
Simplifying Probabilistic Expressions

Simplifying Probabilistic Expressions in Causal Inference

Santtu Tikka santtu.tikka@jyu.fi
Juha Karvanen juha.t.karvanen@jyu.fi
Department of Mathematics and Statistics
P.O.Box 35 (MaD) FI-40014 University of Jyvaskyla, Finland

Editor:

Abstract
Obtaining a non-parametric expression for an interventional distribution is one of the most
fundamental tasks in causal inference. Such an expression can be obtained for an identifiable
causal effect by an algorithm or by manual application of do-calculus. Often we are left
with a complicated expression which can lead to biased or inefficient estimates when missing
data or measurement errors are involved.

We present an automatic simplification algorithm that seeks to eliminate symbolically
unnecessary variables from these expressions by taking advantage of the structure of the
underlying graphical model. Our method is applicable to all causal effect expressions and is
readily available in the R package causaleffect.

This work is a modification of a manuscript submitted to Journal of Machine Learning
Research
Keywords: simplification, probabilistic expression, causal inference, graphical model,
graph theory

1. Introduction

Symbolic derivations resulting in complicated expressions are often encountered in many
fields working with mathematical notation. These expressions can be derived manually or
they can be outputs from a computer algorithm. In both cases, the expressions may be
correct but unnecessarily complex in a sense that some unrecognized identities or properties
would lead to simpler expressions.

We will consider simplification in the context of causal inference in graphical models
(Pearl, 2009). Advances in causal inference have led to algorithmic solutions to problems such
as identifiability of causal effects and conditional causal effects (Shpitser and Pearl, 2006a,b),
z-identifiability (Bareinboim and Pearl, 2012), transportability and meta-transportability
(Bareinboim and Pearl, 2013b,a) among others. The aforementioned algorithmic solutions
operate symbolically on the joint distribution of the variables of interest and return expres-
sions for the desired queries. These algorithms have been previously implemented in the R
package causaleffect (Tikka and Karvanen, 2015). However, the algorithms are imperfect in
a sense that they often output an expression that is complicated and far from ideal. The
question is whether there exists a simpler expression that is still a solution to the original
problem.

Simplification of expressions may provide significant benefits. First, a simpler expression
can be understood and reported more easily. Second, evaluating a simpler expression will

1

Tikka and Karvanen

be less of a computational burden due to reduced dimensionality of the problem. Third, in
situations where estimation of causal effects is of interest and missing data is a concern,
eliminating variables with missing data from the expression has clear advantages. The same
applies to variables with measurement error.

We begin with presenting in Section 2 a general form of probabilistic expressions that are
often encountered in causal inference. In this paper probabilistic expressions are formed by
products of non-parametric conditional distributions of some variables and summations over
the possible values of these variables. Simplification in this case is the process of eliminating
terms from these expressions by carrying out summations. As our expressions correspond to
causal effects, the expressions themselves take a specific form.

Causal models are typically associated with a directed acyclic graph (DAG) which
represents the functional relationships between the variables of interest. In situations where
the joint distribution is faithful, meaning that no additional conditional independences
are generated by the joint distribution (Spirtes et al., 2000), the conditional independence
properties of the variables can be read from the graph itself through a concept known as
d-separation (Geiger et al., 1990). We will use d-separation as our primary tool for operating
on the probabilistic expressions. The reader is assumed to be familiar with a number of
graph theoretic concepts, that are explained for example in (Koller and Friedman, 2009)
and used throughout the paper.

In Section 3 we present a sound and complete simplification algorithm for probabilistic
expressions defined in Section 2. The algorithm takes as an input the expression to be
simplified and the graph induced by the underlying causal model, and proceeds to construct
a joint distribution of the variables contained in the expression by using the d-separation
criteria. Higher level algorithms that use this simplification procedure are presented in
Section 4. These include an algorithm for the simplification of a nested expression and an
algorithm for the simplification of a quotient of two expressions. Section 5 contains examples
on the application of these algorithms. We have also updated the causaleffect R-package to
automatically apply these simplification procedures to causal effect expressions.

As a motivating example we present an expression of a causal effect given by the algorithm
of Shpitser and Pearl (2006a) that can be simplified.

Figure 1: A graph for the introductory example on simplification.

2

Simplifying Probabilistic Expressions

The causal effect of X on Z1, Z2, Z3 and Y is identifiable in the graph of Figure 1 and
application of the algorithm of Shpitser and Pearl (2006a) gives

P (Z1|Z2, X)P (Z3|Z2)

 ∑
X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)

×
∑
X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)∑
X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2) .

Simplifying this expression is non-trivial and requires knowledge of the underlying graph
depicting the causal model. It turns out that there exists a significantly simpler expression,

P (Z1|Z2, X)P (Z2)
∑
X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2),

for the same causal effect. We will take another look at this example later in Section 5 where
we describe in detail how our procedure can be used to find this simpler expression.

Our simplification procedure is different from the well-known exact inference method of
minimizing the amount of numerical computations when evaluating expressions for condi-
tional and marginal distributions by changing the order of summations and multiplications
in the expression. Variants of this method are known by different names depending on
the context, such as Bayesian variable elimination (Koller and Friedman, 2009) and the
sum-product algorithm (Bishop, 2006) which is a generalization of belief propagation (Pearl,
1988; Lauritzen and Spiegelhalter, 1988). The general principle is the same in all of the
variants, and no symbolic simplification is performed. The exact inference procedure starts
from a joint distribution and finishes with a conditional or a marginal distribution, whereas
our simplification procedure begins with a factorization and asks whether it represents a
joint distribution.

In our setting simplification can be defined explicitly but in general it is difficult to
say what makes one expression simpler than another. Carette (2004) provides a formal
definition for simplification in the context of Computer Algebra Systems (CAS) that operate
on algebraic expressions. Modern CAS systems such as Mathematica (Wolfram Research
Inc., 2015) and Maxima (Maxima, 2014) implement techniques for symbolic simplification.
Bailey et al. (2014) and references therein discuss simplification techniques in CAS systems
further. However to the best of our knowledge, the simplification procedures for proba-
bilistic expressions described in this paper have neither been given previous attention nor
implemented in any existing system.

2. Probabilistic Expressions

Every expression that we consider is defined in terms of a set of variables W. As we are
interested in probabilistic expressions, we also assume a joint probability distribution P for
the variables of W. The most basic of expressions are called atomic expressions which will
be the main focus of this paper.

Definition 1 (Atomic expression) Let W be a set of p discrete random variables and
let P be any joint distribution of W. An atomic expression is a pair

A = A[W] = 〈T,S〉,

3

Tikka and Karvanen

where

1. T is a set of pairs {〈V1,C1〉, . . . , 〈Vn,Cn〉} such that for each Vi and Ci it holds that
Vi ∈W, Ci ⊆W, Vi 6∈ Ci and Vi 6= Vj for i 6= j.

2. S is a set {S1, . . . , Sm} ⊆W such that for each i = 1, . . . ,m it holds that Si = Vj for
some j ∈ {1, . . . , n}.

The value of an atomic expression A is

PA =
∑

S

n∏
i=1

P (Vi|Ci)

The probabilities P (Vi|Ci) are referred to as the terms of the atomic expression. A term
P (Vi|Ci) is said to contain a variable V if Vi = V or V ∈ Ci. We also use the shorthand
notation V [A] := {V1, . . . Vn}. As S is a set, we will only sum over a certain variable once.
All variables are assumed to be univariate and discrete for clarity, but we may also consider
multivariates and situations where some of the variables are continuous and the respective
sums are interpreted as integrals instead. Next we define a more general probabilistic
expression.

Definition 2 (Expression) Let W be a set of p variables and let P be the joint distribution
of W. An expression is a triple

B = B[W, n,m] = 〈B,A,S〉,

where

1. S is a subset of W.

2. For m > 0, A is a set of atomic expressions

{〈T1,S1〉, . . . , 〈Tm,Sm〉}.

If m = 0 then A = ∅.

3. For n > 0, B is a set of expressions

{B1[W1, n1,m1], . . . , Bn[Wn, nn,mn]}

such that Wi ⊆W, ni < n,mi < m for all i = 1, . . . , n. If n = 0 then B = ∅.

The value of an expression B is

PB =
∑

S

n∏
i=1

PBi

m∏
j=1

PAj
,

where an empty product should be understood as being equal to 1.

4

Simplifying Probabilistic Expressions

The recursive definition ensures the finiteness of the resulting expression by requiring
that each sub-expression has fewer sub-expressions of their own than the expression above it.
As the terms of the product in the value of the expression are exchangeable, a single value
might be shared by multiple expressions. Expressions B1[W, n1,m1] and B2[W, n2,m2] are
equivalent if their values PB1

and PB2
are equal for all P . Equivalence is defined similarly

for atomic expressions. Every expression is a nested combination of atomic expressions by
definition. Because of this, we focus on the simplification of atomic expressions.

In the context of probabilistic graphical models, we are provided additional information
about the joint distribution of the variables of interest in the form of a DAG. As we are
concerned on the simplification of the results of causal effect derivations in such models, the
general form of the atomic expressions can be further narrowed down by using the structure
of the graph and the ordering of vertices called a topological ordering.

Definition 3 (Topological ordering) Topological ordering π of a DAG G = 〈W,E〉 is
an ordering of its vertices, such that if X is an ancestor of Y in G then X < Y in π.

The symbol V π
j is used to denote the subset of vertices of G that are less than Vj in π.

For sets we may define Vπ to contain those vertices of G that are less than every vertex of
V in π. Consider a DAG G = 〈W,E〉 and a topological ordering π of its vertices. We use
the notation π(·) to denote indexing over the vertex set W of G in the ordering given by π,
that is Vπ(1) > Vπ(2) > · · · > Vπ(m) where m = |W|. For any atomic expression A = 〈T,S〉
such that V ⊆W we also define the induced ordering ω. This ordering is an ordering of the
variables in V such that if X > Y in ω then X > Y also in π. From now on in this paper,
any indexing over the variables of an atomic expression will refer to the induced ordering of
the set V when π is given, i.e V1 > V2 > · · · > Vn in ω. In other words, ω is obtained from
π by leaving out variables that are not contained in A.

The algorithm by Shpitser and Pearl (2006a) performs the so-called c-component fac-
torization. These components are subgraphs of the original graph where every node is
connected by a path consisting entirely of bidirected edges. The resulting expressions of
these factors serve as the basis for our simplification procedure.

Definition 4 (Topological consistency) Let G′ be a DAG with a subgraph G = 〈W,E〉
and let π be a topological ordering of the vertices of G. An atomic expression A[W] = 〈T,S〉
is topologically consistent (or π-consistent for short) if

An(Vi)G ⊆ Ci ⊆ V
π
i for all i = 1, . . . , n.

Here An(Vi)G denotes the ancestors of Vi in G. To motivate this definition we note that
all causal effect expressions returned by the algorithms of Shpitser and Pearl (2006a,b)
can always be represented by a topologically consistent expression, which is an expression
where every atomic expression contained by it is topologically consistent with respect to a
topological ordering of a subgraph. We provide a proof for this statement in Appendix A.
This also shows that any manual derivation of a causal effect can always be represented by
a topologically consistent expression. The assumption of lower bound given by the ancestors
is not necessary for the simplification to be successful. This assumption is used to speed up
the performance of our procedure in Section 3.

5

Tikka and Karvanen

3. Simplification

Simplification in our context is the procedure of eliminating variables from the set of variables
that are to be summed over in expressions. In atomic expressions, a successful simplification
in terms of a single variable should result in another expression that holds the same value,
but with the respective term eliminated and the variable removed from the summation. As
we are interested in causal effects, we consider only simplification of topologically consistent
atomic expressions.

Our approach to simplification is that the atomic expression has to represent a joint
distribution of the variables present in the expression to make the procedure feasible. We can
always interpret any atomic expression as a joint distribution of by considering the random
variables V ∗i obtained from Vi by conditioning on Ci. By construction these variables are
independent and we have

n∏
i=1

P (Vi|Ci) =
n∏
i=1

P (V ∗i) = P (V ∗1 , . . . , V
∗
n).

In the case of simplification however, the question is whether the expression can be modified
to represent the joint distribution of the original variables that contain relevant information
about Vj , the variable to be summed over. Before we can consider simplification, we have to
define this property explicitly.

Definition 5 (Simplification sets) Let G′ be a DAG and let G be a subgraph of G′

over a vertex set W with a topological ordering π. Let A[W] = 〈T,S〉, where T =
{〈V1,C1, 〉, . . . , 〈Vn,Cn〉}, be a π-consistent atomic expression and let Vj ∈ S. Suppose
that Vπ(p) = Vj and that Vπ(q) = V1 and let M be the set

{U ∈W | U 6∈ V [A], Vπ(q) > U > Vπ(p)}.

If there exists a set D ⊂ V π
j and the sets EU ⊆W for all U ∈M such that the conditional

distribution of the variables Vπ(p), . . . , Vπ(q) can be factorized as

P (Vπ(p), . . . , Vπ(q)|D) =
∏
U∈M

P (U |EU)
∏
Vi≥Vj

P (Vi|Ci), (1)

and
(U ⊥⊥ Vj |EU \ {Vj})G′ for all U ∈M. (2)

then the sets D and EU , U ∈M are the simplification sets of A with respect to Vj.

This definition characterizes π-consistent atomic expressions that represent joint dis-
tributions. Note that even if M = ∅, the existence of simplification sets still requires
that

∏
Vi≥Vj

P (Vi|Ci) = P (Vj , . . . , V1|D). In many cases these expressions contain ’gaps’,
meaning that there exists variables U ∈ M such that the expression does not contain a
term for U . These gaps obstruct the construction of the joint distribution unless they are
conditionally independent of the variable currently being summed over, hence the assumption
(U ⊥⊥ Vj |EU \ {Vj})G′ . It is apparent that simplifications sets are not always unique, which
can lead to different but still simpler expressions. Henceforth we will consider simplification
in terms of a single variable. The next result can be used to find simpler expressions when
simplification sets exist. The proof is available in Appendix B

6

Simplifying Probabilistic Expressions

Theorem 6 (Simplification) Let G′ be a DAG and let G be a subgraph of G′ over a vertex
set W with a topological ordering π. Let A[W] = 〈T,S〉 be a π-consistent atomic expression
and let D and EU , U ∈M be its simplification sets with respect to a variable Vj ∈ S. Then
there exist an expression A′[W \ {Vj}] = 〈T′,S′〉 such that Vj 6∈ S′, PA = PA′ and no term
in A′ contains Vj.

Neither Definition 5 nor Theorem 6 provide a method to obtain simplification sets or to
determine whether they exist. To solve this problem we present a simplification algorithm for
π-consistent atomic expressions that operates by constructing simplification sets iteratively
for each variable in the summation set.

7

Tikka and Karvanen

Algorithm 1 Simplification of an atomic expression A = 〈T,S〉 given graph G and topo-
logical ordering π.

1: function simplify(A,G, π)
2: j ← 0
3: while j < |S| do
4: B ← A
5: J← ∅
6: D← ∅
7: R ← ∅
8: I← ∅
9: j ← j + 1

10: i← index.of(A, j)
11: M← get.missing(A,G, j)
12: k ← 1
13: while k ≤ i do
14: 〈Jnew,Dnew,Rnew〉 ← join(J,D, Vk,Ck, Sj ,M, G, π)
15: if Jnew ⊆ J then
16: break
17: else
18: J← Jnew
19: D← Dnew
20: if Rnew 6= ∅ then
21: R ← R ∪Rnew
22: I← I ∪ {D}
23: M←M \Rnew
24: else
25: k ← k + 1
26: if k = i+ 1 then
27: Anew ← factorize(J,D,R, I, A)
28: if Anew = A then
29: A← B
30: else
31: A← Anew
32: S← S \ {Sj}
33: j ← 0
34: return A

Algorithm 1 always attempts to perform maximal simplification, meaning that as many
variables of the set S are removed as possible. If the simplification in terms of the entire
set S can not be completed, the intermediary result with as many variables simplified as
possible is returned. If simplification in terms of specific variables or a subset is preferred,
the set S should be defined accordingly.

8

Simplifying Probabilistic Expressions

The function simplify takes three arguments: an atomic expression A[W] that is to
be simplified, a graph G and a topological ordering π of its vertices. A is assumed to be
π-consistent.

On line 10 the function index.of returns the corresponding index i of the term containing
Sj . Since A is π-consistent, we only have to iterate through the variables V1, . . . , Vj as the
terms outside this range contain no relevant information about the simplification of Vj . The
variables of the possible gaps in the atomic expression A are retrieved on line 11 by the
function get.missing.

In order to show that the term of A represent some joint distribution, we proceed in
the order dictated by the topological ordering of the vertices. The sets J and D keep track
of the variables that have been successfully processed and of the conditioning set of the
joint term that was constructed on the previous iteration. Similarly, the sets R and I keep
track of the variables and conditioning sets of the possible ’gap’ variables. Iteration through
relevant terms begins on line 13. Next, we take a closer look at the function join which is
called next on line 14.

Algorithm 2 Construction of the joint distribution of the set J and a variable V given
their conditional sets D and C using d-separation criteria in G. S is the
current summation variable, M is the set of variables not contained in the
expression and π is a topological ordering.

1: function join(J,D, V,C, S,M, G, π)
2: if J = ∅ then
3: return 〈{V },C, ∅〉
4: G←

(
{V } ∪ ((J \M)π \An(V)G)

)
\ J

5: P← P(G)
6: n← |P|
7: for i = 1 : n do
8: A← (An∗(V)G ∪Pi)4D
9: B← (An(V)G ∪Pi)4C

10: if (J ⊥⊥ A|D \A)G and (V ⊥⊥ B|C \B)G then
11: return 〈J ∪ {V }, (An(V)G ∪Pi), ∅〉
12: if M 6= ∅ then
13: for M ′ ∈M do
14: if M ′ ∈ D,M ′ 6∈ C then
15: 〈Jnew,Dnew,R〉 ← insert(J,D,M ′, S,G, π)
16: if J ⊂ Jnew then
17: return 〈Jnew,Dnew,R〉
18: return 〈J,D, ∅〉

Here P(·) denotes the power set, 4 denotes the symmetric difference and An∗(·)G denotes
the ancestors with the argument included. The function join attempts to combine the joint
term P (J|D), obtained from the previous iteration steps, with the term P (V |C) := P (Vk|Ck)
of the current iteration step. d-separation statements of G are evaluated to determine
whether this can be done. In practice this means finding a subset Pi of G that satisfies

9

Tikka and Karvanen

P (J|D) = P (J|An∗(V)G,Pi) and P (V |C) = P (V |An(V)G,Pi) which allow us to write the
product P (J|D)P (V |C) as P (J, V |An(V)G,Pi). If such a set cannot be found, we can still
attempt to insert a missing variable of M by calling insert. If this does not succeed either,
the original sets J and D are returned, which instructs simplify to terminate simplification
in terms of Vj and attempt simplification in the next variable.

A special case where the first variable of the joint distribution forms P (J,D) alone is
processed on line 2 of Algorithm 2. In this case, we have an immediate result without having
to iterate through the subsets of G. The formulation of the set G ensures that the resulting
factorization is π-consistent if it exists. Knowing that the ancestral set An(V)G has to be a
subset of the new conditioning set also greatly reduces the amount of subsets we have to
iterate through. In a typical situation, the size of P is not very large. Let us now inspect
the insertion procedure in greater detail.

Algorithm 3 Insertion of variableM ′ into the joint term P (J|D) using d-separation criteria
in G. S is the current summation variable and π is a topological ordering.

1: function insert(J,D,M ′, S,G, π)
2: G←

(
{M ′} ∪ ((J \M)π \An(M ′)G)

)
\ J

3: n← |G|
4: for i = 1 : n do
5: A← (An∗(M ′)G ∪Pi)4D
6: B← (An(M ′)G ∪Pi)
7: if (J ⊥⊥ A|D \A)G and (M ′ ⊥⊥ S|B)G then
8: return 〈J ∪ {M ′}, (An∗(M ′)G ∪Pi), {M

′}〉
9: return 〈J,D, ∅〉

In essence, the function insert is a simpler version of join, because the only restriction
on the conditioning set of M ′ is imposed by the conditioning set of J and the fact that M ′

has to be conditionally independent of the current variable S to be summed over. If join or
insert was unsuccessful in forming a new joint distribution, we have that Jnew ⊂ J. In this
case simplification in terms of the current variable cannot be completed. If we have that
Jnew 6⊂ J the iteration continues.

If the innermost while-loop succeeded in iterating through the relevant variables, we are
ready to complete the simplification process in terms of Sj . We carry out the summation
over Sj which results in P (J \ {Vi}|D). This is done on line 27 by the function factorize
which afterwards checks whether the joint term P (J \ {Vi}|D) can be factorized back into a
product of terms.

If the innermost while-loop did not iterate completely through the relevant variables,
the simplification was not successful in terms of Sj at this point. In this case we reset A
to its original state on line 29 and attempt simplification in terms of the next variable. If
there are no further variables to be eliminated, the outermost while-loop will also terminate.
In the next theorem, we show that Algorithm 1 is both sound and complete in terms of
simplification sets. The proof for the theorem can be found in Appendix C.

Theorem 7 Let G′ be a DAG and let G be a subgraph of G′ over a vertex set W with a
topological ordering π. Let A[W] = 〈T, {Vj}〉 be a π-consistent atomic expression. Then if

10

Simplifying Probabilistic Expressions

simplify(A,G, π) succeeds, it has constructed a collection of simplification sets of A with
respect to Vj. Conversely, if there exists a collection of simplifications sets of A with respect
to Vj, then simplify(A,G, π) will succeed.

4. High Level Algorithms

In this section, we present an algorithm to simplify all atomic expressions in the recursive
stack of an expression. We will also provide a simple procedure to simplify quotients
defined by two expressions: one representing the numerator and another representing the
denominator. In some cases it is also possible to eliminate the denominator by subtracting
common terms. First, we present a general algorithm to simplify topologically consistent
expressions.

Algorithm 4 Recursive wrapper for the simplification of an expression B = 〈B,A,S〉 given
graph G and topological ordering π.

1: function deconstruct(B,G, π)
2: R ← ∅
3: for Y ∈ A do
4: 〈{〈V1,C1〉, . . . , 〈Vn,Cn〉},SY 〉 ← simplify(Y,G, π)
5: if SY = ∅ then
6: A← A ∪ (

⋃n
i=1{〈{〈Vi,Ci〉}, ∅〉})

7: for 〈BX ,AX ,SX〉 ∈ B do
8: 〈BX ,AX ,SX〉 ← deconstruct(〈BX ,AX ,SX〉, G)
9: if BX = ∅ and SX = ∅ then

10: R ← R ∪ {〈BX ,AX ,SX〉}
11: A← A ∪AX

12: B← B \R
13: return 〈B,A,S〉

Algorithm 4 begins by simplifying all atomic expressions contained in the expressions.
If an atomic expression contains no summations after the simplification but does contain
multiple terms, each individual term is converted into an atomic expression of their own.
After this, we iterate through all sub-expressions contained in the expression. The purpose
of this is to carry out the simplification of every atomic expression in the stack and collect
the results into as few atomic expressions as possible. First, we traverse to the bottom of the
stack on line 8 by deconstructing sub-expressions until they have no sub-expressions of their
own. Afterwards, it must be the case that 〈BX ,AX ,SX〉 consists of atomic sub-expressions
only.

If 〈BX ,AX ,SX〉 contains no summations on line 9 then the atomic expressions contained
in this expression do not require an additional expression to contain them, but can instead
be transferred to be a part of the expression above the current one in the recursive stack.
On line 6 we lift the atomic expressions contained in the atomic sub-expressions up to the
current recursion stage.

There is no guarantee, that the resulting atomic expression is still π-consistent after
this procedure. The function deconstruct operates on the principle of simplifying as

11

Tikka and Karvanen

many atomic expressions as possible, combining the results into new atomic expressions
and simplifying them once more. We do not claim that this procedure is complete in a
sense that Algorithm 4 would always find the simplest representation for a given expression.
This method in nonetheless sound and finds drastically simpler expressions in almost every
situation where such an expression exists.

We may also consider quotients often formed by deriving conditional distributions. For
this purpose we need a subroutine to extract terms from atomic sub-expression that are
independent of the summation index, that is Vi 6∈ S and Ci ∩ S = ∅.

Algorithm 5 Extraction of terms independent of the summation indices from a expression
B = 〈B,A,S〉 given graph G and topological ordering π.

1: function extract(B,G, π)
2: B ← deconstruct(B,G, π)
3: if S = ∅ then
4: for X ∈ B do
5: X ← extract(X,G, π)
6: for 〈TA,SA〉 ∈ A do
7: if SA 6= ∅ then
8: AE ← ∅
9: R ← ∅

10: for 〈V,C〉 ∈ TA do
11: if V 6∈ SA and C ∩ SA = ∅ then
12: AE ← AE ∪ {〈{〈V,C〉}, ∅〉}
13: R ← R ∪ {〈V,C〉}
14: A← A ∪AE

15: TA ← TA \R
16: else
17: AE ← ∅
18: R ← ∅
19: for 〈TA,SA〉 ∈ A do
20: if SA = ∅ and T(1)

A ∩ S = ∅ and T(2)
A ∩ S = ∅ then

21: AE ← AE ∪ {〈TA,SA〉}
22: R ← R ∪ {〈TA,SA〉}
23: A← A \R
24: BE ← {B}
25: return 〈BE ,AE , ∅〉

The procedure of Algorithm 5 is rather straightforward. First, we attempt to simplify
B by using deconstruct on line 2. Next, we simply recurse as deep as possible without
encountering a sum in an expression. If a sum is encountered, extraction is attempted.
On any stage where a sum was not encountered, we may still have atomic sub-expression
that contain sums. Because the recursion had reached this far, we know that there are no
summations above them in the stack, so we can attempt extraction on them as well.

12

Simplifying Probabilistic Expressions

Algorithm 6 Simplification of a quotient PB1
/PB2

given by the values of two expressions
B1 = 〈B1,A1,S1〉 and B2 = 〈B2,A2,S2〉 given graph G and topological
ordering π.

1: function q-simplify(B1, B2, G, π)
2: B1 ← extract(B1, G, π)
3: B2 ← extract(B2, G, π)
4: if S1 6= ∅ or S2 6= ∅ then
5: return 〈B1, B2〉
6: i← 1
7: while i ≤ |B1| and |B1| > 0 and |B2| > 0 do
8: for j = 1 : |B2| do
9: if B1i = B2j then

10: B1 ← B1 \ {B1i}
11: B2 ← B2 \ {B2j}
12: i← 0
13: break
14: i← i+ 1
15: i← 1
16: while i ≤ |A1| and |A1| > 0 and |A2| > 0 do
17: for j = 1 : |A2| do
18: if A1i = A2j then
19: A1 ← A1 \ {A1i}
20: A2 ← A2 \ {A2j}
21: i← 0
22: break
23: i← i+ 1
24: return 〈B1, B2〉

Algorithm 6 takes two expressions, B1 and B2, and removes any sub-expressions and
atomic sub-expressions that are shared by B1 and B2. This is of course only feasible when
the summation sets are empty for both B1 and B2. This condition is checked on line 4.

5. Examples

In this section we present examples of applying the algorithms of the previous sections.
We begin with a simple example on the necessity of the insert procedure in graph G of
Figure 2.

13

Tikka and Karvanen

Figure 2: A graph G for the example on the necessity of the insertion procedure.

The causal effect of W on X is identifiable in this graph, and expression∑
Z,Y

P (Y)P (Z|Y)P (X|W,Z, Y)

is obtained by direct application of algorithm by Shpitser and Pearl (2006a) or by the
truncated factorization formula for causal effects in Markovian models (Pearl, 2009). We let
A be this atomic expression. The topological ordering π is X > W > Z > Y and M = {W}.
The call to simplify(A,G, π) will first attempt simplification in terms of Z, by calling

join(∅, ∅, X, {W,Z, Y }, Z, {W}, G, π),

which results in 〈X, {W,Z, Y }, ∅〉. At the second call

join({X}, {W,Z, Y }, Z, Y, Z, {W}, G, π)

we already run into trouble since we cannot find a conditioning set that would allow Z to be
joined with {X}. However, since M is non-empty and W ∈ {W,Z, Y } and W 6∈ {Z} this
means that the next call is

insert({X}, {W,Z, Y },W,Z,G, π).

Insertion fails in this case, as one can see from the fact that no conditioning set exists that
would make W conditionally independent of Z. Thus we recurse back to join and back to
simplify and end up on line 15 of Algorithm 1 which breaks out of the while-loop. Thus A
cannot be simplified in terms of Z. Simplification is attempted next in terms of Y . The first
two calls are in this case

join(∅, ∅, X, {W,Z, Y },W, {W}, G, π),

join({X}, {W,Z, Y }, Z, {Y },W, {W}, G, π),
and in the second call we run into trouble again and have to attempt insertion

insert({X}, {W,Z, Y },W,W,G, π).

This time we find that we can add a term for W which is P (W |Z, Y) because (W ⊥⊥ Y |Z)G.
The other calls to join also succeed and we can write the value of A as∑

Z,Y P (Y)P (Z|Y)P (W |Y,Z)P (X|W,Z, Y)
P (W |Z) .

14

Simplifying Probabilistic Expressions

and complete the summation in terms of Y . After the call to factorize we are left with
the final expression ∑

Z

P (X|W,Z)P (Z).

In the second example we continue by considering a slightly more complicated atomic
expression A given by∑

X,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2),

which is a part of a larger example we will consider last. Let G be the DAG depicted in
Figure 1. The topological ordering π is Y > Z1 > Z3 > X > Z2.

We will also take more closer look at how the function join operates. The call to
simplify(A,G, π) will attempt simplification in terms of the set {X,Y } in the ordering
that agrees with the topological ordering π, which is (Y,X). There is one missing variable,
Z1, so M = {Z1}. The first call to join results in 〈Y, {Z2, X, Z3, Z1}, ∅〉, because line 3
of Algorithm 2 is triggered. As Y is the first variable to be summed over, the innermost
while-loop is now complete. The resulting value of the expression after simplification is∑

X

P (Z3|Z2, X)P (X|Z2)P (Z2).

Next, the summation is terms of X is attempted. join is once again successful, because
Z3 is the first variable to be joined. Next the terms P (Z3|Z2, X) and P (X|Z2) are joined,
because the possible subsets of(

{X} ∪ (({Z3} \ {Z1})
π \An(X)G)

)
\ {Z3} = {X}

are {X} and ∅. The terms are joined with Pi = ∅. The innermost while-loop terminates
allowing the summation over X to be performed. The function factorize provides us with
the final expression

P (Z3|Z2)P (Z2). (3)

In the third example we will consider the application of q-simplify and the example
that was presented in Section 1. Using the algorithm of Shpitser and Pearl (2006a) we
obtain the causal effect of X on Z1, Z2, Z3 and Y in graph G of Figure 1 and it is

P (Z1|Z2, X)P (Z3|Z2)

 ∑
X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)

×
∑
X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)∑
X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2) .

We will represent this as an expression using Definition 2. Let A1 be the atomic expression
of the previous example and let A2 also be an atomic expression given by∑

X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2),

15

Tikka and Karvanen

which is essentially the same as A1, but with the variable Y removed from the summation
set S. Similarly, we let A3 be an atomic expression given by∑

X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2).

We also define the atomic expressions A4 with the value P (Z3|Z2) and A5 with the value
P (Z1|Z2, X). Now, we define two expressions B1 and B2 for the quotient PB1

/PB2
as follows:

B1 = 〈∅, {A2, A3, A4, A5}, ∅〉, B2 = 〈∅, {A1}, ∅〉.

We now call q-simplify(B1, B2, G, π). First, we must trace the calls to extract for both
expressions on lines 2 and 3 of Algorithm 6. For B1 and B2 this immediately results in a
call to deconstruct on line 2 of Algorithm 5. First, the function applies simplify to each
atomic expression contained in the expressions.

Let us first consider the simplification of A2. As before with A1, we have that join first
succeeds in forming 〈Y, {Z2, X, Z3, Z1}, ∅〉, but this time Y is not in the summation set, so
we continue. Next, the algorithm attempts to join P (Y |Z2, X, Z3, Z1) with P (Z3|Z2, X).
The possible subsets of(

{Z3} ∪ (({Y } \ {Z1})
π \An(Z3)G)

)
\ {Y } = {Z3, Z1}

are {Z3, Z1}, {Z3}, {Z1} and ∅. After checking these subsets we obtain

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X) = P (Y,Z3|Z1, Z2, X)

and continue in an attempt to join the term containing X with this results. In this case
insert is also called to bring Z1 into the expression. However, no conditioning set exists
that would make Z1 conditionally independent of X. Thus we cannot simplify A2.

The atomic expression A3 can be simplified and it can be easily seen that its value is in
fact just P (Z2). Let us call the atomic expression with this value E, that is PE = P (Z2).
The atomic expression A1 can also be simplified, and its value is given by (3). Furthermore,
since this value is made of two product terms, it is split into two atomic expressions
respectively. Let these be called D1 and D2 such that PD1

= P (Z3|Z2) and PD2
= P (Z2).

Applying simplify to A4 and A5 simply returns the original expressions, since they do not
contain any summations. Neither B1 nor B2 contain any sub-expressions or summations, so
deconstruct(B1, G, π) returns 〈∅, {A2, E,A4, A5}, ∅〉 and deconstruct(B2, G, π) returns
〈∅, {D1, D2}, ∅〉. The lack of summations also causes extract to iterate through the atomic
expression contained in B1 and B2 directly, since neither of them have any sub-expressions
of their own.

Only A2 contains a sum at this point. The only term in A2 that does not depend on X
is P (Z2). Let us denote the atomic expression with the value P (Z2) as C1 and the atomic
expression resulting from the extraction as C2 which now has the value∑

X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2).

16

Simplifying Probabilistic Expressions

This completes the extraction and results in an expression B′1 such that

B′1 = 〈∅, {C1, C2, E,A4, A5}, ∅〉.

The expression B2 remains unchanged.
q-simplify is now able to proceed. Neither B′1 nor B2 contain sub-expression so we

are only subtracting their common atomic expressions. It is easy to see that A4 = D1 and
C1 = D2, so they are removed from both B′1 and B2. Finally, the expressions corresponding
to the numerator and denominator are returned.

To summarize, we began with the expression

P (Z1|Z2, X)P (Z3|Z2)

 ∑
X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)

×
∑
X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)∑
X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2) ,

and successfully simplified it into

P (Z1|Z2, X)P (Z2)
∑
X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2).

6. Discussion

We have presented a formal definition of topologically consistent atomic expressions and
simplification sets and provided a sound and complete algorithm to find these sets for a
given expression. We also discussed some general techniques that apply to a more general
class of these expressions. Algorithm 7 and Algorithm 8, presented in Appendix A, have
been previously implemented in the R package causaleffect (Tikka and Karvanen, 2015). We
have updated the package to include all of the simplification procedures presented in this
paper and they are automatically applied to all causal effect and conditional causal effect
expressions derived from identification procedures.

It is plausible that these procedures could also be extended into other causal inference
results, such as formulas for z-identifiability, transportability and meta-transportability
of causal effects. The extensions are non-trivial however, since transportability formulas
contain terms with distributions from multiple domains and z-identifiable causal effects
contain do-operators in the conditioning sets which would require the implementation of the
rules of do-calculus into Algorithm 1. Do-calculus consists of three inference rules that can
be used to manipulate probabilities involving the do-operator (Pearl, 2009).

Simpler expressions have many useful properties. They can help in understanding and
communicating results and evaluating them saves computational resources. Estimation
accuracy can also be improved in some cases when variables that are present in the original
expression suffer from missing data or measurement error. One example where the benefits
of simplification are realized can be found in (Hyttinen et al., 2015), where expressions of
causal effects are derived and repeatedly evaluated a for large number of causal models.

Our approach to simplification stems from the nature of causal effect expressions. In
our setting, a question still remains whether simplification sets completely characterize all

17

Tikka and Karvanen

situations where a variable can be eliminated from an atomic expression. One might also
consider simplification in a general setting, where we do not assume topological consistency
or any other constraints for the atomic expressions. In this case a ’black box’ definition
for simplification could be considered, where we simply require that when the sum over a
variable of interest is completed we are again left with another atomic expression without
this variable in the summation set. This framework is theoretically interesting but we are
not aware of any potential applications.

The worst case time complexity of Algorithm 1 is difficult to gauge and is a topic
for further research. One can observe that the performance of the algorithm is highly
dependent on the size of the differences of the conditioning sets between adjacent terms.
Both Algorithm 2 and Algorithm 3 iterate through the subsets of these differences and
check d-separation criteria for each subset. Thus dynamic programming solutions could
be implemented to further improve performance by collecting the results of these checks.
Previously determined conditional independences would not need to be checked again and
could be retrieved from memory instead.

In some cases, simplification has some apparent connections to identifiability. Consider
the graph G of Figure 3.

Figure 3: A graph G for a situation where simplification fails

In this graph the causal effect of X on Y is identifiable, and its expression is∑
Z

P (Y |Z,X)P (Z).

If we let Z be an unobserved variable instead, then G depicts the well-known bow-arc graph,
where the same causal effect is unidentifiable. This corresponds to an unsuccessful attempt
to remove Z from the expression of the causal effect. However, we cannot know beforehand
whether an expression for a causal effect is going to be atomic or not, so we cannot use our
algorithm to derive identifiability in general.

Acknowledgments

We would like to thank Lasse Leskelä for his comments.

Appendix A. Topological Consistency of Causal Effect Formulas

We prove the statement that every causal effect formula returned by the algorithms of
Shpitser and Pearl (2006a,b) can be represented by an expression, where every atomic

18

Simplifying Probabilistic Expressions

expression is π(i)-consistent such that π(i) is a topological ordering of some subgraph Gi of
G.

We use the notation G[X] to denote an induced subgraph, which is obtained from G
by removing all vertices not in X and by keeping all edges between the vertices of X in G.
Here GX,Z means the graph that is obtained from G by removing all incoming edges of X
and all outgoing edges of Z. We say that G is an I-map of P if P admits the causal Markov
factorization with respect to G = 〈V,E〉, which is

P =
n∏
i=1

P (Vi|Pa
∗(Vi)G)

k∏
j=1

P (Uj),

where Pa∗(·) contains unobserved parents as well.

Consider first lines 2, 3, 4 and 7 of Algorithm 7 where recursive calls occur and let π
be the topological ordering of the graph in the previous recursion step. Line 2 limits the
identification procedure to the ancestors of Y so we can still obtain an expression that
topologically consistent with respect to π∗ obtained from π by removing non-ancestors. Lines
3 and 4 make no changes to the distribution P and the graph G. On line 7 the induced
subgraph G[S′] in the next call is a C-component, but the joint distribution in this case is a
π-consistent expression

P (S′) =
∏
Vi∈S′

P (Vi|V
π
i ∩ S′, vπi \ s′),

since every conditioning set is of the form V π
i when we only consider variables instead of

their values, so we obtain

P (S′) =
∏
Vi∈S′

P (Vi|V
π
i),

Furthermore, any expression returned from line 7 will now be π-consistent. Thus all recursive
calls retain topological consistency with respect to some π(i).

Consider now the non-recursive terminating calls on lines 1 and 6. Consider line 1 first.
If line two was triggered previously, we can factorize P (V) in such a way that each variable is
conditioned by its ancestors, since the ancestors of ancestors of Y are by definition ancestors
of Y. If line 7 was triggered previously we already know that the joint distribution was
previously factorized in a π-consistent fashion. If line 3 or 4 was triggered previously, we
know that they have not imposed any changes on P of G. Line 6 clearly produces a π
consistent end result. We have that the result of the algorithm can always be represented by
an expression where every atomic expression that it contains is π-consistent.

19

Tikka and Karvanen

Algorithm 7 The causal effect of intervention do(X = x) on Y (Shpitser and Pearl, 2006a).
INPUT: Value assignments x and y, joint distribution P (v) and a DAG G = 〈V,E〉. G is

an I-map of P .
OUTPUT: Expression for Px(y) in terms of P (v) or FAIL(F, F ′).

function ID(y,x, P,G)
1: if x = ∅, then

return
∑
v∈v\y P (v).

2: if V 6= An(Y)G, then
return ID(y,x ∩An(Y)G, P (An(Y)G), G[An(Y)G)].

3: Let W = (V \X) \An(Y)GX
.

if W 6= ∅, then
return ID(y,x ∪w, P,G).

4: if C(G[V \X]) = {G[S1], . . . , G[Sk]}, then
return

∑
v∈v\(y∪x)

∏k
i=1 ID(si,v \ si, P,G).

if C(G[V \X]) = {G[S]}, then
5: if C(G) = {G}, then

throw FAIL(G,G[S]).
6: if G[S] ∈ C(G), then

return
∑
v∈s\y

∏
Vi∈S P (vi|v

π
i).

7: if (∃S′)S ⊂ S′ such that G[S′] ∈ C(G), then
return ID(y,x ∩ s′,

∏
Vi∈S′ P (Vi|V

π
i ∩ S′, vπi \ s′), G[S′]).

The claim is now apparent for Algorithm 8 since line 2 is eventually called for every
conditional causal effect.

Algorithm 8 The causal effect of intervention do(X = x) on Y given Z.
INPUT: Value assignments x, y and z, joint distribution P (v) and a DAG G = 〈V,E〉.

G is an I-map of P .
OUTPUT: Expression for Px(y|z) in terms of P (v) or FAIL(F, F ′).

function IDC(y,x, z, P,G)
1: if ∃Z ∈ Z such that (Y ⊥⊥ Z|X,Z \ {Z})GX,Z

then
return IDC(y,x ∪ {z}, z \ {z}, P,G).

2: else let P ′ = ID(y ∪ z,x, P,G).
return P ′/

∑
y∈y P

′

20

Simplifying Probabilistic Expressions

Appendix B. Proof of Theorem 6

Proof By direct calculation we obtain

PA =
∑
Vj

n∏
i=1

P (Vi|Ci)

=
∏
Vi<Vj

P (Vi|Ci)
∑
Vj

∏
Vi≥Vj

P (Vi|Ci)

=
∏
Vi<Vj

P (Vi|Ci)
∑
Vj

P (Vπ(p), . . . , Vπ(q)|D)∏
U∈M P (U |EU)

=
∏
Vi<Vj

P (Vi|Ci)
P (Vπ(p+1), . . . , Vπ(q)|D)∏

U∈M P (U |EU)

=
∏
Vi<Vj

P (Vi|Ci)
∏
Vi>Vj

P (Vi|Di) := PA′ ,

where the sets Di are obtained from the factorization of the joint term such that A′ is a
π∗-consistent where π∗ is obtained from π by removing Vj from the ordering. To justify
the equalities, we first note that terms of variables Vi < Vj do not contain Vj and can be
brought outside the sum.

To obtain the third equality, we multiply by [
∏
U∈M P (U |EU)]/[

∏
U∈M P (U |EU)] and

apply condition (1) of Definition 5 on the righthand side as lisenced by condition (2) of the
definition. To obtain the fourth equality, we simply carry out the summation in terms of
Vj . Conditions (1) and (2) of Definition 5 make it possible to refactorize the joint term into
product terms so that the terms corresponding to variables U ∈M remain unchanged and
can be divided out once more. Thus we obtain the last equality, and an expression that no
longer contains Vj and has the same value as A.

Appendix C. Proof of Theorem 7

Proof (i) Suppose that simplify(A,G, π) has returned an expression with variable Vj
eliminated. Because the computation completed successfully, we have that each application
of join and insert succeed. We can rewrite the value of A as∏

Vi<Vj

P (Vi|Ci)
∑
Vj

∏
Vi≥Vj

P (Vi|Ci),

where the terms P (Vi|Ci) such that Vi < Vj can be brought outside the sum over Vj , because
they cannot contain Vj . The functions join and insert use only standard rules of probability
calculus, which can be seen on line 10 of Algorithm 2 and line 7 of Algorithm 3, and thus
every new formation of a joint distribution P (J|D) has been valid. Once again we rewrite
the value of A as ∏

Vi<Vj

P (Vi|Ci)
∑
Vj

P (J|D),

21

Tikka and Karvanen

which means that condition (1) of Definition 5 is now satisfied, as we have obtained a joint
term from the original product terms.Because Vj ∈ J we can carry out the summation which
yields ∏

Vi<Vj

P (Vi|Ci) · P (J \ {Vj}|D),

Because Algorithm 1 succeeds, we know that every insertion is canceled out by factorize.
To complete the procedure we obtain a new factorization without Vj resulting in an atomic
expression A′ that no longer contains Vj . Condition (2) of Definition 5 is satisfied by the
definition of insert, because the function always checks the conditional independence with
the current summation variable on line 7. Both conditions for simplification sets have been
satisfied by construction.

(ii) Suppose that there exists a collection of simplification sets of A with respect to Vj .
For the sake of clarity, assume further that Vn = Vj . This assumption lets us only consider
those terms that are relevant to the simplification of Vj , as we can always move conditionally
independent terms outside the summation and consider only the expression remaining inside
the sum. Let us first assume that M = ∅. In this case condition (1) simply reads∏

Vi≥Vj

P (Vi|Ci) = P (Vj , . . . , V1|D),

and that the product terms are a factorization of the joint term. However, we want to show
that they also provide a factorization that agrees with the topological ordering. Because A
is π−consistent, for any two variables V > W we have that CW ⊆ V

π which enables us to
consider the summations from Vk up to V1 for k = 1, . . . , j − 1, which results in∑

Vk,...,V1

∏
Vi≥Vj

P (Vi|Ci) =
∑

Vk,...,V1

P (Vj , . . . , V1|D) = P (Vj , . . . , Vk+1|D).

We obtain for k = j − 1, . . . , 1

P (Vj |Cj) = P (Vj |D)
P (Vj |Cj)P (Vj−1|Cj−1) = P (Vj , Vj−1|D)

...
P (Vj |Cj) · · ·P (V2|C2) = P (Vj , . . . , V2|D)

P (Vj |Cj) · · ·P (V2|C2)P (V1|C1) = P (Vj , . . . , V1|D).

(4)

From the last and second to last equation we can obtain

P (Vj , . . . , V2|D)P (V1|C1) = P (Vj , . . . , V1|D),

and by dividing with the first term from the left hand side we obtain

P (V1|C1) = P (V1|Vj , . . . , V2,D).

In fact, we can do this for any two subsequent equations in (4) to obtain

P (Vi|Ci) = P (Vi|Vj , . . . , Vi+1,D), i = 1, . . . , j − 1

22

Simplifying Probabilistic Expressions

Algorithm 1 operates by starting from V1, so we still have to show it succeeds in
constructing the joint term. Using the previous results we can rewrite the original equation
as ∏

Vi≥Vj

P (Vi|Ci) =
∏
Vi≥Vj

P (Vi|C
∗
i),

where C∗i = D ∪ {Vj , . . . , Vi+1} for i < j and C∗j = D. From this we obtain

P (V1|C1) = P (V1|C
∗
1)

P (V1|C
∗
1)P (V2|C2) = P (V1, V2|C

∗
2)

...
P (V1, . . . , Vj−1|C

∗
j−1)P (Vj |Cj) = P (Vj , . . . , V1|C

∗
j).

(5)

The function join will succeed every time since the for-loop starting on line 7 of Algorithm 2
will discover the conditional independence properties allowing the previous equalities in
(5) to take place. Thus Algorithm 1 will return an atomic expression with the variable Vj
eliminated from the summation set.

Assume now that M 6= ∅ and let V = V [A] and. In this case condition (1) allows us to
write ∏

U∈M
P (U |EU)

∏
Vi≥Vj

P (Vi|Ci) = P (V,M|D),

and furthermore, we have that these product terms are a factorization of the joint term.
First, we aim to reduce the number of variables in M to be considered. This is done because
Algorithm 1 always starts and finishes the construction of the joint term with a variable in
V. We categorize each U ∈M into three disjoint sets. We define

M− := {U ∈M | U 6∈
j⋃

k=1
Ck} ,M

+ := {U ∈M | U ∈
j⋂

k=1
Ck} and

M∗ := M \ (M− ∪M+).

First, we show that we can ignore variables in M− by obtaining a new factorization without
them. It follows from the definition of M− and (1) that we can compute the marginalization
as follows

P (V,M \M−|D) =
∑

U∈M−
P (V,M|D)

=
∑

U∈M−

∏
U∈M

P (U |EU)
∏
Vi≥Vj

P (Vi|Ci)

=
∏
Vi≥Vj

P (Vi|Ci)
∑

U∈M−

∏
U∈M

P (U |EU)

=
∏

U∈M\M−
P (U |EU)

∏
Vi≥Vj

P (Vi|Ci).

23

Tikka and Karvanen

We have a new factorization without any variables in M−. Similarly, we can eliminate the
variables in M+ from our factorization. It follows from the definition of M+ that for all
U ∈M+ we have that EU ⊆ D. From this we obtain∏

U∈M+

P (U |EU) = P (M+|D).

We can now write

P (V,M∗|D,M+) = P (V,M \M−)
P (M+|D)

=
∏
U∈M\M− P (U |EU)

∏
Vi≥Vj

P (Vi|Ci)∏
U∈M+ P (U |EU)

=
∏

U∈M∗
P (U |EU)

∏
Vi≥Vj

P (Vi|Ci).

Thus it suffices to consider the factorization given by∏
U∈M∗

P (U |EU)
∏
Vi≥Vj

P (Vi|Ci) = P (V,M∗|D∗), (6)

where D∗ = D ∪M+.
Next, we will order the variables in M∗. For each U ∈ M∗ we find the largest index

u ∈ {1, . . . , j − 1} such that U ∈ Cu. This choice is well defined, since by definition at least
one such index exists. Furthermore, as the product terms in (6) are a factorization of the
joint term, the conditioning sets are increasing and we have that U 6∈ Ci for all i ≥ u+ 1.
In the case that multiple variables Ui ∈ M∗ for some set of indices i ∈ I share the same
index u, we may redefine M∗ such that Ui, i ∈ I are replaced by a single variable UI such
that

∏
i∈I P (Ui|EUi

) = P (UI |EUI
), where EUI

= ∩i∈IEUi
. Thus we can assume that for any

two variables U1, U2 ∈M∗ we have that u1 6= u2. We can now order the variables in M∗ by
their respective indices u such that U1 > U2 > . . . > Um and u1 < u2 < . . . < um.

Nest we will extend the ordering to include all of the variables in the set V. We let
Q := V ∪M∗ and find an ordering of this set such that it agrees with induced ordering ω
of the variables in V and with the ordering of the indices u1, . . . , um. A new factorization
given by this ordering can be defined as follows:

Qk =


Vk−m k > um,

Vk−l ul < k < ul+1,

Vk k < u1,

Ul k = ul.

Dk =


Ck−m k > um,

Ck−l ul < k < ul+1,

Ck k < u1,

EUl
k = ul.

We can now rewrite the factorization of (6) as

n+m∏
k=1

P (Qk|Dk) = P (Q|D∗), (7)

24

Simplifying Probabilistic Expressions

We can now apply the same procedures as in the case of M = ∅ with the exception that
insert succeeds where join fails with terms containing Qk and Qk+1 when k = l− 1 for all
l = 1, . . . ,m. The success of insert is guaranteed by condition (2), as the function will find
this conditional independence on line 10 of Algorithm 3. Also, factorize will remove all
additional terms that were introduced in the process, which is made possible by condition (2)
and the definition of the factorization of P (Q|D∗). After the summation over Vj is carried
out, the conditional independence between Vj and the variables U ∈M∗ ensures that their
respective terms are equal to the original factorization before the summation was carried
out when the new factorization is constructed so that it agrees with the ordering of the set
Q. Thus an atomic expression is returned with the variable Vj eliminated with the same
value as the original atomic expression.

References

D. H. Bailey, Borwein J. M., and D. A. Kaiser. Automated simplification of large symbolic
expressions. Journal of Symbolic Computation, 60:120–136, 2014.

E. Bareinboim and J. Pearl. Causal inference by surrogate experiments: z-identifiability.
In N. de Freitas and K. Murphy, editors, Proceedings of the Twenty-Eight Conference on
Uncertainty in Artificial Intelligence, pages 113–120. AUAI Press, 2012.

E. Bareinboim and J. Pearl. Meta-transportability of causal effects: a formal approach. In
Proceedings of the 16th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 135–143, 2013a.

E. Bareinboim and J. Pearl. A general algorithm for deciding transportability of experimental
results. Journal of Causal Inference, 1:107–134, 2013b.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

J. Carette. Understanding expression simplification. In Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’04, pages 72–79, New York,
2004. ACM.

D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian networks. Networks,
20(5):507–534, 1990.

A. Hyttinen, F. Eberhardt, and M. Järvisalo. Do-calculus when the true graph is unknown.
In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, pages
395–404. AUAI Press, 2015.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The
MIT Press, 2009.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society,
Series B (Methodological), 50(2):157–224, 1988.

25

Tikka and Karvanen

Maxima. Maxima, a computer algebra system. version 5.34.1, 2014. URL http://maxima.
sourceforge.net/.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, 1988.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, New
York, 2nd edition, 2009.

I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-
Markovian causal models. In Proceedings of the 21st National Conference on Artificial
Intelligence - Volume 2, pages 1219–1226. AAAI Press, 2006a.

I. Shpitser and J. Pearl. Identification of conditional interventional distributions. In
Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence
(UAI2006), pages 437–444. AUAI Press, 2006b.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT press,
2nd edition, 2000.

S. Tikka and J. Karvanen. Identifying causal effects with the R package causaleffect,
2015. URL https://cran.r-project.org/web/packages/causaleffect/vignettes/
causaleffect.pdf. Accepted for publication in Journal of Statistical Software.

Wolfram Research Inc. Mathematica, version 10.3, 2015.

26

http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
https://cran.r-project.org/web/packages/causaleffect/vignettes/causaleffect.pdf
https://cran.r-project.org/web/packages/causaleffect/vignettes/causaleffect.pdf

	Introduction
	Probabilistic Expressions
	Simplification
	High Level Algorithms
	Examples
	Discussion
	Topological Consistency of Causal Effect Formulas
	Proof of Theorem 6
	Proof of Theorem 7

