories, there should be a factor and a x-
range to allocate categories into sectors.

2. Create plotting regions for the new track and apply plottings. The new
track is created just inside the previous created one and the index of the
track is added by 1 automatically. Only after the creation of the track can
you add other graphs on it. There are three ways to do the plotting job.

4

−
2

−1.5
−1

−0.5
0

0.5
1

1.5

2

−2.5
−2

−1.5−1−0.500.511.5
2

−2
−1.5

−1

−0
.5

0
0.

5
1

1.
5

2
−

1.
5

−
1

−0
.5

0
0.

5
1

1.
5

−1.5
−1

−0.5
0

0.5
1

1.5
0 −1.5 −1

−0.5
0

0.5
1

1.5

2

−1
−0.5

0
0.5

1

left

right

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●
●

●
●

●

●● ● ●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●
●

●
●

●
●

●

●
●
●

●

●
●●
●

●

●
●
●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●
●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: An example for circos layout

5

text

2 4 6 8 10

tex
t

1

1.
5

2
2.5

3
3.5

4 4.5 5 5.5 6 6.5 7 7.5
8

8.5
9

9.5

10

text
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

7.5
8

8.5
9

9.510

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 2: Transformation between different coordinates

6

(a) After the creation of the track. use low level function like cir-

cos.points, circos.lines, ... to draw graphs cell by cell. It allways
involves a for loop.

(b) Use circis.trackPoints, circos.trackLines, ... to draw same
style of graphs through all cells simultaneously. However, it is not
recommended because it would make you a little confused.

(c) Use panel.fun argument in circos.trackPlotRegion to draw graph-
s immediately after the creation of certain cell. panel.fun needs two
arguments x and y which are x-values and y-values that in the current
category. This subset operation would be applied internally.

Plotting regions for cells that have been created can be updated by cir-

cos.updatePlotRegion. circos.updatePlotRegion will erase every that
you have already plotted in the plotting region of the cell.

Low level functions such as circos.points can be applied on any created
cell by specifying sector.index and track.index.

3. Call circos.clear to do cleanings.

Codes for the circos layout drawing rule would looks like (pseudo code):

> circos.initialize(factors, xlim)

> circos.trackPlotRegion(factors, ylim)

> for(sector.index in all.sector.index) {

+ circos.points(x, y, sector.index)

+ circos.lines(x, y, sector.index)

+ }

or like following:

> circos.trackPlotRegion(factors, ylim)

> circos.trackPoints(factors, x, y)

> circos.trackLines(factors, x, y)

or like following. This the most natural way I feel.

> circos.trackPlotRegion(factors, x, y, ylim,

+ panel.fun = function(x, y) {

+ circos.points(x, y)

+ circos.lines(x, y)

+ })

There is several internal variables keeping tracing of the current sector and
track when applying circos.trackPlotRegion and circos.updatePlotRegion.
So although functions like circos.points, circos.lines need to specify the
index for sector and track, the values for sector index and the track index, by
default, are taken as the current calculated ones. As a result, if you draw points,
lines, text, et al just after the creation of the track or cell, you do not need to

7

set the sector index and the track index explicitly and it is just drawn in the
most nearly created cell.

Finally, in circlize package, function with prefix circos. would affect all
cells in a track.

3.2 Coordinate transformation

There is a user coordinate in which the range for x-axis and y-axis is the range of
data, a polar coordinate to allocates different cells and a the canvas coordinate
which really draw the figures (figure 2). The package would first transform
the user coordinate to a polar coordinate and finally transform into the canvas
coordinate.

The finnal canvas coordinate is in fact an ordinary coordinate in R plotting
system with x-range from -1 to 1 and y-range from -1 to 1 by defaulte.

It should be noted that the circos layout is always drawn inside
the circle which has radius of 1 (unit circle), from outside to inside.

However, for users, they only need to imagine that each cell is a normal
rectangular plotting region (user coordinate) in which x-lim and y-lim are ranges
of data in that category respectively. The circlize package would know which
cell you are drawing in.

3.3 Sectors and tracks

A circos layout is composed of sectors and tracks, as illustrated in figure 3. The
red circle is the track and the blue one is the sector. The intersection of a sector
and a track is called a cell which can be thought as an imaginary plotting region
for values in certain category.

Sectors are first allocated and is determined by circos.initialize and
track allocation is then determined by circos.trackPlotRegion. circos.initialize
needs a category variable and data value which implicates the range of data in
each category. The range of data can be specified either by x or xlim.

> circos.initialize(factors, x)

> circos.initialize(factors, xlim)

There are something very important that should be noted in the initialization
step. In this step, not only the width of each sector is assigned, but also the order
of each sector on the circle would be determined. Order of the sectors are
determined by the order of levels of the factor. So if you want to change
the order of the sectors, just change of the level of the factors variable. If x
which is the x-value corresponding to factors is specified, the range for x-value
in different category would be calculated according to factors automatically.
And if xlim is specified, it should be either a matrix which has same number of
rows as the length of the level of factors or a two-element vector. If it is a two-
element vector, it would be extended to a matrix which has the same number
of rows as the length of factors levels. Here, every row in xlim corresponds

8

g:1
g:2

g:3
g:4

f:1

f:2

f:3

f:4

a:1

a:2

a:3

a:4

h:1

h:2

h:3

h:4
i:1

i:2
i:3

i:4

b:1
b:2

b:3
b:4

d:1

d:2

d:3

d:4

j:1

j:2

j:3

j:4

c:1

c:2

c:3

c:4
e:1

e:2
e:3

e:4

Figure 3: Coordinate in circos layout

9

to the x-ranges of a category and the order of rows in xlim corresponds to the
order of levels of factors.

Since all cells in one sector in different tracks share the same x-ranges, for
each track, we only need to specify the y-ranges for cells. Similar as cir-

cos.initialize, circos.trackPlotRegion can also receive either y or ylim

arguments to specify the range of y-values. There is also a force.ylim argument
to sepcify whether all cells in one track should share the same y-ranges

> circos.trackPlotRegion(factors, y)

> circos.trackPlotRegion(factors, ylim)

In track creataion step, since all the sectors are already allocated in the
circle, if factors argument is not set, circos.trackPlotRegion would create
plotting regions for all available sectors. Also, levels of factors do not need to
be specified explicitly because the order of sectors has already be determined.
If factors is just a vector, it would be converted to factor automatically. And
finally if users just create cells in part of sectors in the track, in fact, the cells
in remaining unspecified sectors would also be created, but with no borders
(pretending they are not created).

3.4 Circos parameters

Some basic parameters for the circos layout can be set through circos.par.
The paramters are as follows, note some parameters can only be assigned before
the initialization of the circos layout.

• start.degree: The starting degree which the circle begin to draw. Note
this degree is measured in the standard polar coordinate which means it
is anti-clockwise.

• gap.degree: Gap between two neighbour sectors. Note a gap is allocated
first in front of the first sector. See figure 4.

• track.margin: Like margin in Cascading Style Sheets (CSS), it is the
blank area out of the plotting region, also outside of the borders. Since
left and right margin are controlled by gap.degree, only bottom and top
margin need to be set. The value for the track.margin is the percentage
according to the radius of the unit circle. See figure 4.

• cell.padding: Padding of the cell. Like padding in Cascading Style
Sheets (CSS), it is the blank area around the plotting regions, but within
the borders. The paramter has four values, which controls the bottom, left,
top and right padding respectively. The four values are all percentages in
which the first and the third padding values are the percentages according
to the range of values on y-axis and the second and fourth values are the
percentages according to the range of values on x-axis. See figure 4.

10

plotting region
cell.padding[3]

cell.padding[1]

ce
ll.

pa
dd

in
g[

2]

cell.padding[4]

track.m
argin[1]

track.m
argin[2]ga

p.
de

gr
ee

gap.degree

Figure 4: Regions for a cell

11

a

bc

d
e

f g

h

circos.par("clock.wise" = FALSE)

a

bc

d
e

f g

h

circos.par("clock.wise" = TRUE)

Figure 5: Sector directions12

• unit.circoe.segments: Since curves are simulated by a series of straight
lines, this parameter controls the amout of segments to represent a curve.
The minimal length of the line segmentation is the length of the unit circle
divided by unit.circoe.segments.

• default.track.height: The default height of tracks. It is the percentage
according to the radius of the unit circle. The height includes the top and
bottom cell paddings but not the margins. However, the definition would
be changed in future version because I think it would be more reasonable
to include the margins in the track.

• points.overflow.warning: Since each cell is in fact not a plotting region
but only an ordinary rectangle, it does not eliminate points that are plotted
out of the region. So if some points are out of the plotting region, by
default, the package would continue drawing the points and print warnings.
But in some circumstances, draw something out of the plotting region is
useful, such as draw some legend or text. Set this value to FALSE to turn
off the warnings.

• canvas.xlim: The coordinate for the canvas. By default, the package
draws unit circle, so the xlim for the canvas would be c(-1, 1). How-
ever, you can set it to a more broad interval if you want to draw other
things out of the circle. By choose proper canvas.xlim and canvas.ylim,
you can draw part of the circle. E.g. setting canvas.xlim to c(0, 1)

and canvas.ylim to c(0, 1) would only draw circle in the region of (0,
pi/2).

• canvas.ylim: The coordinate for the canvas.

• clock.wise: The order of drawing sectors. Default is TRUE which means
anticlockwise (figure 5). But note that inside each cell, the direction of
x-axis is always anticlockwise.

Parameters related to the allocation of sectors can be changes after the
initialization of the layout. So start.degree, gap.degree, canvas.xlim, can-
vas.ylim and clock.wise can only be modified before circos.initialize.
The second and the fourth element of cell.padding can not be modified ei-
ther.

3.5 Points

Drawing points is similar as points function.

3.6 Lines

Parameters for drawing lines by circos.lines are similar to lines function,
as illustrated in figure 6. One additional feature is that the areas under lines

13

type = 'l'

●
●

●
●

●

●

●

●

●

●

type = 'o'

typ
e = 'h

'

ty
pe

 =
 's

'

typ
e = 'l',

 area = TRUE

●

●

●

●

●

●

●

● ●

●

type = 'o', area = TRUE

type = 's', area = TR
U

E

Figure 6: Line style settings

14

default_default

vertical_left

vertical_right

horizontal

arc_arc_arc_arc_arc

de
fau

lt_
de

fau
lt

ve
rt

ic
al

_l
ef

t

vertical_right

horizontal arc_arc_
ar

c_
ar

c_
ar

c

de
fau

lt_
de

fau
lt

vertical_left

ve
rt

ic
al

_r
ig

ht

horizontal

ar
c_

ar
c_

ar
c_

arc_arc

default_default

vertical_left

vertical_right

horizontalarc_arc_arc_arc_arc

Figure 7: Text direction settings

can be specified by area argument. Also the base line for the area can be set
by area.baseline.

Straight lines will be transformed to curves when mapping to the circos
layout. Normally, curves can be approximated by a series of segmentation of
straight lines. With more segmentations, there would be better approximation-
s, but with larger size if you generate the graph as pdf format, especially if
you want to huge genomic data. So, in this package, the number of the seg-
mentation can be controlled by circos.par("unit.circoe.segments"). The
length of minimal segment is the length of circumference of the unit circle di-
vided by circos.par(unit.circoe.segments). If you do not want such curve-
transformations (such as some radical lines), you can set straight argument to
TRUE.

3.7 Text

Only the direction of text by circos.text should be noted, as illustrated in
figure 7. Only five direction of text is allowed which are in c("default",

"vertical_left", "vertical_right", "horizontal", "arc").

15

a

bc

d
e

f g

h
0

2
4

6
8

100
2

4
6810

0246
8

10

0
2

4
6

8
10

1
3

5
7

9

a
c

e g f a c e
g

f

a
c

e

g

f

Figure 8: Axis settings

• default: direction of the tangent.

• vertical_left: direction of radius, facing left at 90◦ position.

• vertical_left: direction of radius, facing right at 90◦ position.

• horizontal: horizontal direction in the canvas coordinate.

• arc: direction of the arc.

3.8 Axis

Because there may be no space to draw y-axis, only x-axis for each cell is
supported by circos.axis, as illustrated in figure 8. A lot of styles for axis
can be set such as the position and length of major ticks, the number of minor
ticks, the position and direction of the axis labels and the position of the x-axis.

16

Figure 9: Link settings

17

●

Figure 10: Additional settings for links

18

3.9 Links

Links can be drawn by circos.link from points and intervals (figure 9). If
both ends are points, then the link is represented as a line. If one of the ends is
an interval, the link would be a belt. The link is in fact a quadratic curve.

The height of the link can be controlled by top.ratio argument in cir-

cos.link which is the ratio between the length of blue line and the red line
(figure 10). Links do not hold any position of track.

3.10 The panel.fun argument in circos.trackPlotRegion

panel.fun argument in circos.trackPlotRegion is useful to apply plottings as
soon as the cell has been created. This self-defined function need two arguments
x and y which are data points in the cell. The value for such values are extracted
from x and y in circos.trackPlotRegion function according to the category
argument factors. In the following example, x in category a in panel.fun

would be 1:3 and y values are 5:3.

> factors = c("a", "a", "a", "b", "b")

> x = 1:5

> y = 5:1

> circos.trackPlotRegion(factors = factors, x = x, y = y,

+ panel.fun = function(x, y) {

+ circos.points(x, y)

+ })

3.11 High level plotting functions

With those low level function such as circos.lines, circos.lines, more high
level functions can be easily written. The package provides a high level func-
tion circos.trackHist which draws the histogram or the density distribution
of data (figure 11). So users would know how to implement other high level
function to support graphs such as barplot, heatmap, et al. accroding to the
source code of circos.trackHist.

In figure 11, the first track is histograms in which all the ylim are same.
The second track is histograms in which force.ylim is FALSE. The third and
the fourth tracks are density distributions in which ylims are forced same or
different.

3.12 Other functions

draw.sector can be used to draw sectors or part of a ring. This is useful if
you want to hightlight some part of your circos plot. As you can think, this
function need argument of the position of circle center, the start degree and the
end degree for the sector, and radius for two edges (or one edge) of the arc. An
example is figure 12.

19

Figure 11: Drawing histograms

20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 12: Hightlight sectors

21

3.13 Do not forget circos.clear

You should call circos.clear to complete end the circos plottings. Because
there are several global variables tracing the status of the plot such as the index
and position for the newest track. Such variables should be reset before drawing
any new circos figures.

4 Advanced plottings

4.1 Draw part of the circos layout

canvas.xlim and canvas.ylim in circos.par is useful to draw only part of
circle. Here only sector between 0◦ to 90◦ are plotted (figure 13). Codes are as
follows. First, four sectors with the same length are initialized. Then only the
first sector is drawn with points and lines.

> par(mar = c(1, 1, 1, 1))

> circos.par("canvas.xlim" = c(0, 1), "canvas.ylim" = c(0, 1),

+ "clock.wise" = FALSE)

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> circos.points(runif(100), runif(100), pch = 16, cex = 0.5)

> circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)

> circos.updatePlotRegion(sector.index = "a", bg.border = "black")

> circos.lines(1:100/100, runif(100), pch = 16, cex = 0.5)

> circos.clear()

4.2 Combine two parts of circos layouts

Since the circos layout by circlize finally plotted in an ordinary R plotting
system. Two seperated circos layouts can be plotted together by some tricks.
Here the key is par(new = TRUE) which allows to draw a new figure on the
previous plotting region. Just remember the radius of the circos is always 1.

The first example is to draw one outer circos and an inner circos (figure 14).

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ circos.text(0.5, 0.5, "outer circos")

+ })

> circos.clear()

>

22

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 13: Part of the circos layout

23

outer circosou
te

r c
irc

os

ou
te

r c
irc

os

outer circos

inner circos

in
ne

r
ci

rc
os

inner circos

Figure 14: An outer and an inner circos layout

> par(new = TRUE)

> circos.par("canvas.xlim" = c(-2, 2), "canvas.ylim" = c(-2, 2))

> factors = letters[1:3]

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ circos.text(0.5, 0.5, "inner circos")

+ })

> circos.clear()

The second example is to draw to seperated circos layouts in which every
circos only contains a half (figure 15).

> library(circlize)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.par("canvas.xlim" = c(-1, 1.2), "canvas.ylim" = c(-1, 1.2),

+ start.degree = -45)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)

24

> circos.updatePlotRegion(sector.index = "a")

> circos.text(0.5, 0.5, "first one")

> circos.updatePlotRegion(sector.index = "b")

> circos.text(0.5, 0.5, "first one")

>

> circos.clear()

>

> par(new = TRUE)

> circos.par("canvas.xlim" = c(-1.2, 1), "canvas.ylim" = c(-1.2, 1),

+ start.degree = -45)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), bg.col = NA, bg.border = NA)

> circos.updatePlotRegion(sector.index = "d")

> circos.text(0.5, 0.5, "second one")

> circos.updatePlotRegion(sector.index = "c")

> circos.text(0.5, 0.5, "second one")

>

> circos.clear()

4.3 Drawing outside and combine with canvas coordinate

Sometimes it is very useful to draw something outside the plotting region of cell.
The following is a simple example to illustrate such circumstance (figure 16).
The text is drawn outside the cell.

> set.seed(12345)

> par(mar = c(1, 1, 1, 1))

> factors = letters[1:4]

> circos.par("canvas.xlim" = c(-1.5, 1.5), "canvas.ylim" = c(-1.5, 1.5),

+ "gap.degree" = 10)

> circos.initialize(factors = factors, xlim = c(0, 1))

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ circos.points(1:20/20, 1:20/20)

+ })

> circos.lines(c(1/20, 0.5), c(1/20, 3), sector.index = "d", straight = TRUE)

> circos.text(0.5, 3, "mark", sector.index = "d", adj = c(0.5, 0))

>

> circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

+ circos.points(1:20/20, 1:20/20)

+ })

> text(0, 0, "this is\nthe center", cex = 1.5)

> legend("bottomleft", pch = 1, legend = "this is the legend")

>

> circos.clear()

25

first one

fir
st

 o
ne

second one

second one

Figure 15: Two seperated circos layouts

26

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●

●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●●●●●●

●●●●●●●●
●

●
●

●
●
●
●
●
●
●
●
●

m
ark

●
●
●
●
●
●
●

●
●

●
●

●●●●●●●●●

●●●●●●●●●●●●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●
●
●
●
●this is

the center

● this is the legend

Figure 16: Drawing outside the cell and combine with canvas coordinate

Since the finnal graph is drawn in the ordinary canvas plotting region, we
can add additional graphs through the traditional way. You can also see how
text and legend work in the above example code.

27

	Introduction
	A quick glance
	Details
	Rules to draw the circos layout
	Coordinate transformation
	Sectors and tracks
	Circos parameters
	Points
	Lines
	Text
	Axis
	Links
	The panel.fun argument in circos.trackPlotRegion
	High level plotting functions
	Other functions
	Do not forget circos.clear

	Advanced plottings
	Draw part of the circos layout
	Combine two parts of circos layouts
	Drawing outside and combine with canvas coordinate

