Ever used an R function that produced a not-very-helpful error message, just to discover after minutes of debugging that you simply passed a wrong argument?
Blaming the laziness of the package author for not doing such standard checks (in a dynamically typed language such as R) is at least partially unfair, as R makes theses types of checks cumbersome and annoying. Well, that’s how it was in the past.
Enter checkmate.
Virtually every standard type of user error when passing arguments into function can be caught with a simple, readable line which produces an informative error message in case. A substantial part of the package was written in C to minimize any worries about execution time overhead.
As a motivational example, consider you have a function to calculate the faculty of a natural number and the user may choose between using either the stirling approximation or R’s factorial
function (which internally uses the gamma function). Thus, you have two arguments, n
and method
. Argument n
must obviously be a positive natural number and method
must be either "stirling"
or "factorial"
. Here is a version of all the hoops you need to jump through to ensure that these simple requirements are met:
fact <- function(n, method = "stirling") {
if (length(n) != 1)
stop("Argument 'n' must have length 1")
if (!is.numeric(n))
stop("Argument 'n' must be numeric")
if (is.na(n))
stop("Argument 'n' may not be NA")
if (is.double(n)) {
if (is.nan(n))
stop("Argument 'n' may not be NaN")
if (is.infinite(n))
stop("Argument 'n' must be finite")
if (abs(n - round(n, 0)) > sqrt(.Machine$double.eps))
stop("Argument 'n' must be an integerish value")
n <- as.integer(n)
}
if (n < 0)
stop("Argument 'n' must be >= 0")
if (length(method) != 1)
stop("Argument 'method' must have length 1")
if (!is.character(method) || !method %in% c("stirling", "factorial"))
stop("Argument 'method' must be either 'stirling' or 'factorial'")
if (method == "factorial")
factorial(n)
else
sqrt(2 * pi * n) * (n / exp(1))^n
}
And for comparison, here is the same function using checkmate:
fact <- function(n, method = "stirling") {
assertCount(n)
assertChoice(method, c("stirling", "factorial"))
if (method == "factorial")
factorial(n)
else
sqrt(2 * pi * n) * (n / exp(1))^n
}
The functions can be split into four functional groups, indicated by their prefix.
If prefixed with assert
, an error is thrown if the corresponding check fails. Otherwise, the checked object is returned invisibly. There are many different coding styles out there in the wild, but most R programmers stick to either CamelCase
or underscore_case
. Therefore, checkmate
offers all assert functions in both flavors: assert_count
is just an alias for assertCount
but allows you to retain your favorite style.
The family of functions prefixed with test
always return the check result as logical value. Again, you can use test_count
and testCount
interchangeably.
Functions starting with check
return the error message as a string (or TRUE
otherwise) and can be used if you need more control and, e.g., want to grep on the returned error message. Note that this is a feature only very few advanced users need and checkmate
currently only provides a CamelCase variant.
expect
is the last family of functions and is intended to be used with the testthat package. All performed checks are logged into the testthat
reporter. Because testthat
uses the underscore_case
, the extension functions only come in this flavor.
You can use assert to perform multiple checks at once and throw an assertion if all checks fail.
The following functions allow a special syntax to define argument checks using a special format specification. E.g., qassert(x, "I+")
asserts that x
is an integer vector with at least one element and no missing values. This very simple domain specific language covers a large variety of frequent argument checks with only a few keystrokes. You choose what you like best.
To extend testthat, you need to IMPORT, DEPEND or SUGGEST on the checkmate
package. Here is a minimal example:
# file: tests/test-all.R
library(testthat)
library(checkmate) # for testthat extensions
test_check("mypkg")
Now you are all set and can use more than 30 new expectations in your tests.
test_that("checkmate is a sweet extension for testthat", {
x = runif(100)
expect_numeric(x, len = 100, any.missing = FALSE, lower = 0, upper = 1)
# or, equivalent, using the lazy style:
qexpect(x, "N100[0,1]")
})
In comparison with tediously writing the checks yourself in R (c.f. factorial example at the beginning of the vignette), R is sometimes a tad faster while performing checks on scalars. This seems odd at first, because checkmate is mostly written in C and should be comparably fast. Yet many of the functions in the base
package are not regular functions, but primitives. While primitives jump directly into the C code, checkmate has to use the considerably slower .Call
interface. As a result, it is possible to write (very simple) checks using only the base functions which, under some circumstances, slightly outperform checkmate. However, if you go one step further and wrap the custom check into a function to convenient re-use it, the performance gain is often lost (see benchmark 1).
For larger objects the tide has turned because checkmate avoids many unnecessary intermediate variables. Also note that the quick/lazy implementation in qassert
/qtest
/qexpect
is often a tad faster because only two arguments have to be evaluated (the object and the rule) to determine the set of checks to perform.
Below you find some (probably unrepresentative) benchmark. But also note that this one here has been executed from inside knitr
which is often the cause for outliers in the measured execution time. Better run the benchmark yourself to get unbiased results.
x
is a flaglibrary(ggplot2)
library(microbenchmark)
x = TRUE
r = function(x, na.ok = FALSE) { stopifnot(is.logical(x), length(x) == 1, na.ok || !is.na(x)) }
cm = function(x) assertFlag(x)
cmq = function(x) qassert(x, "B1")
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval cld
## r(x) 6.246 6.5790 7.87202 6.9135 7.6855 36.731 100 b
## cm(x) 1.811 1.9435 3.55258 2.0710 2.2420 121.982 100 a
## cmq(x) 1.335 1.4875 2.24626 1.6035 1.7835 35.007 100 a
autoplot(mb)
x
is a numeric of length 1000 with no missing nor NaN valuesx = runif(1000)
r = function(x) stopifnot(is.numeric(x) && length(x) == 1000 && all(!is.na(x) & x >= 0 & x <= 1))
cm = function(x) assertNumeric(x, len = 1000, any.missing = FALSE, lower = 0, upper = 1)
cmq = function(x) qassert(x, "N1000[0,1]")
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval cld
## r(x) 57.300 59.355 62.40023 60.6350 63.5395 93.628 100 b
## cm(x) 5.273 5.736 7.33886 6.0540 6.3420 81.668 100 a
## cmq(x) 5.889 6.363 6.99101 6.5815 6.8390 25.821 100 a
autoplot(mb)
x
is a character vector with no missing values nor empty stringsx = sample(letters, 10000, replace = TRUE)
r = function(x) stopifnot(is.character(x) && !any(is.na(x)) && all(nchar(x) > 0))
cm = function(x) assertCharacter(x, any.missing = FALSE, min.chars = 1)
cmq = function(x) qassert(x, "S+[1,]")
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval
## r(x) 1209.512 1211.4380 1300.99355 1213.1150 1238.5870 2546.690 100
## cm(x) 29.368 30.1175 33.35533 30.6285 31.5285 202.589 100
## cmq(x) 40.996 41.4110 44.73679 42.1005 45.0145 68.421 100
## cld
## b
## a
## a
autoplot(mb)
x
is a data frame with no missing valuesN = 10000
x = data.frame(a = runif(N), b = sample(letters[1:5], N, replace = TRUE), c = sample(c(FALSE, TRUE), N, replace = TRUE))
r = function(x) is.data.frame(x) && !any(sapply(x, function(x) any(is.na(x))))
cm = function(x) testDataFrame(x, any.missing = FALSE)
cmq = function(x) qtest(x, "D")
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval cld
## r(x) 78.001 81.1665 116.11556 84.1745 90.4795 1700.497 100 b
## cm(x) 16.278 17.2945 20.93234 17.8275 19.0980 211.253 100 a
## cmq(x) 11.883 12.2780 13.14092 12.6690 12.9135 58.773 100 a
autoplot(mb)
# checkmate tries to stop as early as possible
x$a[1] = NA
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: nanoseconds
## expr min lq mean median uq max neval cld
## r(x) 83767 108429.5 131416.46 110629.5 114044.5 2052589 100 b
## cm(x) 4140 4558.0 5799.51 5356.0 5792.5 16991 100 a
## cmq(x) 717 859.0 1443.97 1165.5 1608.0 14169 100 a
autoplot(mb)
The package registers two functions which can be used in other packages’ C/C++ code for argument checks.
SEXP qassert(SEXP x, const char *rule, const char *name);
Rboolean qtest(SEXP x, const char *rule);
These are the counterparts to qassert and qtest. Due to their simplistic interface, they perfectly suit the requirements of most type checks in C/C++.
For detailed background information on the register mechanism, see the Exporting C Code section in Hadley’s Book “R Packages” or WRE. Here is a step-by-step guide to get you started:
checkmate
to your “Imports” and LinkingTo" sections in your DESCRIPTION file.checkmate.h
. Unfortunately, the include is a bit tedious at the moment and you have to make sure to include the header only once. To work around this issue, write your own header file “include_checkmate.h” (see below for an example).qtest
or qassert
, include checkmate.h
or include_checkmate.h
, respectively./* Examplary header file as workaround for (2) */
#ifndef INCLUDE_CHECKMATE_H_
#define INCLUDE_CHECKMATE_H_
#include <checkmate.h>
#endif
#include "include_checkmate.h"
/* alternative: #include <checkmate.h> */
SEXP double(SEXP x) {
/* x must be a numeric, not NA and must have length 1 */
qassert(x, "N1");
num = REAL(x)[0];
return ScalarReal(num * num);
}
For the sake of completeness, here the sessionInfo()
for the benchmark (but remember the note before on knitr
possibly biasing the results).
sessionInfo()
## R version 3.2.3 (2015-12-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Arch Linux
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] methods stats graphics grDevices utils datasets base
##
## other attached packages:
## [1] microbenchmark_1.4-2.1 ggplot2_2.0.0 checkmate_1.7.2
## [4] rt_0.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.3 knitr_1.12.3 magrittr_1.5 MASS_7.3-45
## [5] splines_3.2.3 devtools_1.10.0 munsell_0.4.3 docopt_0.4.3.3
## [9] lattice_0.20-33 colorspace_1.2-6 multcomp_1.4-4 plyr_1.8.3
## [13] stringr_1.0.0 tools_3.2.3 grid_3.2.3 data.table_1.9.6
## [17] gtable_0.1.2 TH.data_1.0-7 htmltools_0.3 survival_2.38-3
## [21] yaml_2.1.13 digest_0.6.9 crayon_1.3.1 formatR_1.2.1
## [25] codetools_0.2-14 memoise_1.0.0 evaluate_0.8 rmarkdown_0.9.5
## [29] sandwich_2.3-4 stringi_1.0-1 scales_0.3.0 backports_1.0.0
## [33] mvtnorm_1.0-5 chron_2.3-47 zoo_1.7-12