Using the cherry R package

Jelle Goeman Aldo Solari

Package version 0.2-6
Date 2012-04-04

Contents
1 Citing cherry

2 Introduction
2.1 Exploratory inference L.
2.2 Intersection hypotheses and local tests

3 Methods based on p-values
3.1 Fishercombinations
3.2 The Simesinequality

4 The general method
4.1 Definingalocaltest
4.2 Performing closed testing
4.3 Defining rejections and the shortlist
44 Adjustedp-values

\ORN 8]

N B~ W

1 Citing cherry

If you use the cherry package, please cite the paper J. J. Goeman and A. Solari, Multiple
testing for exploratory research, Statistical Science, 26 (4) 584-597.

2 Introduction

The cherry package is a package for multiple hypothesis testing. The approach used
by cherry is specially designed for exploratory inference.

2.1 Exploratory inference

Suppose a researcher has performed an experiment, possibly a genomics experiment
or some other experiment in which a large or small number of statistical hypotheses
have been tested. From the results of the experiment the user wants to select a number
of ‘promising’ results. Which results are considered promising may depend on any
mixture of considerations, such as (unadjusted) significance, effect size, and domain
knowledge. One question the researcher may ask is how many false positive findings
are present in the selected list. This is the question the cherry package is designed to
answer.

The suggested way of working with this package is as follows. Before the data
are gathered, two choices have to be made. The first choice is what hypotheses are
of potential interest. This is the working collection of hypotheses. The second choice
is what statistical test is to be done for each hypothesis, and for each intersection (or
combination) of hypotheses. Examples of such choices are given in the rest of this
vignette. Nothing else has to be decided before data collection. After data collection,
the researcher can study the data as much as he or she likes, before deciding on a
collection of rejected hypotheses of interest. This choice, together with the working
collection and the tests is fed into the cherry package, which will return a confidence
statement on the maximum number of true null hypotheses, i.e. false rejections, among
the selected set. On the basis of this assessment, the researcher may reevaluate and
come up with a different selection of interesting hypotheses, for which cherry will
again give a confidence statement. These confidence statements are not compromised
by previous looks at the data, but remain valid however many times the researcher
comes up with a new set.

In cherry the traditional roles of user and algorithm in multiple testing have been
reversed. In classical multiple testing procedures the user’s task is to set an error rate to
be controlled, and the task of the multiple testing procedure is to decide what hypothe-
ses to reject. In cherry, the user chooses what hypotheses to reject, and the multiple
testing procedure calculates the error rate. This way of working allows the user much
more freedom and control. Most importantly, the error rates that are calculated are not
invalidated by multiple looks at the data, and the user is free to study the data in every
possible way before finally deciding what rejections to make. This makes the method
ideally suited for exploratory research.

Throughout the package and the vignette, the words “true hypothesis” and “false
rejection” are used interchangeably, as rejection of a true hypothesis amounts to a false
rejection. Similarly, “false hypothesis” and “correct rejection” often used as synonyms.

The theory behind the methods is explained in detail in the papers Goeman and
Solari (2011a) and Goeman and Solari (2011b) and we refer readers to these papers for

details. In this document, we present some worked out examples to demonstrate how
cherry can be used and how its results should be interpreted. We start in Section 3 with
methods based on p-values that use either Fisher combinations or Simes inequality to
combine p-values. These methods have the advantage that they are quick to use even if
tens of thousands of hypotheses have been tested, but they do depend on assumptions
and cannot always be used. Next, Section 4 presents the general method in its full
flexibility. This general method is computationally quite intensive and should only be
used if the total number of hypotheses in the multiple testing problem is not much
greater than 20. More methods of different types will be added to the cherry package
in the future.

For an explanation of the theory behind the methods, and for more explanation and
examples, see the papers Goeman and Solari (2011a) and Goeman and Solari (2011b).

2.2 Intersection hypotheses and local tests

The cherry package assumes that before data collection the user is able to make a com-
plete list of all hypotheses that are of potential interest. For each of these hypotheses,
a statistical hypothesis test must be formulated. Moreover, statistical tests must also be
formulated for all possible intersections of these chosen hypotheses. An intersection
hypothesis of a collection of hypotheses is a hypothesis that is true if and only if every
hypothesis in the collection of hypotheses is true. For example, if null hypothesis H 4
asserts that the mean treatment effect of drug A is zero, and the hypothesis Hp as-
serts that the mean treatment effect of drug B is zero, then the intersection hypothesis
Hsp = Hy N Hp asserts that the treatment effects of both drugs are zero. A statistical
test for an intersection hypothesis is known as a global test or a local test. Examples
of frequently used global and local tests are F-tests in ANOVA models or regression
models, or gene set tests in microarray data analysis.

The user of the cherry package is free to choose any local test that is valid for the
data at hand. The methods in Section 4 allow the user to work with any self-defined lo-
cal test. Unfortunately, these methods are computationally very expensive, and should
only be used when the total number of hypotheses in the multiple testing problem is
not much greater than 20. For specific choices of the local test, that use either Fisher
combinations or Simes inequality, quicker algorithms are available. Special functions
for those local tests are describe in Section 3

3 Methods based on p-values

In this section we present some simple methods that can be used when each hypothesis
in the working collection has been tested and given a p-value, and when intersection
hypotheses are tested with simple p-value-based global tests such as Simes inequality
or Fisher combinations. We will illustrate these methods using a data set NAEP taken
from Benjamini and Hochberg (2000)

> library (cherry)
> data (NAEP)

These are p-values for 34 null hypotheses for 34 American states. In each state, a
test was performed for the hypothesis that there was no change in the average eighth-
grade mathematics achievement scores between 1990 and 1992. We can assume the

data for different states, and therefore the p-values, to be independent. The p-values
are sorted here, but that is not necessary for cherry.

The fact that we have p-values means that the choice of a statistical test for the
individual hypotheses has already been made. The only remaining choice is the test for
intersection hypotheses. Two options to test these intersection hypotheses are presented
in this section.

3.1 Fisher combinations

Fisher combinations are based on the fact that if a p-value p; is under the null hy-
pothesis, it is uniformly distributed (or stochastically smaller than that). Consequently,
—log(p;) is exponentially distributed with parameter A\ = 1, and —2log(p;) is x>
distributed with 2 degrees of freedom. If a number of r p-values is independent, then
—2%""_ log(p;) is x? distributed with 27 degrees of freedom. This suggests the Fisher
combination test, a test for intersection hypotheses based on negative sums of loga-
rithms of p-values that uses critical values from a y2-distribution. This test is valid
only when p-values for hypotheses that are under the null are independent. Fisher
combination tests are powerful for detecting the presence of many small effects, but
not so powerful for detecting few larger ones. Functions in cherry that use this test are
the pickFisher and curveFisher functions.

Suppose the researcher has chosen Fisher combinations and, after looking at the
NAEP data, picks the hypotheses HI, MN and IA, and wants to know how many correct
rejections he or she would make when rejecting these null hypotheses. This can be
found with

> pickFisher (NAEP, c("HI", "MN", "IA"))

Rejected 3 hypotheses at confidence level 0.95.
Correct rejections >= 2; False rejections <= 1.

The hypotheses are referred to by name in this function call, but they can be referred
to by any other selection method method, such as a logical vector, index or negative
index. We can conclude at the default 95% confidence that among the hypotheses HI,
MN and IA there are at least 2 false hypotheses and at most one true one.

Leaving out the second argument, select, means rejecting all 34 hypotheses. This
gives us an upper confidence bound to the number of true hypotheses in the complete
working collection

> pickFisher (NAEP)

Rejected 34 hypotheses at confidence level 0.95.
Correct rejections >= 19; False rejections <= 15.

There are at least 19 correct rejections, i.e. false null hypotheses, and at most 15
false rejections, i.e. true null hypotheses among the 34 hypotheses. The 95% confi-
dence set for the number of true null hypotheses among the 34 goes from 0 (lower
bound) to 15 (upper bound), and consequently the same confidence set for the num-
ber of false hypothese from 19 to 34. For the selected set HI, MN and IA, the 95%
confidence set for the number of true hypotheses goes from O to 1. It is important to
know (and central to the method underlying the cherry package) that all these confi-
dence intervals are simultaneous. There is no need to correct for multiple testing when
selecting the most interesting one from all these confidence intervals.

Several options can be set in pickFisher. Setting the type I error rate alpha
(default 0.05) changes the confidence level of the statements made. Setting silent to
TRUE suppresses printing to the screen of the result. The pickFisher function’s
return value is the lower bound of the number of false null hypotheses, i.e. correct
rejections.

> res <- pickFisher (NAEP, silent=TRUE)
> res

[1] 19

The curveFisher function can give some additional information over
pickFisher. Called without further arguments, the function returns lower bounds
for the number of false null hypotheses, like pickFisher, but simultaneously for se-
lecting the hypotheses with the smallest 1,2,3,..., p-values. The results are displayed
in a graph unless the plot argument is set to FALSE. From these results, we see with
95% confidence that 19 false null hypotheses are are present among all 34 hypotheses,
as we saw before, but also that these 19 false null hypotheses must be among the 25
hypotheses with smallest p-values.

> res <- curveFisher (NAEP)
> res

RI NC HI MN NH IA CO TX ID AZ KY OK CT NM WY FL PA NY OH CA
1 2 3 4 4 5 6 7 8 910 10 11 11 12 13 14 15 15 16

MD WV VA WI IN LA MI DE ND NE NJ AL AR GA

17 18 18 18 19 19 19 19 19 19 19 19 19 19

The curveFisher function may be further tailored. The select argument can be used
to consider only a subset of the hypotheses, and the function will return the number of
false null hypotheses among the 1,2,...smallest p-values in the selected set. Alterna-
tively, the order argument can be used to set the order in which hypotheses should be
rejected, rather than taking the order of increasing p-values. Compare

> curveFisher (NAEP, select=c(8,3,4,2), plot=FALSE)

NC HI MN TX
1 2 3 3

> curveFisher (NAEP, order=c(8,3,4,2), plot=FALSE)

TX HI MN NC
o 1 2 3

Here, the first call uses the rejection order NC, HI, MN, TX, determined by the
p-values; the second uses the rejection order TX, HI, MN, NC, given by the input.
We interpret the second result as follows. Choosing TX only we have a result of O,
which means that we do not have 95% confidence that TX corresponds to a false null
hypothesis. The second result is 1, which means that choosing both TX and HI, we
have detected at least one false null hypothesis with 95% confidence. The third result,
2, refers too rejection of TX, HI and MN, the fourth result to the collection of all four
hypotheses.

> curveFisher (NAEP)

o _
™ — -
—— correct rejections (95% conf.) -
---- others
o L
@ o
0 _| e
« .
) -
c 3
h=] r
- o "~
3 N 7
13
S
— n _|
o) —
Qo
[S
3
S o
S 4
o -
o 4

I I I I I I I I
0 5 10 15 20 25 30 35

number of rejections

3.2 The Simes inequality

The Simes inequality says that for a sequence of ordered p-values p(y), . . ., p(r), under
the null hypothesis we have p(;) > ia/r simultaneously for all ¢ with probability at
least 1 — «.. This inequality holds if p-values are independent, as shown by Simes, but
also under some forms of positive correlation, as shown by Sarkar and Chang (1997).
Simes’ inequality suggests Simes’ test, a test that rejects an intersection hypothesis of
r hypotheses if either the smallest p-value is smaller than «/r or the second smallest
is smaller than 2a/r, or ..., or the largest p-value is smaller than ra/r = «. This
test can be used as a local test in the cherry package. It is valid if p-values of true null
hypotheses are always either independent or positively correlated. An alternative, more
conservative test was formulated by Hommel; this test is valid whatever the distribution
of the p-values.

The functions pickSimes and curveSimes work in exactly the same way as
pickFisher and curveFisher above, and they use the same options and argu-
ments.

> pickSimes (NAEP, c ("HI", "MN", "IA"))

Rejected 3 hypotheses. At confidence level 0.95:
Correct rejections >= 2; False rejections <= 1.

> curveSimes (NAEP, plot=FALSE)

RI NC HI MN NH IA CO TX ID AZ KY OK CT NM WY FL PA NY OH CA
1 2 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6

MD WV VA WI IN LA MI DE ND NE NJ AL AR GA
6 6 6 6 6 6 6 6 6 6 6 6 6 6

Comparing these results with the ones obtained for the Fisher combinations above,
we see that the Simes test allows fewer rejections. This is not generally true, and Simes
may be more powerful in other data sets. In general, Fisher combinations can be said to
have more power if there are many small effect sizes, whereas Simes has more power
in the presence of a few stronger effects.

The more conservative Hommel variant that makes no assumptions on the p-value
distribution can be obtained by setting hommel=TRUE. This variant is more conserva-
tive than one based on the regular Simes test.

> pickSimes (NAEP, c("HI","MN","IA"), hommel=TRUE)

Rejected 3 hypotheses. At confidence level 0.95:
Correct rejections >= 2; False rejections <= 1.

> curveSimes (NAEP, plot=FALSE, hommel=TRUE)

RI NC HI MN NH IA CO TX ID AZ KY OK CT NM WY FL PA NY OH CA
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
MD WV VA WI IN LA MI DE ND NE NJ AL AR GA
4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 The general method

There are many more possibilities than Fisher combinations or Simes inequality to
make local tests. The closed function and its derivatives in cherry allow users
to work with any type of local test. When working with such a user-defined lo-
cal test, the output possibilities are greater than with the simple pickFisher and
curveFisher functions above.

4.1 Defining a local test

We first illustrate the general method with the same local test as was used there: the
Fisher combinations.

To illustrate these data we cannot take the NAEP data, as for 34 hypotheses the
calculations will take too long. In fact, the code will not run for a collection of more
than 31 hypotheses. We shall illustrate the general approach with a very small data set
of 4 p-values, taken from Huang and Hsu (2007), but we take them out of the context
they were presented in in that paper.

> ps <- c(A = 0.051, B = 0.064, C = 0.097, D = 0.108)
To define a local test, we must create an R function, such as the following

> mytest <- function (hypotheses) {

+ p.vals <- ps[hypotheses]

+ m <- length(p.vals)

+ statistic <- -2 % sum(log(p.vals))

+ p.out <- pchisqg(statistic, df=2*m, lower.tail=FALSE)
+ return (p.out)

+

}

This function takes as input the names of the hypotheses that the intersection hy-
pothesis is an intersection of, and returns a p-value, as calculated by the Fisher combi-
nations test. Note that the function references the ps data we’ve just created. We can
now call our test with

> mytest ("A")

[1] 0.051

> mytest (c("B","C","D"))
[1] 0.02347135

> mytest (names (ps))

[1] 0.008391265

Note that calling mytest on a single hypothesis name just returns the p-value of
that hypothesis.

A user can define their own favorite local test in exactly this way, by creating an R
function that takes a vector of hypothesis names as input and gives a valid p-value for
the corresponding intersection null hypothesis as output.

The mytest function used p-values as input data. This is not necessary or even
typical. As a second example, we present a function for a local test based on the F-test
in a multiple linear regression using the LifeCycleSavings example data. The
null hypothesis of this test is the hypothesis that the covariates in its Ayps argument all
have regression coefficient zero in the multiple regression model fitted in fullfit
below.

> hypotheses <—- c("popl5", "pop75", "dpi", "ddpi")
> fullfit <- Im(sr~., data=LifeCycleSavings)

> myFtest <- function (hyps) {

+ others <- setdiff (hypotheses, hyps)

+ form <- formula (paste(c("sr~", paste(c("1", others), collapse="+"))))
+ anov <- anova (lm(form, data=LifeCycleSavings), fullfit, test="F")

+ pvalue <- anovS"Pr("[2] # NB replace Pr by P for for R < 2.14.0
+ return (pvalue)

+ }

> myFtest (c("popl5", "pop75"))

[1] 0.004834923

4.2 Performing closed testing

Next, we can perform the closed testing procedure using this definition of the local test.
This is done using the function closed, as follows

> ct <- closed(mytest, names (ps))

Note that there is no need anymore to specify the data set that is used, because the
reference to the data set is contained in the definition of mytest. The calculations can
take a large amount of time, especially if the number of hypotheses is large.

By default, all tests are performed at level alpha = 0.05 and only rejection or ac-
ceptance of hypotheses is stored, not adjusted p-values. It is possible to change the
alpha argument to a different value, or to do the calculations using adjusted p-values
so that the choice of the significance level may be postponed. This will be explained
below in Section 4.4.

Using the ct object created by the call to closed we can now perform analysis
by asking for the number of true and false hypotheses among certain sets of hypotheses
of interest. Just displaying the object,

> ct

Closed testing result on 4 elementary hypotheses.
At confidence level 0.95: False hypotheses >= 2; True hypotheses <= 2.

gives a lower confidence bound on the number of false hypotheses among the collec-
tion of all four tested hypotheses. We conclude that there are at least two false null
hypotheses among the four tested ones. If we are interested in a subset of hypotheses,
we can use the pick function.

> pick(ct, c("A", "B"))

Rejected 2 hypotheses.
At confidence level 0.95: Correct rejections >= 1; False rejections <= 1.

> piCk(Ct, C("C", "D"))

Rejected 2 hypotheses.
At confidence level 0.95: Correct rejections >= 0; False rejections <= 2.

This gives us confidence limits for the number of false hypotheses in each chosen
subset. The pick function returns the lower bound on the number of false hypotheses.
It also displays the information on the screen, but this can be switched off if desired
by setting the silent argument to TRUE. If the second argument to pick is left out,
it is assumed that the set of all hypotheses is meant. To get back the names of the
hypotheses, type

> hypotheses (ct)
[l] "A" "B" "C" "D"

From the results of pick above we see that there is evidence for one false hypothe-
sis among A and B, but no such evidence among C and D. This seems to contradict the
earlier statement that there was evidence for at least two false null hypotheses among
the total set of A, B, C and D. However, this is only an apparent contradiction: the
amount of evidence for a second false null hypothesis is not sufficient in the observed
data of A and B alone, nor in the data of C and D alone, but the combined evidence of
the data from all four hypotheses is sufficient.

Just like pickSimes and pickFisher, pick returns the lower confidence
bound for the number of false null hypotheses as a number.

> res <- pick(ct, c("C", "D"), silent=TRUE)
> res

[1]1 O

4.3 Defining rejections and the shortlist

The pick function allows users to check out any desired set of hypotheses, but gives
no guidance as to what sets of hypotheses to probe. Two other functions can help to
see structure in the results of the closed testing procedure.

The first of these is the defining function, which calculates the defining rejec-
tions. The defining rejections are a collection of sets of hypotheses with the property
that for each set in the collection we can be confident that it contains at least one false
null hypothesis. The collection of defining hypotheses is minimal in the sense that there

are no smaller sets for which the same statement holds. In our ct object, the defining
rejections are

> defining(ct)

[l] "A" "B"
([21]
[l] "A" "C"
[[3]1]
[l] "B" "C"
([4]]
[l] "A" "D"
[[5]]
[l] "B" "D"

For each of the listed defining sets, we can conclude that they contain at least one
false hypothesis. For example, at least one of A and B must be false, but also at least
one of A and C, and at least one of B and C. If any of the defining sets is a singleton,
we can confidently conclude that the corresponding hypothesis is a false one.

The dual of the defining sets is the shortlist, introduced by Meinshausen (2011).
Just like the defining sets, the shortlist is a collection of sets of hypotheses, but for
the shortlist collection we can make the statement that at least one of the sets in the
collection contains only false hypotheses. In the example,

> shortlist (ct)

([1]]
[1] "A" "B"

[([2]]
[l] "B" "C" "D"

(03]
[l] "A" "C" "D"

the shortlist contains three sets. We conclude that either both hypotheses A and B are
false, or all three hypotheses A and C and D or all three hypotheses B and C and D.
Just as with the defining rejections, the shortlist only gives a minimum at the chosen

10

significance level. The possibility that all four hypotheses are false, for example, is
equally compatible with the results of the closed testing procedure. However, the true
set must contain at least one of the shortlist sets completely.

4.4 Adjusted p-values

Earlier calculations were all done at a significance level alpha of 0.05, and the results
only used the rejection status of hypotheses. There is additional information is the p-
values, however, and the closed function may also be used with adjusted p-values
rather than a hard rejection yes/no. By definition, an adjusted p-value is the smallest
alpha-level at which a certain hypothesis can be rejected in the multiple testing proce-
dure. Using adjusted p-values is comparable to not setting the alpha level in advance,
but simultaneously doing the same test procedure at all alpha levels. To use adjusted
p-values, use

> cta <- closed(mytest, names (ps), alpha = NA)

Calculation times based on adjusted p-values can be substantially longer because
more tests need to be calculated. If the user is not interested in adjusted p-values above
a certain threshold, say 0.1, an alternative call is

> ctbh <- closed(mytest, names (ps), alpha = 0.1, adjust = TRUE)

In this case, all adjusted p-values greater than the chosen threshold will be set to 1.
The pick function works slightly differently if adjusted p-values were used. It
simultaneously presents results for all levels of alpha.

> pick(cta)

alpha confidence true<= false>=

1 0.008391265 0.9916087 3 1
2 0.023471346 0.9765287 2 2
3 0.058232610 0.9417674 1 3
4 0.108000000 0.8920000 0 4

The results should be read as follows. Up to a = 0.0084 we only have the trivial
result that the number of true hypotheses is < 4. From o = 0.0084 to o = 0.023 we
get the result that at least one hypothesis is false; from o = 0.023 to o = 0.058, we
get at least false two hypotheses, etcetera. In terms of adjusted p-values, the adjusted
p-value for the statement that there are ate least two false null hypotheses among the
four can be read off as 0.02347. The confidence column is simply 1 — a.

To extract adjusted p-values directly, there is the adjusted function. Calling
adjusted on a set of hypotheses without extra arguments returns the adjusted p-
value of the corresponding intersection hypothesis. An additional third argument n can
be given to get the adjusted p-value for making the statement that at least n false null
hypotheses occur in the chosen set, i.e. corresponding to the null hypothesis that at
most n — 1 false null hypotheses are present.

> adjusted(cta, c("A", "B", "C"))

[1] 0.01314629

11

> adjusted(cta, c("A", "B", "C"), n=2)
[1] 0.03775654

We conclude that the compound hypothesis that no hypothesis among A, B and C is
false, and the compound hypothesis that at most one among A, B, and C is false are
both rejected at o = 0.05, with adjusted p-values 0.013 and 0.038, respectively.

The pick function has one other additional feature in that the number in the table
can be visualized in a plot. Setting plot = TRUE in pick results in a plot such as
in Figure 1. In this plot, the adjusted p-values can be read off as tail probabilities in
the plotted “distribution”. These values are displayed at the top of the plot. The plot
argument is ignored if adjusted p-values were not calculated.

> pick(cta, names(ps), plot=TRUE)

0.108 0.058 0.023 0.008

o]
S ©
°
c
=
12}
g o |
€ o
2
E
®©
Qo
<} <
o o |
[0
o
c
(]
=]
s o |
(@] o

g _ | E—1

0 1 2 3 4

True hypotheses

Figure 1: pick (cta, names (ps), plot=TRUE)

The defining and shortlist functions can be used for objects with adjusted
p-values, but a specific value of alpha must be specified.

> shortlist (cta, alpha=0.05)

([1]]
[1] "A" "B"

[[2]]
[l] "B" "C" "D"

12

(031]
[1] "A" "C" "D"

It is also possible to set the alpha level to be used in such cases in advance with the
alpha function. Setting

> alpha(cta) <- 0.05

will cause functions such as pick, defining, shortlist to work as if alpha
= (.05 was set in advance. The object can be reset to adjusted p-values with

> alpha(cta) <- NA

References

Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discov-
ery rate in multiple testing with independent statistics. Journal of Educational and
Behavioral Statistics, 25(1):60-83.

Goeman, J. and Solari, A. (2011a). Multiple testing for exploratory research. Statistical
Science, 26(4):584-597.

Goeman, J. and Solari, A. (2011b). Rejoinder. Statistical Science, 26(4):608-612.

Huang, Y. and Hsu, J. (2007). Hochberg’s step-up method: cutting corners off holm’s
step-down method. Biometrika, 94(4):965-975.

Meinshausen, N. (2011). Discussion of multiple testing for exploratory research by J.
J. Goeman and A. Solari. Statistical Science, 26(4):601-603.

Sarkar, S. and Chang, C. (1997). The simes method for multiple hypothesis testing with
positively dependent test statistics. Journal of the American Statistical Association,
pages 1601-1608.

13

