
bnstruct: an R package for Bayesian Network

Structure Learning with missing data

Francesco Sambo, Alberto Franzin

July 29, 2015

1 Introduction

Bayesian Networks (Pearl [8]) are a powerful tool for probabilistic inference
among a set of variables, modeled using a directed acyclic graph. However,
one often does not have the network, but only a set of observations, and wants
to reconstruct the network that generated the data. The bnstruct package
provides objects and methods for learning the structure and parameters of the
network in various situations, such as in presence of missing data, for which it
is possible to perform imputation (guessing the missing values, by looking at
the data). The package also contains methods for learning using the Bootstrap
technique. Finally, bnstruct, has a set of additional tools to use Bayesian
Networks, such as methods to perform belief propagation.

In particular, the absence of some observations in the dataset is a very com-
mon situation in real-life applications such as biology or medicine, but very few
software around is devoted to address these problems. bnstruct is developed
mainly with the purpose of filling this void.

This document is intended to show some examples of how bnstruct can be
used to learn and use Bayesian Networks. First we describe how to manage
data sets, how to use them to discover a Bayesian Network, and finally how
to perform some operations on a network. Complete reference for classes and
methods can be found in the package documentation.

1.1 Overview

We provide here some general informations about the context for understanding
and using properly this document. A more thorough introduction to the topic
can be found for example in Koller and Friedman [6].

1.1.1 The data

A dataset is a collection of rows, each of which is composed by the same number
of values. Each value corresponds to an observation of a variable, which is a
feature, an event or an entity considered significant and therefore measured.

1

In a Bayesian Network, each variable is associated to a node. The number
of variables is the size of the network. Each variable has a certain range of
values it can take. If the variable can take any possible value in its range,
it is called a continuous variable; otherwise, if a variable can only take some
values in its range, it is a discrete variable. The number of values a variable
can take is called its cardinality. A continuous variable has infinite cardinality;
however, in order to deal with it, we have to restrict its domain to a smaller
set of values, in order to be able to treat it as a discrete variable; this process
is called quantization, the number of values it can take is called the number of
levels of the quantization step, and we will therefore call the cardinality of a
continuous variable the number of its quantization levels, with a little abuse of
terminology.

In many real-life applications and contexts, it often happens that some ob-
servations in the dataset we are studying are absent, for many reasons. In this
case, one may want to “guess” a reasonable (according to the other observations)
value that would have been present in the dataset, if the observations was suc-
cessful. This inference task is called imputation. In this case, the dataset with
the “holes filled” is called the imputed dataset, while the original dataset with
missing values is referred to as the raw dataset. In section 3.2 we show how to
perform imputation in bnstruct.

Another common operation on data is the employment of resampling tech-
niques in order to estimate properties of a distribution from an approximate
one. This usually allows to have more confidence in the results. We implement
the bootstrap technique (Efron and Tibshirani [2]), and provide it to generate
samples of a dataset, with the chance of using it on both raw and imputed data.

1.1.2 Bayesian Networks

After introducing the data, we are now ready to talk about Bayesian Net-
works. A Bayesian Network (hereafter sometimes simply network, net or BN
for brevity) is a probabilistic graphical model that encodes the conditional de-
pendency relationships of a set of variables using a Directed Acyclic Graph
(DAG). Each node of the graph represents one variable of the dataset; we will
therefore interchange the terms node and variable when no confusion arises. The
set of directed edges connecting the nodes forms the structure of the network,
while the set of conditional probabilities associated with each variable forms the
set of parameters of the net.

The DAG is represented as an adjacency matrix, a n× n matrix, where n is
the number of nodes, whose cells of indices (i, j) take value 1 if there is an edge
going from node i to node j, and 0 otherwise.

The problems of learning the structure and the parameters of a network from
data define the structure learning and parameter learning tasks, respectively.

Given a dataset of observations, the structure learning problem is the prob-
lem of finding the DAG of a network that may have generated the data. Several
algorithms have been proposed fot this problem, but a complete search is doable
only for networks with no more than 20-30 nodes. For larger networks, several

2

heuristic strategies exist.
The subsequent problem of parameter learning, instead, aims to discover the

conditional probabilities that relate the variables, given the dataset of observa-
tions and the structure of the network.

In addition to structure learning, sometimes it is of interest to estimate a
level of the confidence on the presence of an edge in the network. This is what
happens when we apply bootstrap to the problem of structure learning. The
result is not a DAG, but a different entity that we call weighted partially DAG,
which is an adjacency matrix whose cells of indices (i, j) take the number of
times that an edge going from node i to node j appear in the network obtained
from each bootstrap sample.

As the graph obtained when performing structure learning with bootstrap
represents a measure of the confidence on the presence of each edge in the
original network, and not a binary response on the presence of the edge, the
graph is likely to contain undirected edges or cycles.

As the structure learnt is not a DAG but a measure of confidence, it cannot
be used to learn conditional probabilities. Therefore, parameter learning is not
defined in case of network learning with bootstrap.

One of the most relevant operations that can be performed with a Bayesian
Network is to perform inference with it. Inference is the operations that, given a
set of observed variables, computes the probabilities of the remaining variables
updated according to the new knowledge. Inference answers questions like “How
does the probability for variable Y change, given that variable X is taking value
x′?”.

2 Installation

The latest stable version of the package is available on CRAN https://cran.

r-project.org, and can therefore be installed from an R session using

> install.packages("bnstruct")

The latest development version of bnstruct can be found at http://github.
com/sambofra/bnstruct.

In order to install the package, it suffices to open a shell and run

git clone https://github.com/sambofra/bnstruct.git

cd bnstruct

make install

bnstruct requires R ≥ 2.10, and depends on bitops, igraph, Matrix and
methods. Package Rgraphviz is requested in order to plot graphs, but is not
mandatory.

3

3 Data sets

The class that bnstruct provides to manage datasets is BNDataset. It contains
all of the data and the informations related to it: raw and imputed data, raw
and imputed bootstrap samples, and variable names and cardinality.

3.1 Creating a BNDataset

There are two ways to build a BNDataset: using two files containing respectively
header informations and data, and manually providing the data table and the
related header informations (variable names, cardinality and discreteness).

> dataset.from.data <- BNDataset(data = data,

+ discreteness = rep('d',4),

+ variables = c("a", "b", "c", "d"),

+ node.sizes = c(4,8,12,16))

>

> dataset.from.file <- BNDataset("path/to/data.file",

+ "path/to/header.file")

The key informations needed are:

1. the data;

2. the state of variables (discrete or continuous);

3. the names of the variables;

4. the cardinalities of the variables (if discrete), or the number of levels they
have to be quantized into (if continuous).

Names and cardinalities/leves can be guessed by looking at the data, but it is
strongly advised to provide all of the informations, in order to avoid problems
later on during the execution.

Data can be provided in form of data.frame or matrix. It can contain NAs.
By default, NAs are indicated with ’?’; to specify a different character for NAs,
it is possible to provide also the na.string.symbol parameter. The values con-
tained in the data have to be numeric (real for continuous variables, integer for
discrete ones). The default range of values for a discrete variable X is [1,|X|],
with |X| being the cardinality of X. The same applies for the levels of quan-
tization for continuous variables. If the value ranges for the data are different
from the expected ones, it is possible to specify a different starting value (for
the whole dataset) with the starts.from parameter. E.g. by starts.from=0

we assume that the values of the variables in the dataset have range [0,|X|-1].
Please keep in mind that the internal representation of Rpackagebnstruct starts
from 1, and the original starting values are then lost.

It is possible to use two files, one for the data and one for the metadata,
instead of providing manually all of the info. bnstruct requires the data files

4

to be in a format subsequently described. The actual data has to be in (a text
file containing data in) tabular format, one tuple per row, with the values for
each variable separated by a space or a tab. Values for each variable have to
be numbers, starting from 1 in case of discrete variables. Data files can have a
first row containing the names of the corresponding variables.

In addition to the data file, a header file containing additional informations
can also be provided. An header file has to be composed by three rows of
tab-delimited values:

1. list of names of the variables, in the same order of the data file;

2. a list of integers representing the cardinality of the variables, in case of
discrete variables, or the number of levels each variable has to be quantized
in, in case of continuous variables;

3. a list that indicates, for each variable, if the variable is continuous (c or
C), and thus has to be quantized before learning, or discrete (d or D).

In case of need of more advanced options when reading a dataset from files,
please refer to the documentation of the read.dataset method. Imputation
and bootstrap are also available as separate routines (impute and bootstrap,
respectively).

We provide two sample datasets, one with complete data (the Asia network,
Lauritzen and Spiegelhalter [7]) and one with missing values (the Child network,
Spiegelhalter, Dawid, Lauritzen, and Cowell [10]), in the extdata subfolder; the
user can refer to them as an example. The two datasets have been created with

> asia <- BNDataset("asia_10000.data",

+ "asia_10000.header",

+ starts.from=0)

> child <- BNDataset("Child_data_na_5000.data",

+ "Child_data_na_5000.header",

+ starts.from=0)

and are also available with

> asia <- asia()

> child <- child()

3.2 Imputation

A dataset may contain various kinds of missing data, namely unobserved vari-
ables, and unobserved values for otherwise observed variables. We currently
deal only with this second kind of missing data. The process of guessing the
missing values is called imputation.

We provide the impute function to perform imputation.

5

> dataset <- BNDataset(data.file = "path/to/file.data",

+ header.file = "path/to/file.header")

> dataset <- impute(dataset)

Imputation is accomplished with the k-Nearest Neighbour algorithm. The
number of neighbours to be used can be chosen specifying the k.impute param-
eter (default is k.impute = 10). Given that the parameter is highly dataset-
dependant, we also include the tune.knn.impute function to assist the user
while choosing the best value for k.

3.3 Bootstrap

BNDataset objects have also room for bootstrap samples (Efron and Tibshirani
[2]), i.e. random samples with replacement of the original data with the same
number of observations, both for raw and imputed data. Samples for imputed
data are generated by imputing the corresponding sample of raw data. There-
fore, by requesting imputed samples, also the raw samples will be generated.

We provide the bootstrap method for this.

> dataset <- BNDataset("path/to/file.data",

+ "path/to/file.header")

> dataset <- bootstrap(dataset, num.boots = 100)

> dataset.with.imputed.samples <- bootstrap(dataset,

+ num.boots = 100,

+ imputation = TRUE)

3.4 Using data

After a BNDataset has been created, it is ready to be used. The complete
list of methods available for a BNDataset object is available in the package
documentation; we are not going to cover all of the methods in this brief series
of examples.

For example, one may want to see the dataset.

> # the following are equivalent:

> print(dataset)

> show(dataset)

> dataset # from inside an R session

The show() method is an alias for the print() method, but allows to print
the state of an instance of an object just by typing its name in an R session.

The main operation that can be done with a BNDataset is to get the data
it contains. The main methods we provide are raw.data and imputed.data,
which provide the raw and the imputed data, respectively. The data must be
present in the object; conversely, an error will be raised. To avoid an abrupt

6

termination of the execution in case of error, one may run these methods in
a tryCatch() construct and manage the errors in case they happen. Another
alternative is to test the presence of data before attempting to retrieve it, using
the tester methods has.raw.data and has.imputed.data.

> options(max.print = 200, width = 60)

>

> dataset <- child()

> # if we want raw data

> raw.data(dataset)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

[1,] 2 3 3 NA 1 NA 1 1 2 1 1 1 NA 2 2

[2,] NA NA 2 1 1 2 1 2 2 1 2 1 2 2 NA

[3,] 2 3 1 2 1 NA NA 2 2 1 2 2 2 2 2

[4,] 2 4 1 1 1 3 NA 1 2 NA 3 NA 1 2 1

[5,] 2 2 1 NA 2 4 1 1 1 1 NA 1 NA 2 NA

[6,] NA 2 NA 2 1 4 NA 3 2 1 3 1 3 2 2

[7,] 2 2 1 2 NA 4 NA 3 NA 1 NA 1 1 NA NA

[8,] NA 1 1 NA 3 1 1 1 2 2 2 1 4 2 2

[9,] 2 3 2 2 1 3 1 2 2 1 2 1 2 2 2

[10,] 2 4 1 1 1 3 NA NA 2 NA 3 3 2 2 1

V16 V17 V18 V19 V20

[1,] 2 3 2 1 2

[2,] 2 2 1 2 2

[3,] 1 2 1 2 2

[4,] 3 1 NA 1 NA

[5,] NA 1 1 2 2

[6,] 2 1 1 3 2

[7,] NA 1 1 1 NA

[8,] 1 1 NA 4 NA

[9,] NA 1 1 2 2

[10,] 1 1 2 2 NA

[reached getOption("max.print") -- omitted 4990 rows]

> # if we want imputed dataset: this raises an error

> imputed.data(dataset)

Error in imputed.data(dataset): The dataset contains no imputed data.

Please impute data before learning.

See > ?impute for help.

> # with tryCatch we manage the error

> tryCatch(

+ imp.data <- imputed.data(dataset),

+ error = function(e) {
+ cat("Hey! Something went wrong. No imputed data present maybe?")

7

+ imp.data <<- NULL

+ }
+)

Hey! Something went wrong. No imputed data present maybe?

> imp.data

NULL

> # test before trying

> if (has.imputed.data(dataset)) {
+ imp.data <- imputed.data(dataset)

+ } else {
+ imp.data <- NULL

+ }
> imp.data

NULL

> # now perform imputation on the dataset

> dataset <- impute(dataset)

bnstruct :: performing imputation ...

bnstruct :: imputation finished.

> imputed.data(dataset)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

[1,] 2 3 3 2 1 3 1 1 2 1 1 1 1 2 2

[2,] 2 4 2 1 1 2 1 2 2 1 2 1 2 2 1

[3,] 2 3 1 2 1 3 1 2 2 1 2 2 2 2 2

[4,] 2 4 1 1 1 3 1 1 2 1 3 1 1 2 1

[5,] 2 2 1 2 2 4 1 1 1 1 3 1 1 2 2

[6,] 2 2 1 2 1 4 1 3 2 1 3 1 3 2 2

[7,] 2 2 1 2 2 4 1 3 2 1 3 1 1 2 2

[8,] 2 1 1 2 3 1 1 1 2 2 2 1 4 2 2

[9,] 2 3 2 2 1 3 1 2 2 1 2 1 2 2 2

[10,] 2 4 1 1 1 3 1 2 2 1 3 3 2 2 1

V16 V17 V18 V19 V20

[1,] 2 3 2 1 2

[2,] 2 2 1 2 2

[3,] 1 2 1 2 2

[4,] 3 1 1 1 2

[5,] 1 1 1 2 2

[6,] 2 1 1 3 2

[7,] 1 1 1 1 2

8

[8,] 1 1 1 4 2

[9,] 1 1 1 2 2

[10,] 1 1 2 2 2

[reached getOption("max.print") -- omitted 4990 rows]

Complete cases of the raw dataset, that is, rows that have no missing data,
can be selected with the complete method. Please note that this method re-
turns a new copy of the original BNDataset with no imputed data or bootstrap
samples (if previously generated), as it is not possible to ensure consistence
among data. It is possible to restrict the completeness requirement only to a
subset of variables.

By default, learning operations on the raw dataset operate with available
cases.

> complete.subset <- complete(dataset)

>

> # require completeness only on a subset of variables

> complete.subset <- complete(dataset, c(1,4,7))

In order to retrieve bootstrap samples, one can use the boots and imp.boots

methods for samples made of raw and imputed data. The presence of raw and
imputed samples can be tested using has.boots and has.imputed.boots. Try-
ing to access a non-existent sample (e.g. imputed sample when no imputation
has been performed, or sample index out of range) will raise an error. The
method num.boots returns the number of samples.

We also provide the boot method to directly access a single sample.

> # get raw samples

> for (i in 1:num.boots(dataset))

+ print(boot(dataset, i))

> # get imputed samples

> for (i in 1:num.boots(dataset))

+ print(boot(dataset, i, use.imputed.data = TRUE))

3.5 More advanced functions

It is also possible to manage the single fields of a BNDataset. See ?BNDataset

for more details on the structure of the object. Please note that manually filling
in a BNDataset may result in inconsistent instances, and therefore errors during
the execution.

It is also possible to fill in an empty BNDataset using the read.dataset

method.

9

4 Bayesian Networks

Bayesian Network are represented using the BN object. It contains information
regarding the variables in the network, the directed acyclic graph (DAG) repre-
senting the structure of the network, the conditional probability tables entailed
by the network, and the weighted partially DAG representing the structure as
learnt using bootstrap samples.

The following code will create a BN object for the Child network, with no
structure nor parameters.

> dataset <- child()

> net <- BN(dataset)

Then we can fill in the fields of net by hand. See the inline help for more
details.

The method of choice to create a BN object is, however, to create it from a
BNDataset using the learn.network method.

4.1 Network learning

When constructing a network starting from a dataset, the first operation we
may want to perform is to learn a network that may have generated that
dataset, in particular its structure and its parameters. bnstruct provides the
learn.network method for this task.

> dataset <- child()

> net <- learn.network(dataset)

The learn.network method returns a new BN object, with a new DAG (or
WPDAG, if the structure learning has been performed using bootstrap – more
on this later).

Here we briefly describe the two tasks performed by the method, along with
the main options.

4.1.1 Structure learning

We provide three algorithms in order to learn the structure of the network, that
can be chosen with the algo parameter. The first is the Silander-Myllymäki
(sm) exact search-and-score algorithm (see Silander and Myllymaki [9]), that
performs a complete evaluation of the search space in order to discover the best
network; this algorithm may take a very long time, and can be inapplicable
when discovering networks with more than 25–30 nodes. Even for small net-
works, users are strongly encouraged to provide meaningful parameters such as
the layering of the nodes, or the maximum number of parents – refer to the
documentation in package manual for more details on the method parameters.

The second algorithm (and the default one) is the Max-Min Hill-Climbing
heuristic (mmhc, see Tsamardinos, Brown, and Aliferis [11]), that performs a

10

statistical sieving of the search space followed by a greedy evaluation. It is
considerably faster than the complete method, at the cost of a (likely) lower
quality. Also note that in the case of a very dense network and lots of obseva-
tions, the statistical evaluation of the search space may take a long time. Also
for this algorithm there are parameters that may need to be tuned, mainly the
confidence threshold of the statistical pruning.

The third method is the Structural Expectation-Maximization (sem) algo-
rithm (Friedman [3, 4]), for learning a network from a dataset with missing
values. It iterates a sequence of Expectation-Maximization (in order to “fill
in” the holes in the dataset) and structure learning from the guessed dataset,
until convergence. The structure learning used inside SEM, due to compu-
tational reasons, is MMHC. Convergence of SEM can be controlled with the
parameters struct.threshold, param.threshold, max.sem.iterations and
max.em.iterations, for the structure and the parameter convergence and the
maximum number of iterations of SEM and EM, respectively.

Search-and-score methods also need a scoring function to compute an esti-
mated measure of each configuration of nodes. We provide three of the most pop-
ular scoring functions, BDeu (Bayesian-Dirichlet equivalent uniform, default),
AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion).
The scoring function can be chosen using the scoring.func parameter.

> dataset <- child()

> net.1 <- learn.network(dataset,

+ algo = "sem",

+ scoring.func = "AIC")

> dataset <- impute(dataset)

> net.2 <- learn.network(dataset,

+ algo = "mmhc",

+ scoring.func = "BDeu",

+ use.imputed.data = TRUE)

It is also possible to provide an initial network as starting point for the
structure search. This can be done using the initial.network argument, which
accepts three kinds of inputs:

• a BN object (with a structure);

• a matrix containing the adjacency matrix representing the structure of a
network;

• the string random.chain for starting from a randomly sampled chain-like
network.

In order to obtain reproducible results, in case a random chain is used it is
possible to provide an initial random seed.

11

> dataset <- child()

> net.1 <- learn.network(dataset,

+ initial.network = "random.chain",

+ seed = 12345)

> net.2 <- learn.network(dataset,

+ algo = "sem",

+ initial.network = net.1)

Prior knowledge can be given to the learning algorithm, by providing a lay-
ering of the variables. Variables can be grouped in (numbered) layers, and a
variable can only have parents in upper (lower-numbered) layers. In order to
specify this in the learning step, one supplementary argument has to be pro-
vided: layering, a vector containing the indices of the layers of each variable.
By default, the first layer contains variables with no parents, and variables in
layer j can have parents only in layers i ≤ j.

In case of more sophisticated requirements, some other optional arguments
can be provided: max.fanin.layers and max.fanin for sm, layer.struct for
mmhc (see method documentation).

> layers <- c(1,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5)

> net.layer <- learn.network(dataset, layering = layers)

The structure learning task by default computes the structure as a DAG. We
can however use bootstrap samples to learn what we call a weighted partially
DAG, in order to get a weighted confidence on the presence or absence of an
edge in the structure (Friedman, Goldszmidt, and Wyner [5]). This can be done
by providing the constructor or the learn.network method a BNDataset with
bootstrap samples, and the additional parameter bootstrap = TRUE.

> dataset <- child()

> dataset <- bootstrap(dataset, 100, imputation = TRUE)

> net.1 <- learn.network(dataset,

+ algo = "mmhc",

+ scoring.func = "AIC",

+ bootstrap = TRUE)

> # or, for learning from imputed data

> net.2 <- learn.network(dataset,

+ algo = "mmhc",

+ scoring.func = "AIC",

+ bootstrap = TRUE,

+ use.imputed.data = TRUE)

Structure learning can be performed also using the learn.structure method,
which has a similar syntax, only requiring as first parameter an already initial-
ized network for the dataset. More details can be found in the inline helper.

It is also possible to learn a WPDAG starting from a network with a DAG,
using the wpdag.from.dag method.

12

4.1.2 Parameter learning

Parameter learning is the operation that learns the conditional probabilities
entailed by a network, given the data and the structure of the network. In
bnstruct this is done by learn.network performing a Maximum-A-Posteriori
(MAP) estimate of the parameters. It is possible to choose if using the raw
or the impute dataset (use.imputed.data parameter), and to configure the
Equivalent Sample Size (ess parameter).

In case of using bootstrap samples, learn.network will not perform param-
eter learning.

bnstruct also provides the learn.params method for this task alone.
The package also provides a method for learning the parameters from a

dataset with missing values using the Expectation-Maximization algorithm. In-
structions to do so are provided in section 5.1.

5 Using a network

Once a network is created, it can be used. Here we briefly mention some of
the basic methods provided in order to manipulate a network and access its
components.

First of all, it is surely of interest to obtain the structure of a network. The
bnstruct package provides the dag() and wpdag() methods in order to access
the structure of a network learnt without and with bootstrap (respectively).

> dag(net)

> wpdag(net)

Then we may want to retrieve the parameters, using the cpts() method.

> cpts(net)

Another common operation that we may want to perform is displaying the
network, or printing its main informations, using the plot(), print() and
show() methods. Note that the plot() method is flexible enough to allow
some custom settings such as the choice of the colors of the nodes, and, more
importantly, some threshold settings for the networks learnt with bootstrap. As
default, the DAG of a network is selected for plotting, if available, otherwise the
WPDAG is used. In case of presence of both the DAG and the WPDAG, in order
to specify the latter as structure to be plotted, the plot.wpdag logical parameter
is provided. As usual, more details are available in the inline documentation of
the method.

> plot(net) # regular DAG

> plot(net, plot.wpdag=T) # wpdag

13

As it is for BNDatasets, we have several equivalent options to print a network.

> # TFAE

> print(net)

> show(net)

> net

5.1 Inference

Inference is performed in bnstruct using an InferenceEngine object. An
InferenceEngine is created directly from a network.

> dataset <- child()

> net <- learn.network(dataset)

> engine <- InferenceEngine(net)

Optionally, a list of observations can be provided to the InferenceEngine, at
its creation or later on. The list of observations is a list of two vector, one for the
observed variables (variable indices or names can be provided, not necessarily in
order - better is to list them in order of observation), and one for the observed
values for the corresponding variables. In case of multiple observations of the
same variable, the last one (the most recent one) is considered.

> dataset <- child()

> net <- learn.network(dataset)

>

> # suppose we have observed variable 1 taking value 2

> # and variable 4 taking value 1:

> obs <- list("observed.vars" = c(1,4),

+ "observed.vals" = c(2,1))

>

> # the following are equivalent:

> engine <- InferenceEngine(net, obs)

>

> # and

> engine <- InferenceEngine(net)

> observations(engine) <- obs

The InferenceEngine class provides methods for belief propagation, that is,
updating the conditional probabilities according to observed values, and for the
Expectation-Maximization (EM) algorithm ([1]), which learns the parameters
of a network from a dataset with missing values trying at the same time to guess
the missing values.

14

Belief propagation can be done using the belief.propagation method. It
takes an InferenceEngine and an optional list of observations. If no obser-
vations are provided, the engine will use the ones it already contains. The
belief.propagation method returns an InferenceEngine with an updated.bn

updated network.

> obs <- list("observed.vars" = c(1,4),

+ "observed.vals" = c(2,1))

> engine <- InferenceEngine(net)

> engine <- belief.propagation(engine, obs)

> new.net <- updated.bn(engine)

The EM algorithm is instead performed by the em method. Its arguments are
an InferenceEngine and a BNDataset (optionally: a convergence threshold,
the Equivalent Sample Size ess and the maximum number of iterations max.em.iterations),
and it returns a list consisting in an updated InferenceEngine and an updated
BNDataset.

> dataset <- child()

> net <- learn.network(dataset)

> engine <- InferenceEngine(net)

> results <- em(engine, dataset)

> updated.engine <- results$InferenceEngine

> updated.dataset <- results$BNDataset

6 Two small but complete examples

Here we show two small but complete examples, in order to highlight how the
package can provide significant results with few instructions.

First we show how some different learning setups perform on the Child

dataset. We compare the default mmhc-BDeu pair on available case analysis
(raw data with missing values) and on imputed data, and the sem-BDeu pair.

> dataset <- child()

>

> # learning with available cases analysis, MMHC, BDeu

> net <- learn.network(dataset)

bnstruct :: learning the structure using MMHC ...

bnstruct :: learning using MMHC completed.

bnstruct :: learning network parameters ...

bnstruct :: parameter learning done.

> plot(net)

15

> # learning with imputed data, MMHC, BDeu

> imp.dataset <- impute(dataset)

bnstruct :: performing imputation ...

bnstruct :: imputation finished.

> net <- learn.network(imp.dataset, use.imputed.data = TRUE)

bnstruct :: learning the structure using MMHC ...

bnstruct :: learning using MMHC completed.

bnstruct :: learning network parameters ...

bnstruct :: parameter learning done.

> plot(net)

16

> # SEM, BDeu using previous network as starting point

> net <- learn.network(dataset, algo = "sem",

+ scoring.func = "BDeu",

+ initial.network = net,

+ struct.threshold = 10,

+ param.threshold = 0.001)

bnstruct :: learning the structure using SEM ...

... bnstruct :: starting EM algorithm ...

... ... bnstruct :: learning network parameters ...

... ... bnstruct :: parameter learning done.

... ... bnstruct :: learning network parameters ...

... ... bnstruct :: parameter learning done.

... bnstruct :: EM algorithm completed.

... bnstruct :: learning the structure using MMHC ...

... bnstruct :: learning using MMHC completed.

17

... bnstruct :: learning network parameters ...

... bnstruct :: parameter learning done.

... bnstruct :: starting EM algorithm ...

... ... bnstruct :: learning network parameters ...

... ... bnstruct :: parameter learning done.

... ... bnstruct :: learning network parameters ...

... ... bnstruct :: parameter learning done.

... ... bnstruct :: learning network parameters ...

... ... bnstruct :: parameter learning done.

... ... bnstruct :: learning network parameters ...

... ... bnstruct :: parameter learning done.

... bnstruct :: EM algorithm completed.

... bnstruct :: learning the structure using MMHC ...

... bnstruct :: learning using MMHC completed.

... bnstruct :: learning network parameters ...

... bnstruct :: parameter learning done.

bnstruct :: learning using SEM completed.

bnstruct :: learning network parameters ...

bnstruct :: parameter learning done.

> plot(net)

18

> # we update the probabilities with EM from the raw dataset,

> # starting from the first network

> engine <- InferenceEngine(net)

> results <- em(engine, dataset)

bnstruct :: starting EM algorithm ...

... bnstruct :: learning network parameters ...

... bnstruct :: parameter learning done.

... bnstruct :: learning network parameters ...

... bnstruct :: parameter learning done.

... bnstruct :: learning network parameters ...

... bnstruct :: parameter learning done.

... bnstruct :: learning network parameters ...

... bnstruct :: parameter learning done.

bnstruct :: EM algorithm completed.

> updated.engine <- results$InferenceEngine

19

> updated.dataset <- results$BNDataset

The second example is about learning with bootstrap. This time we use the
Asia dataset.

> dataset <- asia()

> dataset <- bootstrap(dataset)

bnstruct :: Generating bootstrap samples ...

bnstruct :: Bootstrap samples generated.

> net <- learn.network(dataset, bootstrap = TRUE)

bnstruct :: learning the structure using MMHC ...

bnstruct :: learning using MMHC completed.

> plot(net)

20

References

[1] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum like-
lihood from incomplete data via the em algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), pages 1–38, 1977.

[2] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap.
CRC press, 1994.

[3] Nir Friedman. Learning belief networks in the presence of missing values
and hidden variables. In ICML, volume 97, pages 125–133, 1997.

[4] Nir Friedman. The bayesian structural em algorithm. In Proceedings of
the Fourteenth conference on Uncertainty in artificial intelligence, pages
129–138. Morgan Kaufmann Publishers Inc., 1998.

[5] Nir Friedman, Moises Goldszmidt, and Abraham Wyner. Data analysis
with bayesian networks: A bootstrap approach. In Proceedings of the Fif-
teenth conference on Uncertainty in artificial intelligence, pages 196–205.
Morgan Kaufmann Publishers Inc., 1999.

[6] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[7] Steffen L Lauritzen and David J Spiegelhalter. Local computations with
probabilities on graphical structures and their application to expert sys-
tems. Journal of the Royal Statistical Society. Series B (Methodological),
pages 157–224, 1988.

[8] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[9] Tomi Silander and Petri Myllymaki. A simple approach for finding the glob-
ally optimal bayesian network structure. arXiv preprint arXiv:1206.6875,
2012.

[10] David J Spiegelhalter, A Philip Dawid, Steffen L Lauritzen, and Robert G
Cowell. Bayesian analysis in expert systems. Statistical science, pages
219–247, 1993.

[11] Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-
min hill-climbing bayesian network structure learning algorithm. Machine
learning, 65(1):31–78, 2006.

21

