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Abstract

Quantitative genetics methodology has facilitated advances in the basic understand-
ing of which genes underlie agronomically important quantitative traits in crop sciences.
Although less commonplace than quantitative traits, agronomically important binary
traits do occur in such genomics studies. The logistic regression model is a widely
used model for analyses involving binary traits. This model is specifically constructed
for such analyses. That being said, this model breaks down when there is separation
in the data. Separation occurs when there exists a hyperplane in the covariate space
such that deterministic outcomes are observed on at least one side of this hyperplane.
Data separation is especially prevalent in applications where the number of predictors
under investigation is near the sample size. In this study we motivate a logistic regres-
sion model that is robust to separation, and we develop a novel prediction procedure
for this robust logistic regression model that is appropriate when separation exists.
We compare our robust logistic regression model to existing approaches. Previously
existing approaches treat separation as a modeling shortcoming and not an antagonis-
tic data configuration. They therefore change the modeling paradigm to account for
problematic separation while we accommodate separation within the standard logistic
regression maximum likelihood estimation paradigm. Our comparisons are conducted
on several didactic examples and a genomics study on the kernel color in maize. We
find that our robust logistic regression model provides superior statistical inferences
while maintaining competitive predictive performance. Our results are fully reducible
in an accompanying technical report.
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1 Introduction

The application of quantitative genetics approaches to crops has facilitated advances in
the basic understanding of which genes underlie agronomically important traits, and has
enabled the use of genome-wide markers to accelerate genetic gain. For example, the use
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of multivariate statistical models in genome-wide association studies has provided insight
into the role of pleiotropy in the genetic architecture of leaf and infloresence-related traits in
maize [Rice et al., 2020]. Similarly, multi-kernel genomic prediction (GP) models that include
environmental covariate information have made it possible to accurately predict genomic
estimated breeding values (GEBVs) for grain yield in wheat in specific environments [Jarqúın
et al., 2014]. Although less commonplace than quantitative traits, agronomically important
binary traits do occur. For example the color of kernels in maize is often dichotomized
into a binary trait (white versus yellow; [Romay et al., 2013]), and breeding for kernel color
is a critical step for increasing bioavailablity of provitamin A carotenoids in maize grain
[Chandler et al., 2013; Harjes et al., 2008]. Thus, the application of quantitative genetic
analysis to binary traits has great potential to have a meaningful impact on future agronomic
efforts. However, a major setback is that some of the most widely-used quantitative genetics
approaches in agronomy do not account for the dichotomous configuration of a binary’s trait.
Consequently, direct application of state-of-the-art quantitative genetic approaches to study
binary traits could result in negative statistical ramifications, including inadequate control
of inflation of test statistics due to subpopulation structure (as shown in, e.g. [Shenstone
et al., 2018]).

The logistic regression model is one of the most common statistical models in settings
where a binary outcome variable depends on a set of covariates. This model breaks down
when there is separation in the data. Separation occurs when there exists a hyperplane in
the covariate space such that deterministic outcomes are observed on at least one side of this
hyperplane. When separation is present logistic model coefficient estimates are not finite (or
unstable). Therefore, any interpretations or conducting significance tests on coefficients is
meaningless. Moreover, common statistical software does not diagnose this issue or provide
remedies [Eck and Geyer, 2021]. Data separation is especially prevalent when the number of
predictors is near the sample size.

The easiest way to deal with data separation, when it is detected, is to remove the
problematic covariates. However, this näıve approach often leads us to get rid of the highly
correlated covariates with the outcome variable [Zorn, 2005]. Alternatively, Heinze and
Schemper [2002] use the Firth’s penalized maximum likelihood estimation to reduce the bias
of maximum likelihood estimator to obtain the finite parameter estimates. Kosmidis and
Firth [2009] then generalize this method for the nonlinear exponential family. These bias
reduction methods enable one to estimate coefficients when the coefficients of problematic
covariates are at infinity. Additionally, many have proposed a Bayesian framework to handle
the estimation problems that arise from separation [Heinze and Schemper, 2002; Dunson
et al., 2006; Genkin et al., 2007; Gelman et al., 2008]. Heinze and Schemper’s method
can be seen as the application of the Jeffrey’s invariant prior. Dunson et al. [2006] use the
mixture prior distributions for the logistic model with large number of covariates and Genkin
et al. [2007] consider the Laplace prior distribution. Gelman et al. [2008] suggest the Cauchy
distribution with center 0 and scale 2.5 as the default choice, and this method shows faster
and better performance in the prediction in comparison to the other methods.

Both bias reduction and Bayesian approaches handle the separation issue by switching the
modeling paradigm to accommodate problematic data rather than solving the issue within
the original model. Geyer [2009] developed methodology for directly finding the MLE when
problematic separation exists and the traditional MLE calculations do not converge. This
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method requires a massive computation cost which makes it time consuming to apply in
practice. Eck and Geyer [2021] proposed new, faster and scalable methodology to find the
MLE in the completion when MLE does not exist. Eck and Geyer’s method is implemented
in the R package glmdr, software which detects and remedies separation in logistic regression.
In this study we propose the prediction framework in the Eck and Geyer [2021]’s method.
Considering the important role of statistical model is often to preform the inference and
prediction, our work can make Eck and Geyer [2021]’s method more practical and useful to
use when the separation issue presents.

In this study we motivate the logistic regression model for applications in binary outcome
regression, describe the problem of separation in the data, and compare different techniques
(Bayesian, penalized likelihood, and maximum likelihood estimation) for handling separation
on several didactic datasets and practical datasets in biostatistics and genetics. We assess
performance of these techniques on their inferential and predictive ability. Because the MLE
asymptotically achieves the Cramér-Rao lower bound, we expect the MLE technique in Eck
and Geyer [2021] to yield the tightest inferences among all techniques under consideration.
This finding is confirmed in all datasets that we considered. We develop a novel prediction
procedure within the methodological context of Eck and Geyer [2021] to facilitate predic-
tion when there exists separation in the data. We expect our developed method and the
other considered methods to exhibit even predictive performance with a computational edge
towards the Bayesian techniques that we considered. While the method of Eck and Geyer
[2021] is far more computationally convenient than that of Geyer [2009] it is still rather
involved when adapted for prediction. Ultimately we want to develop the methodology in
Eck and Geyer [2021] for genomic prediction when there may be far more predictors than
cases. The prediction procedures developed here are an important step in that direction.

2 Materials and Methods

2.1 Logistic Regression

The logistic regression is the special case of the generalized linear model which the outcome
variable follows Bernoulli distribution (i.e., y ∈ {0, 1}) [Nelder and Wedderburn, 1972].
By convention, we encode 1 as a “success” and 0 as a “failure.” In logistic regression the
conditional success probability at a particular x is modeled as

Pr(Y = 1|X = x) =
exp (xTβ)

1 + exp (xTβ)
= px, (1)

where β is an unknown canonical parameter vector (coefficient vector), X and Y are the
covariate and outcome random variables, and x is an observed value.

From the linear regression’s point of view, this logistic regression is equivalent to:

g(px) = log

!
px

1− px

"
= xTβ (2)

where g(x) = log( x
1−x

) is a logit link (log-odds ratio).
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Therefore, as in classical ordinary least squares (OLS) regression, we can estimate model
parameters using maximum likelihood estimation. Statistical inferences about model param-
eters can be obtained from estimates of the Fisher information. Unlike in OLS regression,
estimates for β̂ are not given in closed form. The log-likelihood function for the logistic
regression model is

logL(β|Y ) =
n#

i=1

yi log (pxi
) + (1− yi) log (1− pxi

), (3)

one then obtains β̂ by solving the score function equation

∂ logL(β|Y )

∂β
=

N#

i=1

(yi − log (pxi
))xT

i =
N#

i=1

[yi + log (1 + exp (−xT
i β))] = 0. (4)

Conventional softwares finds β̂ through Fisher-scoring or iteratively reweighted least squares
algorithms [Agresti, 2013, Chapter 4]. We then obtain inferences using an estimate of the
Fisher information matrix evaluated at the MLE solution β̂

$Var(β) = [I(β̂)]−1 =

!
−E

%
∂2 logL(β|Y )

∂βi∂βj

&"−1 '''
β=β̂

. (5)

Conventional software provides (5).

2.2 Complete Separation

Traditional maximum likelihood estimation for logistic regression does not work well when
there is complete or quasi-complete separation in the data, a problem that is widespread in
applications [Geyer, 2009]. Agresti [2013] defines complete separation when there exists a
vector b such that

xT
i b > 0 whenever yi = 1,

xT
i b < 0 whenever yi = 0.

(6)

That is, complete separation occurs when the one or more covariates can perfectly predict
the outcome variable [Albert and Anderson, 1984]. For example, as shown in the Figure 1,
consider the following case that when x is less than 50, all corresponding y are 0 and when x
is greater than 50, all corresponding y are 1. Suppose we are interested in a simple logistic
regression model xT

i = [1, zi]. Then this data is completely separated with b = [−50, 1]T .
Moreover, we have p̂x = 0 for z < 50 and p̂x = 1 for z > 50.

When there is complete separation, the parameter estimates β̂ are “at infinity,” the
iteration based estimation algorithms provide a sequence of estimates that goes to infinity,
and the log likelihood becomes flat when evaluated along this sequence. The left panel of
Figure 2 shows the log likelihood of logistic model for this example with different working
estimate from glm function in R. We can see that each iteration, norm of β becomes larger
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Figure 1: Example of complete separation from Section 6.5.1 of Agresti [2013]. The conven-
tional MLE of a logistic model does not exist.

and asymptote of the log likelihood value goes to infinity. The right panel of Figure 2 is
the zoomed part of the left panel of Figure 2 where the log of norm of working estimates is
between 4.5 and 5. It displays the log likelihood value still approaches near zero although
the left panel of Figure 2 looks flat in the same region. In complete separation, the usual
statistical inference is not valid. The standard errors of predicted probabilities of success
are very small, which leads to extremely narrow confidence intervals for each observation.
Unfortunately, none of common statistical software such as R, SAS and Python can handle
the separation issue properly and uninformed users sometimes uses the wrong model without
knowing it [R Core Team, 2020; SAS Institute Inc., 2003; Van Rossum and Drake Jr, 1995].
The glmdr software package [Geyer et al., 2021] is designed to provide users with a description
of the complete separation problem, and provide statistical inferences when it occurs.

Quasi-complete separation is another case of separation that there are both a success
and a failure on the hyperplane that separates the successes from the failures [Lesaffre and
Albert, 1989]. For instance, we can consider additional two points that z = 50 with y = 1
and y = 0 to the previous complete separation example. That is, we have yi = 0 for z ≤ 50
and yi = 1 for z ≥ 50. In this case, the maximized log likelihood is always negative and we
experience same phenomenon as the complete separation case.

2.3 Mean-value Parameters

The parameter of primary interest is often the mean-value parameter on the scale of the
outcome variable. This is the expected outcome expressed as a function of covariates. In the
logistic regression model the mean-value parameter is the conditional success probability px
at some particular x, and, unlike in linear regression, this parameter is not easily interpreted
from β. Furthermore, the natural constraints on a conditional probability corresponding to
a binary outcome variable require an alteration to the linear model.

In linear regression, we can easily obtain E(Y |X = x) from β since E(Y |X = x) = xTβ.
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Figure 2: Left panel: Log likelihood values of logistic model at different working estimates.
Blue dot represents the log likelihood value at each iteration. Right panel: Zoom in view of
a log likelihood values of logistic model where log of norm of working estimates lie between
4.5 and 5.

Plugging in β̂ produces the MLE for this expectation (E(Y |X = x) = xT β̂ with x fixed. On
the other hand, in the logistic model, E(Y |X = x) = Pr(Y = 1|X = x) where log( px

1−px
) =

xTβ. Thus, β does not offer an easy interpretation about changes in the expected outcome
as the covariates change, and it is therefore less useful as a parameter for understanding how
px changes with x. The mean-value parametrization is the primary parameter of interest
in both regression contexts, but in linear regression the mean-value parameter and β are
interchangeable.

Another benefit of the mean-value parameterization over β in the logistic regression model
is when complete separation exists. When complete separation exists β is estimated to be
at infinity while px is estimated to be 0 or 1. We discuss complete separation and methods
which address it in the next Section.

2.4 One-Sided Confidence Interval

We use one-sided confidence intervals for the logistic model’s mean-value parameters to
explain the uncertainty of estimation in the presence of separation. The original concept can
be found in Section 3.16 of Geyer’s paper [2009] and implementation details can be found
in Section 4.3 of Eck and Geyer [2021]. These one-sided intervals are specifically tailored to
handle separation and they are what form our robust logistic regression model.

For completeness we briefly explain how we construct these one-sided confidence interval
for mean-value parameters. One endpoint of the one-sided interval is constrained to be the
observed outcome variable (i.e., lower bound if yi = 0 and upper bound if yi = 1), and the
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other endpoint is obtained by solving the optimization problem:

minimize − θk

subject to
#

i∈I

[yi log (pxi
) + (1− yi) log (1− pxi

)]− log (α) ≥ 0, (7)

where θk = xT
k β for any k ∈ I, I is a index of problematic points that cause the separation,

p is a mean-value parameter, and α is a significance level. For example, Figure 3 shows the
one-sided confidence interval for the complete separation example we discussed in Section
2.2. We can see the confidence interval increases as z increases until z = 40 then it starts
to decrease as z increases from z = 60. Also, we have a widest interval where z = 40 and
z = 60 with the length of intervals, 1 − α. It means our uncertainty on estimation keep
increases from z = 10 to z = 40 and we have the highest uncertainty near the separation
occurs. Then it diminishes as it furthers away from the boundary of the separation. In
glmdr, inference function provides this confidence intervals using the sequential quadratic
programming (SQP) to solve the constrained nonlinear problem (7).

Figure 3: One-sided 95% confidence interval for the example of complete separation from
Section 2.2. Solid dot represents the observed value and bar shows the interval. p̂x is the
estimated probability of a success given z.

2.5 Prediction

Model based prediction is different when data separation is present. Standard techniques
fail in the presence of data separation. In the absence of separation we can compute the
predicted value for new data point from the logistic model using p̂xpred

= (1+exp (−xT
newβ̂))

−1.

However, when complete separation is present, this approach fails since β̂ is at infinity.
Standard estimates of variability suffer from a similar problem. Another difficulty is due
to uncertainty in the separation itself. Data separation occurs with probability tending to
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zero as the sample size increases with the number of predictors fixed. Data separation is
therefore a sampling issue, not a modeling issue. We propose a new method for prediction
that addresses the practical and conceptual difficulties of prediction when separation exists.

This method is as follows: first, pick a point xnew for which a prediction is desired and
there exists at xnew. A prediction at xnew is either 0 or 1 using traditional methods. We then
combine this point with the observed data. We will make a model-based estimate at xnew

by fitting separate logistic regression models, one outcome label ynew = 0 and the other with
ynew = 1. Fitting two separate models in this way is intended to address the uncertainty in
the data separation. We then compute the estimated probability of a success for new data
points, p̂xnew0 and p̂xnew1. Note that one of p̂xnew0 or p̂xnew1 will be 0 or 1 and the other will not
be, this is because ynew = 0 or ynew = 1 decreases the uncertainty in the separation by adding
a pseudo outcome in its favor, while the other pseudo outcome alleviates the separation at
xnew. We now combine p̂xnew0 and p̂xnew1 to form a prediction using model averaging. Our
model averaging procedure judges the fit of each model based on weights similar to the the
Akaike weights in Burnham and Anderson [2002]. These weights are

wj =
exp(− ICj

2
)

exp(− IC1

2
) + exp(− IC2

2
)
,

where ICj is the information criteria of model j. Then we can calculate the model averaged
estimate, p̂∗xnew

=
)1

j=0 wj p̂xnewj. We used Akaike information criteria corrected (AICc) as
ICj. The primary reason for its use is that AICc does not have an overfit problem when the
sample size is small [Sugiura, 1978]. The presence of data separation is an indication that one
is not close to asymptopia, the sample size is small in this sense. We then label 1 if p̂∗xnew

≥ C∗

and 0 if p̂∗xnew
< C∗ where C∗ is the optimal cut-off that maximizes the overall accuracy. The

main motivation of using optimal cut-off is that threshold of 0.5 produces unreliable and poor
model accuracy when the outcome variable is highly unbalanced [Freeman and Moisen, 2008].
For prediction intervals, we construct the Wilson intervals [1927] for predicted probabilities.
Wilson intervals show better coverage probability although p̂∗xnew

is near 0 and 1 boundaries
in comparison to the standard binomial confidence interval because Wilson intervals are
asymmetric [Brown et al., 2001]. Detailed implementation and examples are given in the
Supplementary Materials.

2.6 Model Performance

To compare glmdr and other models (bayesglm, brglm (logistf), and linear model), we
measure the in-sample accuracy and confidence intervals for the inferential ability, and out-of-
sample accuracy, prediction intervals, and computational cost for the predictive performance.
In inference, we compute the in-sample accuracy as the number of correctly classified obser-
vations in the training set divided by total number of observations in the training set. For
confidence intervals, we only consider observations that occur the (quasi) complete separa-
tion. Then, we compute the average length of one-sided confidence interval for glmdr and
average length of Wilson intervals for bayesglm, brglm (logistf) and linear models (since
the predicted value of linear model does not have to fall into [0, 1] range, we assign 1 for any
predicted values greater than 1 and 0 for negative values).
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In prediction, we use the leave-one-out cross validation (LOOCV) for out-of sample ac-
curacy, which is total number of correctly classified observation in the testing set divided by
total size of the testing set. We calculate the Wilson intervals for the prediction intervals,
and proc.time function in R to measure the execution time for the computational cost.

2.7 Data

We provide inference and prediction results for the maize data as well as an extensive set of
didactic examples. These include:
Complete separation: This example comes from Agresti [2013] and is discussed in Sec-
tion 2.2. In this example, there is a binary outcome variable, y ∈ {0, 1} and one covariate
variable, z, with 8 data points. Specifically, yi = 1 at z = 10, 20, 30, 40, and yi = 0 at
z = 60, 70, 80, 90. Since y could be completely separable by z, we observed the complete
separation in this example.

Quasi-complete separation: This example is an extension of the complete separation
example in Agresti [2013] with two points added, yi = 1 and yi = 0 at z = 50. This is an
example of quasi-complete separation.

Quadratic logistic regression model: This example comes from Section 2.2 of Geyer
[2009]. There is one binary outcome variable y ∈ {0, 1} and one covariate variable z which
takes integer values from 1 to 30. The outcome variable was yi = 1 when 12 < zi < 24 and
yi = 0 otherwise. A quadratic logistic model is considered in this example and complete
separation is observed.

Endometrial Cancer Study: This example comes from Heinze and Schemper [2002]. The
main purpose of this study was to describe histology of cases (HG) in terms of three risk fac-
tors: neovasculation (NV), endometrium height (EH) and pulsatility index of arteria uterina
(PI). The outcome variable had 30 patients classified grading 0-II for histology (HG = 1) and
49 patients for grading III-IV (HG = 0). There were 13 patients who had neovasculization
(NV = 1) and absent for 66 patients (NV = 0). Pulsatility index (PI) ranges from 0 to 49
with mean of 17.38 and median of 16.00, and endometirum height (EH) ranges from 0.27 to
3.61 with mean of 1.662 and median of 1.640. Quasi-complete separation was observed in
this example, this separation is determined by NV.

Maize data: This example comes from Romay et al. [2013], and it consists of 2,815 maize
lines. The binary outcome variable is the kernel color, where 1 indicated non-white kernel
color and 0 indicated white kernel color. We fitted a logistic regression model with kernel
color as the outcome variable and covariate variables consisting of subpopulations and 24
DNA markers surrounding the psy1 gene. Each marker had a value from 0 to 1. In the final
data set, 309 lines had a white kernel and 1,238 had non-white kernel color. These maize
lines were subdivided into six subpopulations, namely 115 non-stiff stalk, 54 popcorn, 120
stiff stalk, 116 sweet corn, 159 tropical, and 983 unclassified. In this example, there was no
separation issues when we used a single marker for covariate. However, we had a separation
issue for saturated model with 24 DNA markers and subpopulations.
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2.8 Materials

We implemented our methodology in R package glmdr. We used R version 3.6.1 and the
required R packages for glmdr is nloptr version 1.2.2.2. To compare its performance, we
considered arm version 1.11-1, brglm2 0.7.0, logistf version 1.23 and stats version 3.6.1.
To determine the optimal cut-off for the logistic regression, we used PresenceAbsence version
1.1.9. For visualization, data wrangling and experiments, we used ggplot2 version 3.3.3,
gridExtra version 2.3, latex2exp version 0.4.0, foreach version 1.4.7, doParallel version
1.0.15, and tidyverse version 1.2.1. Further details are included in the technical reports.
glmdr is available on https://github.com/DEck13/complete_separation.

3 Results

3.1 Inference

We report the in-sample accuracy for all observations and confidence intervals for problem-
atic observations that raise the (quasi) complete separation issue to compare each method.
For brglm, it is theoretically equivalent to the logistf when brglm uses the maximum penal-
ized likelihood with powers of the Jeffreys prior as penalty. However, brglm fails to converge
for the maize example, meanwhile, logistf converges. Therefore, we use logistf’s result
for brglm in maize example. For confidence intervals, we compute the average length of
one-sided confidence interval for glmdr and average length of Wilson intervals for bayesglm,
brglm (logistf) and linear models. In Table 1, we can see all methods show the equivalent
in-sample accuracy for the complete separation and quasi separation examples. Meanwhile,
the logistic models, glmdr, bayesglm, and brglm (logistf), display the higher in-sample
accuracy for quadratic, endometrial, and maize examples in comparison to the linear model.
Within these examples, glmdr has the highest in-sample accuracy in maize example than
other two logistic models. For confidence intervals, glmdr demonstrates the smallest length
in all examples. Especially, in quadratic and endometrial examples, its lengths of confidence
intervals are significantly smaller than other methods. Two logistic models, bayesglm and
brglm (logistf) generally shows smaller lengths of confidence intervals but they are not
highly different from that of linear model in all examples. This result suggests that linear
model perform worse than logistic models, and glmdr which solves the complete separa-
tion within the MLE framework produces the most accurate inference for (quasi) complete
separation problem.

3.2 Prediction

To compare the performance of prediction, we compare out-of-sample accuracy, prediction
intervals and computational cost. In Table 2, we can see all methods show the same accuracy
for the complete separation and quasi separation examples. glmdr shows the highest out-
of-sample accuracy in endometrial example where other three methods perform the same.
In quadratic example, brglm performs the best followed by other two logistic models and
linear model, but linear model is better than the logistic models in maize example although
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Table 1: Model performances for all examples.

glmdr denotes Generalized Linear Model Done Right [Geyer et al., 2021], bayesglm denotes Generalized
Linear Model with Student-t prior distribution [Gelman et al., 2008], brglm denotes Bias Reduction in Gen-
eralized Linear Models [Kosmidis and Firth, 2009], logistf denotes Logistic model with Firth’s modified score
function [Heinze and Schemper, 2002], and linear denotes the multiple linear model using ordinary least
squares.

Complete Separation Quasi Separation Quadratic Endometrial Maize
accuracy glmdr 100 % 90 % 100 % 88.61 % 87.14 %

bayesglm 100 % 90 % 100 % 88.61 % 87.07 %
brglm / logistf 100 % 90 % 100 % 88.61 % 87.01 %
linear 100 % 90 % 90 % 86.08 % 86.81 %

length glmdr 0.550 0.308 0.199 0.194 0.563
bayesglm 0.828 0.827 0.823 0.804 0.814
brglm / logistf 0.835 0.831 0.811 0.808 0.826
linear 0.829 0.829 0.859 0.806 0.838

their differences are not large. This result is surprising because the linear model is gener-
ally not recommended for binary classification, yet it shows a better performance than the
logistic models. For prediction intervals, overall there is no significant difference between
each method. We notice that glmdr has the smallest lengths of prediction intervals in three
examples but for the quasi complete separation example where the linear model displays
the smallest length of prediction intervals and the endometrial example where the bayesglm
shows the tightest prediction intervals.

Table 2: Prediction results and computational cost for all examples.

glmdr denotes Generalized Linear Model Done Right [Geyer et al., 2021], bayesglm denotes Generalized
Linear Model with Student-t prior distribution [Gelman et al., 2008], brglm denotes Bias Reduction in Gen-
eralized Linear Models [Kosmidis and Firth, 2009], logistf denotes Logistic model with Firth’s modified score
function [Heinze and Schemper, 2002], and linear denotes the multiple linear model using ordinary least
squares.

Complete Separation Quasi Separation Quadratic Endometrial Maize
accuracy glmdr 100 % 80 % 93.33 % 87.34 % 86.23 %

bayesglm 100 % 80 % 93.33 % 86.08 % 86.36 %
brglm / logistf 100 % 80 % 100 % 86.08 % 86.30 %
linear 100 % 80 % 90 % 86.08 % 86.55 %

length glmdr 0.822 0.859 0.807 0.848 0.837
bayesglm 0.839 0.845 0.828 0.843 0.837
brglm / logistf 0.843 0.847 0.813 0.844 0.837
linear 0.833 0.844 0.861 0.851 0.839

cost glmdr 0.13 secs 0.27 secs 0.31 secs 1.06 secs 3.70 mins
bayesglm 0.11 secs 0.12 secs 0.35 secs 0.31 secs 45.35 secs
brglm / logistf 0.19 secs 0.19 secs 0.44 secs 0.49 secs 2.26 hours
linear 0.07 secs 0.06 secs 0.09 secs 0.14 secs 4.63 secs

We present the computational cost of each method in Table 2. In all examples, lin-
ear model is much faster than logistic models. Although there is no significant difference
in complete separation, quasi complete separation, quadratic, and endometrial examples,
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computational cost of glmdr increases much in maize example because execution time for
glmdr increases as it requires more computations to solve the optimization problem if the
data point to be predicted occur the separation. Similarly, brglm is notably slow because
it needs to handle the optimization problem to find the penalized MLE for each iteration.
However, bayesglm does not suffer this issue because it does not carry the computation for
the optimization problem in their method.

Considering all aspects, all of four methods demonstrate comparable out-of-sample accu-
racy and length of prediction intervals. However, there are several notable differences. glmdr
provides the smallest lengths of prediction intervals except in the quasi separation example.
It also shows better performance in endometrial example. But, it may not be scalable to
the large datasets due to relatively high computational cost. bayesglm performs well on all
examples with the lowest computational cost, which indicates the bayesglm is suitable for
prediction on large data. brglm achieves the highest out-of-sample accuracy in the quadratic
example, but brglm fails to converge in maize example and alternative method, logistf, is
very costly. Meanwhile, the linear model performs well despite of the binary outcome. It
shows comparable or better out-of-sample accuracy with small prediction intervals and the
lowest computational cost.

4 Discussion

In the classification problem, the logistic model is one of the most common statistical model
we can attempt. Although linear model is attractive option to use because of its easiness and
handiness, the binary outcome variable makes the linear model violate necessary assumptions
such as homoscedasticity and linearity (i.e. Gauss-Markov assumptions) as well as normality.
Therefore, even though results from Section 3.1 and 3.2 display that the performance of linear
model is comparable to the logistic models, we can not fully utilize asymptotic properties of
linear model and make a proper inference such as significance tests for coefficients.

On the other hand, glmdr is considered to be the most preferable logistic model based
on its overall performance in the inference and prediction. The main strength of glmdr is it
provides the best inference as the way that glmdr handles the separation problem is the true
remedy to the traditional glm’s separation issue. It solves the separation issue within the
maximum likelihood estimation framework unlike other two logistic models and estimates the
probability of success by finding the MLE in the Barndorff-Nielsen completion [1978] based
on approximate null eigenvectors of the Fisher information matrix. Meanwhile, other two
logistic models solve the separation problem by switching the problem settings. For example,
bayesglm adopts a Bayesian approach which scales the data first and then places Cauchy
distribution as a prior distribution on the coefficients and brglm modifies the score function
to produce finite coefficients. As a result, not only are both models’ results in inference not
the best, but it is also hard to see their outputs as a true solution for separation problem
of glm. In prediction, glmdr shows similar or better out-of-sample accuracy when the quasi-
complete separation presents, and comparable performance when the complete separation
exists with the narrowest length of prediction intervals with acceptable computational cost.
It may take much time when we have a large number of observations, but the complete
separation is likely to occur when we have a small sample size. Thus, high computational

12



cost in large sample size should not be the major issue in glmdr.
In conclusion, when separation issue present in the logistic model, one can consider

using the glmdr which has the advantage in inference and the comparable prediction power.
bayesglm is suitable for prediction in large datasets thanks to its low computational cost
yet high accuracy. brglm or logistf may be least preferable method because they are
computationally unstable and expensive.
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