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Introduction

Catnet package implements categorical variable Bayesian network (also called discrete Bayesian net-
work) framework in R. Bayesian networks are graphical statistical models that represent directed depen-
dencies between random variables and thus are able to model causal relationships among these variables.
A Bayesian network has two components: Directed Acyclic Graph (DAG) with nodes the variables of
interest and a probability structure given as a set of conditional distributions, one for each node in
the graph. Any Bayesian network also satisfies the so called local Markov property, which states that
each node in the network is independent of its non-descendants given its parent nodes. That property
leads to a direct factorization of the joint distribution of the node-variables, a fact of great practical
importance that is responsible for the popularity of the Bayesian network models.

Two classes of Bayesian networks are among the most used in practice: linear Gaussian networks and
categorical ones. In a linear Gaussian network, the nodes represent continuous variables with Gaussian
conditional distributions and the expected value of each node is a linear combination of its parent
nodes. Gaussian networks benefit from nice analytical properties, but in practice, the linearity and
normality assumptions for the observed variables are rarely justified, which limits their applicability. In
a categorical Bayesian network, each node takes values in a fixed set of categories and the conditional
distributions are multinomial ones with no additional parametric constrains. Consequently, provided
that given data is categorical or can be categorized without substantial loss of information, the discrete
network framework for modeling the data is a far more general setting - the main reason to be chosen
as statistical model in the catnet.

The main goal of the package is to provide some tools for inferring discrete Bayesian networks
from data based on the Maximum Likelihood criterion. The problem of learning Bayesian networks
has relatively long history with abundance of literature devoted to its subject. See for example [9],
[7, [6, [12], [15], and some more recent articles, [23], [25], [8]. Although the name Bayesian often
implies Bayesian inference, in this package the authors follow a frequentist approach without making
assumption on the conditional distributions in form of priors. Since most of the existing network
learning algorithms and the corresponding software packages, such as [20], are Bayesian, catnet provides
tools that are not readily available. Two main techniques are implemented - finding the best network
fitting some data for a predefined node order and stochastic search of optimal networks without making
assumptions about the node order. For a given node order, an efficient exhaustive search is implemented
and the exact MLE solution is given. The approach undertaken is similar to that in [I4] without,
however, being Bayesian. Catnet equips the user not only with graph structure learning abilities but
also with probability estimation and prediction utilities. The motivation is to provide more versatile
statistical tools for studying networks such as model selection in classes of optimal networks with varying
complexity, as proposed in [19]. Despite the diversity and efficiency of the existing algorithms, being
strictly structure learning techniques, their selection flexibility is usually very limited. In conclusion,
catnet does not intend to replace the state of the art learning algorithms but to provide alternative
tools for statistical inference.



Although catnet is designed as a self-contained package and provides the basic functionality one
needs for working with categorical Bayesian networks, some graph related operations such as network
visualization are not included. Thus the user may benefit from having installed other packages such
as graph, for some general graph-related operations, and Graphviz or igraph for graph rendering and
visualization.

The complexity of the problem of learning categorical Bayesian networks is related to the size of
the space of such networks, which is super-exponential of the number of nodes. Moreover, it is a NP-
Complete problem. Nevertheless, the package makes a step toward easing that problem. When coupled
with snow package, catnet provides parallel processing capabilities allowing the user to benefit from
substantial increase in performance.

Although the authors of catnet are having in mind reconstruction of gene/protein regulatory net-
works as a primary application of the package (see for overview [21], [I3]), its design is by no means
limited for use to bioinformatics only and hopefully will find much larger application scope.

For more detailed introduction to Bayesian networks and different learning strategies, we refer to
[16], [I7], [9] and [I8]. More information on the package functionality and usage can be found in the
manual pages.

1 Creating and Manipulating Networks

The basic class object in catnet package is catNetwork, which stands for categorical network, another
name for discrete Bayesian network. Any catNetwork can handle different number of categories for
its nodes. Its graph structure, a DAG, describes the relationship between its nodes, while multinomial
distributions represent the conditional dependency of the nodes on their parents. For brevity, hereafter
we will refer to a catNetwork object simply as a network.

We start by describing several ways to create a catNetwork object. In the usual scenario the catnet
is designed for, networks are inferred from data and are created implicitly. However, there are occasions,
for simulation purposes for example, when the user may want to create a network manually and the
package provides such means.

The user can create categorical networks explicitly by calling cnNew function. The function takes
following arguments: a vector of node names (nodes), a list of node categories (cats), a list of parents
((parents)) and an optional list of conditional probabilities (probs). Because of the nested list hierarchy
of the probability structure, specifying the probability argument directly can be very elaborated task
for large networks. In the following example we create a small network with only three nodes. Note that
all inner most vectors in the probs argument, such as (0.4,0.6), represent conditional distributions
and thus sum to 1. If probs parameter is omitted, a random probability structure will be assigned.

> library(catnet)

> cnet <- cnlNew(nodes = c("a", "b", "c"), cats = list(c("1", "2"),

+ c("1m, "2"), c("1", "2")), parents = 1list(NULL, c(1), c(1,

2)), probs = 1ist(c(0.2, 0.8), 1ist(c(0.6, 0.4), c(0.4, 0.6)),

list(1list(c(0.3, 0.7), c(0.7, 0.3)), 1list(c(0.9, 0.1), c(0.1,
0.9)))))

+ + +

1.1 Generating Random Networks

Randomly generated networks can be useful for simulation and evaluation purposes. By calling cnRan-
domCatnet function, the user may generate a catNetwork with random DAG and probability model.
The number of nodes, maximum parent size and the number of categories have to be given. All nodes
are assigned equal number of categories.



> set.seed(123)
> cnetl <- cnRandomCatnet (numnodes = 4, maxParents = 2, numCategories = 2)
> cnetl

A catNetwork object with 4 mnodes, 2 parents, 2 categories,
Likelihood = 0 , Complexity = 8 .

1.2 Inheriting a Graph Object

A catNetwork object can be also created by inheriting an existing graph object as supported in graph
package, [10]. The later provides greater number of function for creating and manipulating graphs. A
graph object can be created directly by specifying its nodes (myNodes) and edges (myEdges). It contains
only a graphical structure description, not a probability one. Then, a catNetwork is created by calling
cnCatnetFromGraph function.

> bgraph <- FALSE

> try(bgraph <- require(graph), TRUE)

> if (bgraph) {

+ myNodes <- c("a”, ngt, npu, nqu, npn, ongH, nuu)

+ myEdges <- list(a = list(edges = NULL), s = list(edges = c("p",

+ "q")), p = list(edges = c("q")), q = list(edges = c("r")),

+ r = list(edges = c("u")), t = list(edges = c("q")), u = list(edges = NULL))
+ g <- new("graphNEL", nodes = myNodes, edgel = myEdges, edgemode = "directed")
+ cnet2 <- cnCatnetFromGraph(g)

+ F

catnet package is able to import Simple Interaction Format (SIF) files. If a SIF file describes a DAG,
which may not be the case since SIF files can describe any graph structure, the graph can be imported
by calling cnCatnetFromSif function.

2 Accessing Network Attributes and Characteristics

There are several functions that give access to the main components of a catNetwork object, or its slots
to be more correct technically. Such are the functions cnNumNodes, cnNodes, cnEdges, cnMatEdges,
cnParents, cnMatParents and cnProb. Next we give a short description of them.

Of course, all attributes can be accessed using the attribute mechanism, but that opens the pos-
sibility of accidental attribute change. Note that, in general, direct manipulation with the network
components is not recommended for it may destroy the object integrity.

Functions cnNumNodes and cnNodes return the number and the list of names, respectively, of network
nodes. For each node of a network, for example cnet1, one can obtain its parents by calling cnParents
function or find its children through cnEdges function.

> cnNumNodes (cnet1)

[1] 4

> cnNodes (cnet1)

[1] "N1" "N2" "N3" "N4"

> cnEdges (cnet1)



$N2

[1] nN3" "N4n
$N3
[1] 4"

> cnParents (cnetl)

$N3

[1] nNon

$N4

[1] o nN3™

In addition, the corresponding cnMatParents and cnMatEdges functions return matrices instead of
lists. Specifically, cnMatParents returns a binary matrix representing the pairwise node connections,
and it is especially useful for comparing networks with the same number of nodes. Alternativelly,
cnMatEdges returns a two-column matrix of ordered pairs encoding the edges with direction from the
first to the second.

> cnMatParents(cnet1)

N1 N2 N3 N4
N1 0 O O O
N2 0 0 0 O
N3 0 1 0 O
N4 O 1 1 O

> cnMatEdges (cnet1)

(.11 [,2]
[1’] IIN2|I IINBII
[2 ,] IIN2II IIN4II
[3 ’:l IIN3II IIN4II

cnProb function provides an access to the complete probability table of a network, which is a
recursive list and can be quite large for networks with big parent sets and many categories. Conditional
probabilities are reported in the following format. First, node name and its parents are given, then a
list of probability values corresponding to all combinations of parent categories (put in brackets) and
node categories. In the following example the first node (N1) has two categories (C1 and C2) and no
parents, thus two numbers are given, probability 0.68 for the first category and 0.32 for the second. The
third node (N3) has two categories and one parent (N2) and consequently two pairs of probabilities
are reported , one for N2 = C'1 and another for N2 = C2.

> cnProb(cnetl)

Node[N1], Parents:

[Jc1 0.68
[Jc2 0.32
Node [N2], Parents:
(Jc1 0.55
(Jc2 0.45

Node[N3], Parents: N2



[ c11c1 0.12
[ c11c2 0.88
[ c2]Cc1 0.84

[ c2]1c2 0.16
Node[N4], Parents: N2 N3

[ c1 c1]ct 0.26
[ c1 c1]c2 0.74
[ C1 Cc2]C1 0.57
[ c1 c2]Cc2 0.43
[ c2 c1]c1 0.4

[ c2 c1]c2 0.6

[ c2 c2]C1 0.49
[ c2 c2]c2 0.51

An important characteristic of a catNetwork is its complexity. The complexity is an integer number
specifying the number of parameters needed to define the probability structure of the network. For
example, the complexity of a network with nodes without parents and two categories each equals the
number of nodes. The complexity of a network object can be obtained by calling cnComplexity function.

> cnComplexity(cnet1)
(11 8

The complexity is a key property of a network, decisive in the network estimation and model selection
problems.

2.1 Drawing a Network

Catnet provides several alternatives for visualizing a network. They are implemented in the function
cnPlot. If the igraph package is installed, a catNetwork object will be coerced to a igraph object and
plotted. Alternatively, cnPlot may generate a dot-file, compatible with the external Graphviz software
package ([I1]). Dot-files can be rendered to a postscript or a pdf files using the dot executable from
Graphviz or directly visualized by dotty or tcldot. There is an auxiliary to cnPlot function called
cnDot that generates and saves dot-files specifically.

cnPlot (cnetl)
cnDot(cnetl, "cnetl.dot")
2.2 Topological Order

Since any catNetwork is a DAG, there is a natural order of its nodes, such that any node has parents only
among the nodes appearing earlier in the order. In fact, a network may have many compatible orders
and the function cnOrder returns just one of them. cnOrder takes as an input either a catNetwork
object or a list of parent sets. The next example illustrates its usage.

> cnOrder (cnet1)

[1] 1 234

> cnOrder (cnetl@parents)
[1] 1 234

The topological order is important in the context of network learning and it is a key element in the
catnet’s search methodology.



2.3 Equivalent Graph Representation

An important result from the theory of Bayesian networks states that all networks with common sets of
nodes can be organized in equivalent classes. According to definition, for any two equivalent networks
there are probability structures such that their joint probabilities are equal. More on the topic one can
find in [24] and [6]. Function dag2cpdag generates the Complete Partially Directed Graph (CPDAG) for
a network according to the algorithms given in [6]. Note that in a CPDAG some edges are not directed
to reflect the freedom of choosing directions without leaving the corresponding equivalent class.

> set.seed(456)
> cnet2 <- cnRandomCatnet (numnodes = 10, maxParents = 3, numCategories = 2)
> cnEdges (cnet2)

$N2
[1] IIN8II anon

$N4
[1] N3
$N6
[1] nNg"
$N8
[1] nNg"

> pcnet2 <- dag2cpdag(cnet2)

add N3 -> N4
add N5 -> N8
add N10 -> N2

> cnEdges (pcnet2)

$N2
[1] IIN8II anon

$N3
[1] nN4n
$N4
[1] 3"
$N5
[1] nNg"
$N6
[1] nNg"
$N8
[1] ||N5n
$N10
[1] o



2.4 Comparing Networks

Often, one has two networks with the same nodes and wants to evaluate the difference between them.
There are two basic criteria for comparing networks. First, a topological one that compares the graphical
structure of the networks and second, a probabilistic one, in regard to the distributions specified by
the networks. Catnet employs several measures for topological comparison such as the number of
true positive/false positive/false negative directed edges, the parent Hamming distance - the number
of different elements between the corresponding parent matrices, the number of true positive/false
positive/false negative undirected edges (skeleton), and the number of false positive/negative Markov
pairs (pairs that have common descendants). Also included is a measure comparing the node order
in the networks. The user can compare two networks by calling cnCompare function. It returns a a
catNetworkDistance object containing the values of the provided measures. More details can be found
in the help file of cnCompare.

> cnet3 <- cnRandomCatnet (cnNumNodes (cnet2), maxParents = 2, numCategories = 2)
> cnet3@nodes <- cnet2@nodes
> cnCompare(objectl = cnet2, object2 = cnet3)

Edges:
TP = 0,
FP = 2,
FN = 5,
Hamming:
(FP+FN) = 7,
exp = 9,
Skeleton:
TP = 0,
FP = 2,
FN = 5,
Order:
FP = 0,
FN = 0,
Markov blanket:
FP =1,
FN =1

3 Generating Samples from Network and Making Predictions

In addition to the row-sample data representation as often used in statistical practice, catnet also allows
a column-sample format, the later being a standard for storing micro-array data. In the latter case,
the samples are organized in columns and each row represents a node. The package provides two
function for data generation, cnSample and cnSamplePert. The second one allows the user to generate
a perturbed sample, a sample with some of its nodes having fixed, non-random, values. In micro-
biology, the perturbation techniques is an important tool for inferring causal relationships in regulatory
networks.

In the following example we generate a random sample of size 100 from cnet1 object that have been
created earlier. By setting the output argument to be "matrix”, we obtain a result in matrix form.
Alternatively, a sample as data.frame can be generated.



> samplesl <- cnSamples(object = cnetl, numsamples = 100, output = "matrix")
> dim(samples1)

[1] 4 100

> samplesl <- cnSamples(object
> dim(samples1)

cnetl, numsamples 100, output = "frame")

[1] 100 4

Another possibility is to generate perturbed samples with fixed values at particular nodes. For
the purpose, the user may call cnSamplesPert function and specify an additional vector argument,
perturbations, of length the number of nodes and values either fixed categorical indices or zero to
mark the random nodes which values has to be sampled. In the next example a sample of size 10 is
generated with random first two nodes but perturbed third and fourth nodes that take their first and
second category, respectively.

> samples2 <- cnSamplesPert(object = cnetl, perturbations = c(0,
+ 0, 1, 2), numsamples = 10)

For prediction purposes one can use cnPredict function with parameters network object and data.
In the data, only the node positions marked as not-available (NA) are predicted. The nodes are assigned
categorical values based on the maximum probability criterion. If for example, given a particular
instance of its parenthood, a node has three categories with probabilities (0.2, 0.5, 0.3), then the second
category will be assigned as its value.

numnodes <- cnNumNodes (cnet2)

samples3 <- cnSamples(object = cnet2, numsamples = 12, output = "matrix")
samples3[numnodes - 2, ] <- rep(NA, 12)

samples3[numnodes - 1, ] <- rep(NA, 12)

samples3[numnodes, ] <- rep(NA, 12)

newsamples <- cnPredict(object = cnet2, data = samples3)

V V.V Vv Vv Vv

4 Learning Network form Data

In contrast to some existing network learning algorithms such as Grow-Shrink, Incremental Assosiation
([25], [23]) and Hill-Climbing ([8]), to mention a few, catnet does not ’learn’ but rather searches for
networks according to the MLE criterion. For a known order of the nodes, the package provides a
function (cnSearchOrder) that finds the exact (up to equivalence) MLE solution of the problem of
fitting network to data. When the node order is unknown, catnet provides appropriate stochastic
search functions (cnSearchSA, cnSearchSAcluster).

4.1 Search for Given Order

As put forward in [7], the model search in the space of all networks can be restricted to a smaller space
of networks that are consistent with a particular node ordering. The spaces of networks with fixed
node order are not only smaller but more ’regular’. In [I4], authors evaluate the regularity in terms of
posterior distribution of features and also conclude that a search restricted to a particular node ordering
does not necessarily preclude good network recovering. Empirical studies also confirm that on order
restricted network spaces, the likelihood functions have less local variability, thus discontinuity, which
facilitates likelihood based estimations.

Function cnSearchOrder is the main computational tool provided by catnet. The function imple-
ments a Dynamic Programming (DP) algorithm for searching in the space of networks having a node



order specified by the user. The result is a set of networks with increasing complexity up to a given
maximum value. In other words, each resulting network is exact the Maximum Likelihood Estimator
(MLE) for the corresponding complexity. The user may proceed by selecting a particular network from
this set of networks by applying a model selection criterion. In this regard, functions cnFindAIC and
cnFindBIC mentioned below can be useful.

> set.seed(789)

> cnet2 <- cnRandomCatnet (numnodes = 10, maxParents = 2, numCategories = 2)
> nodeOrder <- order (runif (cnNumNodes (cnet2)))

> cnet2

A catNetwork object with 10 mnodes, 2 parents, 2 categories,

Likelihood = 0 , Complexity = 11

> samples <- cnSamples(object = cnet2, numsamples = 100, output = "frame")
> netlist <- cnSearchOrder(data = samples, perturbations = NULL,

+ maxParentSet = 2, maxComplexity = 20, nodeOrder, parentsPool = NULL,
+ fixedParentsPool = NULL)

> bnet <- cnFind(netlist, 20)

> bnet

A catNetwork object with 10 nodes, 2 parents, 2 categories,

Likelihood = -624.0839 , Complexity = 20 .

cnSearchOrder has two mandatory parameters: data and maxParentSet. The categorical structure
is inferred from the data. If maxComplexity is not specified, the search is applied to the maximum
possible complexity.

In many practical problems some prior information about the network structure is available which
the user may want to include in the search process. Such prior information can be obtained from experts
in the field of interest or to be based on preceding research. In all of its search functions, catnet includes
the parameters parentsPool and fixedParentsPool, that can be used for specifying edge constrains.

The first parameter, parentsPool, specifies a set of possible parents for each node and in this
way, some nodes can be excluded as potential parents. Additionally, the fixedParentsPool parameter
specifies edge inclusion rules - the user can give some nodes mandatory set of parents. By manipulating
these two parameters, a variety of edge constrains can be implemented.

In the next example, we generate a random network with 12 nodes and then search for the best
fitting networks that comply with the following requirements: (1) the last node is not a parent to anyone
else, and (2) the first two nodes are necessarily parents to all of the rest nodes. The search is restricted
to the ’true’ order, obtained by cnOrder (cnet), of the nodes in the simulated data.

Finally, we draw the Log-likelihood vs. complexity curve for the resultant list of networks.

set.seed(123)

nnodes <- 12

cnet <- cnRandomCatnet(numnodes = nnodes, maxParents = 5, numCategories = 2)

norder <- cnOrder (cnet)

parPool <- vector("list", nnodes)

for (i in 1:nnodes) parPool[[i]] <- 1:(nnodes - 1)

fixparPool <- vector("list", nnodes)

for (i in 3:nnodes) fixparPool[[i]] <- c(1, 2)

samples <- cnSamples(cnet, 200)

eval <- cnSearchOrder(data = samples, perturbations = NULL, maxParentSet = 2,
maxComplexity = 200, nodeOrder = norder, parentsPool = parPool,
fixedParentsPool = fixparPool)

eval

V+ +VVVVVVVVVYV



Number of nodes =12,

Sample size = 200,
Number of networks = 31
Processing time = 0.043

> plot(eval@complexity, eval@loglik, xlab = "Complexity", ylab = "Log-likelihood",
+ main = "Model selection curve of the list of networks returned by 'cnSearchOrder' function")

selection curve of the list of networks returned by ‘cnSearchOrder' func
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4.2 Evaluation

For search validation purposes, catnet provides the function cnEvaluate. For given catNetwork object
and some data, the function finds a set of optimal networks that maximize the likelihood of that data
and have complexity in the range starting with the minimum possible complexity up to a value specified
by the user. Internally, the function calls cnSearchOrder to search in the space of networks having the
same node order as the given network object. Moreover, the resulting optimal networks are compared
to the given network using several criteria (see the manual of cnCompare for more details). The output
of cnEvaluate is a catNetworkEvaluate object that contains all relevant diagnostic information and
which can be conveniently plotted.

> numsamples <- 500
> samples <- cnSamples(object = cnet, numsamples, output = "frame")

10



> maxComplexity <- cnComplexity(cnet)

> perturbations <- matrix(rep(0, cnet@numnodes * numsamples), nrow = cnet@uumnodes)
> netlist <- cnEvaluate(object = cnet, data = samples, perturbations = perturbations,
+ maxComplexity)

> cnPlot (netlist)

> bnet <- cnFind(netlist, maxComplexity)

> bnet

A catNetwork object with 12 mnodes, 4 parents, 2 categories,
Likelihood = -3778.162 , Complexity = 77 .

> cnCompare (cnet, bnet)

Edges:
TP = 18,
FP = 6,
FN =1,
Hamming:
(FP+FN) = 7,
exp = 33,
Skeleton:
TP = 18,
FP = 6,
FN =1,
Order:
FP = 0,
FN = 0,
Markov blanket:
FP = 6,
FN = 4

> bnet2 <- cnFind(netlist, maxComplexity/2)
> bmet2

A catNetwork object with 12 nodes, 3 parents, 2 categories,
Likelihood = -3829.37 , Complexity = 39

> cnCompare (cnet, bnet2)

Edges:
TP = 13,
FP = 1,
FN = 6,
Hamming:
(FP+FN) = 7,
exp = 24,
Skeleton:

11



TP = 13,

FP =1,
FN = 6,
Order:
FP = 0,
FN = O,
Markov blanket:
FP = 0,
FN = 13
500 samples, 12 nodes. Hamming Distance
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Another application of cnEvaluate function might be reducing a network to a less complex one. A
stochastic way to perform this is to generate a large sample from the original network, then evaluate
the sample to obtain a list of networks with complexity up to the target one. In the above example,
bnet?2 is a reduced version of the original network cnet with about twice smaller complexity.

4.3 Model Selection with AIC and BIC criteria

The model selection problem in the context of network learning is one of the focuses of catnet. As we
have mentioned earlier, the package aims to provide flexibility and allows the user to select a network

12



from a list of optimal ones according to his/her needs. Methodological details behind the model selection
procedures implemented in catnet can be found in [19)].

Recall that by calling one of the functions cnSearchOrder, cnSearchSA and cnSearchSAcluster,
one obtains a list of networks, more precisely catNetwork objects, such that each network has a unique
complexity. From this list one may select a network based on particular criterion such as AIC or BIC.
In the next example both AIC and BIC selections are made and their complexity is marked on the
model selection curve.

> set.seed(345)

> cnet6 <- cnRandomCatnet (numnodes = 12, maxParents = 5, numCategories = 2)

> samples <- cnSamples(object = cnet6, numsamples = 100, "matrix")

> eval <- cnSearchOrder(data = samples, perturbations = NULL, maxParentSet = 2,
+ maxComplexity = 0, nodeOrder = order (runif(1:dim(samples)[1])),

+ parentsPool = NULL, fixedParentsPool = NULL, echo = FALSE)

> anet <- cnFindAIC(object = eval)

> anet

A catNetwork object with 12 mnodes, 2 parents, 2 categories,

Likelihood = -632.0516 , Complexity = 31

> bnet <- cnFindBIC(object = eval, numsamples = dim(samples)[2])
> bnet

A catNetwork object with 12 nodes, 2 parents, 2 categories,
Likelihood = -646.7812 , Complexity = 20 .

> plot(eval@complexity, eval@loglik, xlab = "Complexity", ylab = "Log-likelihood",
+ main = "Model selection: AIC and BIC complexities in red and blue.")

> abline(v = anet@complexity, lty = 2, col = "red")

> abline(v = bnet@complexity, lty = 3, col = "blue")

13



Model selection: AIC and BIC complexities in red and blue.
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4.4 Stochastic Search in the Space of Orders

In cases when prior knowledge about the order of the nodes is not available, the user can employ a
stochastic search method in the space of all possible node orders. In a way, this will break the general
search problem into two smaller ones - ’order search’ and ’search in order’. The space of orders includes
all possible node permutations and, although still huge, is somehow smaller than that of all possible
networks. This approach of order factorization is also implemented in [I4] but in a different, Bayesian,
context. The idea of considering order learning as a sub-problem is also followed in [I5] and [I] with
constraint-based algorithms for conditional independence. What makes catnet’s approach different is
the strictly likelihood based, non-Bayesian, learning framework.

Catnet package provides two stochastic search functions: cnSearchSA and cnSearchSAcluster.
These functions implement a Simulated Annealing algorithm. More technical details are given below.

Let A = {a;}7; be a set of n discrete variables with number of categories C = {c¢;}_;. A cate-
gorical network G with nodes the variables of A can be described by its edge structure and conditional
probabilities. The edges can be encoded by a binary matrix £ = {Eij}ﬁjzl such that F;; = 1if z; is a
parent of x; and zero otherwise. Let X = {X/ }?:1 be a k-sample data from an unknown network with
nodes A and number of categories C. Then the likelihood of X with respect to G is

n k

c(glx) =TT T Px7mmx?)), (1)

i=1j=1
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where II;(X;) is the realization of the parent set of x; in N for the j-th sample X7. For an order § of
the nodes A, we define A'(, X) to be the network consistent with € that maximizes the likelihood .
Define

P(Q) x LIN(Q, X)|X).

In fact, A may be only one representative network from the set of equivalent networks maximizing the
likelihood .

The functions cnSearchSA and cnSearchSAcluster implement a Metropolis algorithm with accep-
tance probability

(|, ) x Lo,esoneap(—[LWN (R, X)) = LN (R, X))]F/B), (2)

where §(€1) is a neighborhood of ©; and 8 > 0 is a parameter which specifies the temperature for the
Simulating Annealing. The parameter (3 gradually decreases according to a cooling schedule specified
by the function’s parameters. The neighborhood §(Q2) for an order €2 includes all orders obtained from
Q by picking up randomly a node index and exchange places with the next node index in €2, eventually
performing this operation given number of times as specified by orderShuffles parameter. In this way
one can control the extend of S(2). A large variety of search scenarios can be implemented by varying
function parameters and the user should choose one suitable to his/her application needs.
In addition to the parameters of cnSearchOrder, cnSearch accepts also

1. tempStart - the starting temperature of the annealing process

2. tempCoolFact - the cooling factor from one temperature step to another. It is a number be-
tween 0 and 1, inclusively. For example, if tempStart is the temperature in the first step,
tempStart*tempCoolFact will be temperature in the second

3. tempCheckOrders - the number of proposals to be checked, or with other words, order selections
from the current order’s neighborhood, at each step before decreasing the temperature. Thus, if
Q is the current order at some temperature, totally tempCheckOrders orders from S(2) will be
proposed and accepted or rejected, before factoring down the temperature.

4. maxIter - the maximum number of orders to be checked. If for example maxIter is 40 and
tempCheckOrders is 4, then 10 temperature decreasing steps will be eventually performed.

5. orderShuffles - a number that controls the extend of S(2), the neighborhood of order Q. The
element of S(£2) are obtained from Q by orderShuffles switches of two node indices.

6. stopDiff - a stopping criterion. If at a current temperature, after tempCheckOrders orders being
checked, no likelihood improvement of level at least stopDiff is detected, then the SA stops and
the function exists. Setting this parameter to zero guarantees exhausting all of the maximum
allowed maxIter order searches.

7. priorSearch - a result from previous search. This parameters allows a new search to be initiated
from the best order found so far. Thus a chain of searches can be constructed with varying
parameters providing greater adaptability and user control.

The set of parameters of cnSearchSA function allows implementing a variety of search strategies.
Unfortunately, it is hard to recommend a default set of parameters good in many situations. We can
only make the following suggestion to the user: try several parameter combinations, perform repeated
search with limited number of iterations (not too large maxIter) with each of them, choose a setting
with the most consistent results (in terms of likelihood for a fixed complexity) and perform a longer
search with the already chosen set of parameters. Another hint is to look at the acceptance rate of the
SA algorithm and choose a setting that gives about 10 to 30 percent acceptance. In any case, a number
of runs of cnSearchSA are recommended before making conclusions, a general recommendation for any
MCMC procedure.
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netlist <- cnSearchSA(data = samples, perturbations = NULL, maxParentSet = 2,
maxComplexity = 20, parentsPool = NULL, fixedParentsPool = NULL,
tempStart = 1, tempCoolFact = 0.9, tempCheckOrders = 4, maxIter = 40,
orderShuffles = 1, stopDiff = le-04, priorSearch = NULL)

bnet <- cnFind(netlist@nets, cnComplexity(cnet2))

bnet

VV + 4+ + vV

=

catNetwork object with 12 nodes, O parents, 2 categories,
Likelihood = -701.4731 , Complexity = 12 .

The function cnSearchSA has a parameter called priorSearch, which can take the result of pre-
vious call to cnSearchSA. In that case the new search starts where the previous search ended thus
trying to improve upon the best set of networks that have been already found. This mechanism allows
implementation of sophisticated multi-stage search scenaria by adapting to the user needs.

4.5 Parallel Processing

By its nature, the search for best network according to a likelihood based score is NP-Complete, thus
very hard, problem (see [5]). Inherently, the search functions implemented by catnet are highly intensive
computationally and some means for processing in cluster environment are necessary.

Currently, catnet depends on snow package, [22], for providing parallel processing. In this way, multi-
core/threads hardware abilities can be employed for faster stochastic search using cnSearchSAcluster,
the cluster processing enabled analog of cnSearchSA. cnSearchSAcluster function takes as additional
parameters the number of cluster units to be employed and their host ("localhost’ as default), either as
a name or IP address. cnSearchSAcluster employs the specified parallel processing units by running
an independent SA search in each of them, as performed by cnSearchSA function, and finally chooses
the best achieved result. More details are available in the manual pages.

The next example demonstrates a Simulated Annealing search using two parallel processing units
running on the local machine.

> set.seed(345)

> bsnow <- FALSE

> try(bsnow <- require(snow), silent = TRUE)

> if (bsnow) {

+ cnet7 <- cnRandomCatnet (numnodes = 12, maxParents = 5, numCategories = 2)

samples <- cnSamples(object = cnet7, numsamples = 100)

netlist2 <- cnSearchSAcluster(data = samples, perturbations = NULL,
maxParentSet = 2, maxComplexity = 0, parentsPool = NULL,
fixedParentsPool = NULL, selectMode "BIC", tempStart = 1,
tempCoolFact = 0.9, tempCheckOrders = 8, maxIter = 40,
orderShuffles = 1, stopDiff = 1e-04, clusterNodes = 2,
clusterHost = "localhost")

bnet <- cnFind(netlist2@nets, cnComplexity(cnet6))

bnet

+ + + + + + + + + +

}

A catNetwork object with 12 nodes, 2 parents, 2 categories,
Likelihood = -627.1141 , Complexity = 43 .

5 Conclusion

The catnet package is intended to diversify the existing tools for graphic statistical modeling by imple-
menting a complete inference set for discrete Bayesian networks. Covering all potential application areas
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of the package is out of the scope of this introduction. The user, however, is referred to the "Getting
Started” vignette and the demonstrations accompanying the package for some application ideas.
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