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1 Introduction

For numerical optimization, methods that use a function’s gradient (and/or Hessian matrix), “gradient
methods”, are often easy to implement, or come pre-implemented in many programming languages. How-
ever, a problem with these methods (or at least with all the methods that come implemented in R) is that
they are designed to search for global optima, and have no means of respecting constraints should the prob-
lem necessitate them. This drawback is a non-issue if we are able to calculate gradients and Hessians of
our objective and constraint functions. Indeed, this paper will demonstrate how we can use Lagrange mul-
tipliers to turn the original problem into unconstrained minimization, and thereby use the basic steepest
descent algorithm to perform “on-line” constrained optimization.

Recall that for an objective function, f : Rn → R, and equality constraints, G : Rn → Rm, G(x) =
(g1(x), . . . , gm(x)), the standard method used to maximize f , subject to G, is via the method of Lagrange
multiplers: finding x∗ ∈ Rn such that

x∗ = argmax x∈Rn:
G(x)=0

f(x)

is equalivalent to setting Λ(x, λ) = f(x) − ⟨λ,G(x)⟩, solving ∇Λ = 0, and checking the critical points to
find which are maximizers. In fact, it is well known that the saddle points of Λ are the optima of f . Thus,
in solving ∇Λ = 0, the extreme values of Λ are not of interest: just finding the values which optimize Λ is
incorrect. Instead, consider the function, h : Rn × Rm → [0,∞), h(x, λ) = 1

2 ∥∇Λ(x, λ)∥22.
Since ∥·∥22 is a valid metric on Rm, any value that minimizes h must also be a critical point of Λ (and vice

versa), hence the set of minimizers for h are all candidate extreme values for f . An immediate consequence
is that numerically minimizing h, and numerically approximating roots of h are equivalent. Thus, to (nu-
merically) optimize f it suffices to pick whichever is least computationally intensive. In particular, we can
use (stochastic) gradient descent to approximate h’s roots.

To minimize h via SGD, we need to calculate ∇h. After some tedious vector calculus (the full derivation
is included in the appendix), we can express ∇h as:

∇h =

(
(H(f)−

∑m
k=1 λkH(gk)) (∇xf −Dx[G]λ) +Dx[G]GT

−Dx[G]T (∇xf −Dx[G]λ)

)
(1)

where H(f) is the matrix of mixed partials of f , so that H(f)ij = ∂xixjf , and Dx[G] =
(
∇xg1 | · · · | ∇xgm

)
is an n×m matrix whose jth column is the gradient of the jth constraint.

The formula for ∇h in equation 1 makes it clear that to transform our original problem from constrained
optimization to unconstrained optimization we will need ∇xf , H(f), and for each i: gi, ∇xgi, and H(gi).
Indeed, we have made an R package, “blowtorch”, which given these objects, assembles ∇h according to
equation 1, and searches through the (x, λ) space via (stochastic) gradient descent.

The remainder of this paper is dedicated to examining the behaviour of blowtorch in the (artificial)
context of mixture probability estimation. Section 2 will explain the two experiments run – one to determine
if blowtorch is performing correctly, and another to see how we may use blowtorch in conjunction with
other methods for more refined estimates. Section 3 will present our results. Finally, Section 4 will provide
a discussion of said results, with some concluding remarks.
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2 Methods

Both experiments revolved around the (toy) situation where we have bivariate data from a mixture model
where we believe we know the mixture components Fi, however we want to estimate the mixture pro-
portions, π. In particular, we created an artificial data set of 2000 bivariate observations following the
hierarchial model (figure 2 shows the distribution of this data in the x, y-plane):

π ∼ Dir(α = (2, 2, 1))

Zi |π ∼ Mult(n = 1, θ = π) i = 1, 2, . . . , 2000

(X,Y ) |Zi ∼ N (µ = MZi,Σ) i = 1, 2, . . . , 2000

where π, M , and Σ took values:

...
..α ..Zi . ..(Xi, Y i).

i = 1, . . . , 2000

.

Figure 1: Plate Model for 2000 observations of bivariate data

print(pi <- mixtureModelParameters$mixture_probs)

# [1] 0.1252 0.6196 0.2551

print(M <- mixtureModelParameters$Mu)

# [,1] [,2] [,3]
# [1,] 10 -10 0
# [2,] 1 0 0

print(Sigma <- mixtureModelParameters$Sigma)

# [,1] [,2]
# [1,] 0.8058 -0.5159
# [2,] -0.5159 2.1740

The log-likelihood of our data, as a function of π, is

ℓ(π;D) =
2000∑
n=1

log

(
3∑

i=1

fi(xn)πi

)

where fi is the density associated to a N (µ = Mei,Σ) random-vector, and is visualized in Figure 3. Note
that the surface’s maxium, π̂, happens at a different position than the true parameter value, π.

2.1 Experiment 1: solo-viability

To answer the question as to whether blowtorch can stand, by itself, as a means towards esimating π, we
investigated how the (projected) path of a run of blowtorch depended on the size of the mini-batch used
at each step. The batch sizes used where 1, 50, 100, 200, and 500 and blowtorch was run until h descended
below 10−3, or the number of steps taken exceeded some amount that was batch-size dependent. For each
particular batch size, blowtorch was run with various learning rates, and the largest rate that didn’t send
our objective function to infinity was selected. See table 1 for the complete experiment parameters.
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Figure 2: Scatterplot of the bivariate, mixture model, data generated according the hierarchial model
scheme presented in Section 2.

Figure 3: log-likelihood for simulated data. Note that the maximum likelihood estimate, π̂, – located at the
triangle – is slightly off from the true parameter, π – located at the cross.
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Batch size Learning rate Maximum iterations Convergence tolerance
1 0.004 20000 0.001

50 0.030 4000 0.001
100 0.030 2000 0.001
200 0.050 1000 0.001
500 0.020 500 0.001

Table 1: Batch sizes, learning rates, and stopping criterion for the various trials in experiment 1.

2.2 Experiment 2: blowtorch as an initial step

To answer the question as to what gains blowtorch may confer when used as an “initial step” for more
robost optimizers, we repeated the following experiment 1,000 times:

1. Generate a random starting point, π0 according to a Dirichlet distribution with parameter α = (4, 4, 4)
and generate a random set of weights, λ1, λ2 ∼ N (0, 1).

2. Starting at θ0 = (π0, λ1, λ2):

(a) Run blowtorch for either 80 iterations, or until h < 10−3, with a batch size of 50 observations,
and a learning rate of 0.025.

(b) Run optim() – the R optmization routine – with conjugate gradient (CG), and BFGS algorithms.

3. If blowtorch successively completes in step 2(a), take its final values as initial values for runs of CG
and BFGS in step 2(b)

The run-times and returned values for steps 2 and 3 are presented in the following section.

3 Results

3.1 Experiment 1

Figures 4 and 5 show the (projected) paths through the (π1, π2)-plane. Both figures maintain the convention
that the final point’s size should be inversely proportion to the value of h at the point. Hence, the larger a
point, the closer h is to zero, and therefore the “closer” the point is to being an acceptable solution to our
original optimization problem. It stands to point out that these are the (π1, π2) paths of a particular run of
blowtorch. For no point in either plot are we guaranteed that π1+π2+π3 = 1; we must rely on the size of
h at any iteration to give use a sense of how closely our estimates are adhering to our imposed constraints.

In the context of our toy mixture model setting, the effect of batch size on the SGD path is quite clear: as
batch sizes increases the path becomes less noisy, and we seem to be able to get closer to the true parameters
with the same number of passes through the data (epochs). This relationship is vividly exhibited in figure
5 where the SGD path for the trivial batch spends almost all of its time outside of the feasible region.
Increasing the batch size to 50 points allows the path to return to the feasible region and converge upon a
reasonable approximation to the parameter.

Note that all SGD paths but the one corresponding to the trivial batch were able to bring h below the
convergence tolerance, 0.001.

3.2 Experiment 2

Figures 6 and 7 contain violin plots for the run time distributions of BFGS and CG, respectively, when
initialized at a random value, and the run time distributions for “SGD then BFGS” and “SGD then CG”,
respectively. I.e., the latter distributions measure the total time it took to run blowtorch and then BFGS
(or CG) using blowtorch’s final values. The mean and median run times for all of the methods used in
Experiment 2 are available in table 2. Note that while the median run time for BFGS is lower than “SGD
then BFGS” the top-5 worst run times for BFGS are significantly higher than the top-5 worst run times for
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Figure 4: Path of blowtorch for batch sizes 100 (red, asterisk), 200 (green, diamond), and 500 (blue, circle).
Contours represent changes in the log-likelihood by 50 points.

5



Figure 5: Path of blowtorch for batch sizes 1 (red, asterisk) and 50 (green, square). Notice that these
paths are noisier than those of the larger batch sizes. Contours represent changes in the log-likelihood by
50 points.
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Figure 6: Run time comparison for instances when BFGS started from a blowtorch final value as opposed
to the run time had BGFS used the same initial value as blowtorch.

Figure 7: Run time comparison for instances when CG started from a blowtorch final value as opposed
to the run time had CG used the same initial value as blowtorch.
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Figure 8: The bias for the final estimates of π given blowtorch found “initial values”, as well as random
initial values.

8



“SGD then BFGS”. Although the worst-case run times for “SGD then CG” were higher than CG’s, the mean,
median, and best-case run times for “SGD then CG” are all lower than CG’s.

Method Mean run time Median run time
BFGS 47.00 40.10

BFGS (warm start) 30.59 32.33
SGD then BFGS 42.92 44.50

blowtorch 12.33 12.33
CG 160.09 161.60

CG (warm start) 146.31 146.43
SGD then CG 158.63 158.83

Table 2: Mean and Median run times for the various methods in Experiment 2.

Figure 8 contains violin plots for the distribution of π̂i − πi for each method, BFGS, “SGD then BFGS”,
CG and “SGD then CG”. Not surprisingly, everywhere blowtorch was employed, the support of the
distribution shrank.

4 Discussion

As the theory suggests, and figures 4 and 5 indicate, “on-line” learning of parameters with constraints can be
done within an SGD framework. Indeed, for our simulated scenario, we needed to do non-trivial “batch”
learning; however, in real world applications where the data set is not 2,000 but 2,000,000,000 observations,
a batch-size of 50 (or 100), as opposed to a full batch, should not be so computationally burdensome as to
make this caveat a true issue.

Perhaps not as astonishing are the results of experiment 2, which aimed to investigate what speed and
accuracy gains could be had when using blowtorch as a means to achieving a more educated initial value
for more robust optimization methods like BFGS or CG. For the cost of around 12 seconds (on average), an
application of blowtorch greatly reduces the variance in the final values returned by BFGS and CG. Even
more surprising, though, is the fact that the time spent having blowtorch search through the parameter
space does not (significantly) add to overall run-time: the mean run times for “SGD then BFGS” and “SGD
then CG” are below their respective counter-parts.

These results lead to a few questions, however. First, if it’s possible to run a method like BFGS or CG,
why bother with a two-step procedure like “SGD then BFGS” or “SGD then CG”? Second, how should we
interpret the results of experiment 2, in the context of big data?

Towards the first question, it should be said: if the data in question does not qualify as “big” (i.e., it can
fit in memory), there is most likely no reason to use a two-step like “SGD then BFGS”. In fact, there is most
likely no reason to use a generic optimization routine like BFGS of CG. If the data can fit in memory, there
is no reason to not use a dedicated constrained optimization package like Rsolnp.

Towards the second question, with the answer to the first in mind: we shouldn’t extrapolate too far
beyond this example. If the data is truly “big”, a single iteration of BFGS or CG would probably be very
computationally costly. If the data is not “big”, we advocate for using an appropriate software package
for constrained optimization. Hence, in either situation, we would not suggest running BFGS or CG, and
thus we emphasize that this is a contrived example to demonstrate that blowtorch can be used to search
inside the parameter space for rough approximations to our true parameters. Not that it necessarily should
be used.

Though it stands to be investigated further, the decision tree in figure 9 succinctly expresses our con-
clusions, based on the results of experiments 1 and 2. In particular, we believe that unless a rough approx-
imation is acceptable (or unless the data is sufficiently large), you should employ a constrained optimizer
such as Rsolnp. In our mixture model example, Rsolnp found the maximum likelihood estimates in
approximately 0.98 seconds, using the full data.
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A A friendly, self-contained derivation of ∇h

Suppose we want to optimize a function f : Rn → R, according to a set of constraints, g1(x) = 0, . . . , gm(x) =
0, gi : Rn → R, i = 1, 2, . . . ,m. Compactly, we’ll write G(x) = (g1(x), . . . , gm(x)), and consider our problem
with Lagrange multipliers; That is, instead of optimizing f subject to G(x) = 0, we will find the critical
points of the Lagrangian, Λ(θ),

Λ(θ) = f(x)−G(x)λ

where θ = (x, λ) ∈ Rn+m, and and λ is an m× 1 column vector with real-valued entries.
Now, if f was to be optimized with no constraints on the domain of f , we could use stochastic gradi-

ent ascent (SGA), or descent for that matter, to search for extreme values. However, the constraints, and
consequently the need to work with a higher dimensional object make an immediate application of SGA
inappropriate. Indeed, we are not interested in optimal points for Λ, but in points where ∇θΛ = 0, so called
“critical points”. While critical points do correspond to extreme values, they also correspond to saddle
points (in one dimension, these are also called “inflection points”). Thus, the set of critical points for Λ may
be a proper superset of the set of points where Λ is extreme and in using SGA to only find extreme points,
there’s always a chance that we converge upon coordinates that do not optimize our original problem.

A sensible solution to this hurdle is to, instead, consider the function h : Rn+m → R,

h(θ) = −1

2
∥∇θΛ(θ)∥2

and perform SGA on h(θ). Since h(θ) ≤ 0 for all θ, and h(θ) = 0 precisely when ∇θΛ = 0, we have a
convenient means of checking if an SGA scheme has converged upon a maximum and therefore optimal
coordinates from our original optimization problem. However, to perform SGA on h, we need ∇θh. As the
following section demonstrates, the calculus needed to find this value isn’t profound, just unfortunately
tedious.

Calculating ∇θh: Before getting too deep in the vector-calulus, let’s agree on some notation. First, for
x = (x1, . . . , xn), we’ll write ∂xi

∆
= ∂/∂xi , and

Dx =

∂x1

...
∂xn


So that for a real-valued f(x), Dxf = (∂x1f, . . . , ∂xnf)

T , and for vector valued G(x) = (g1(x), . . . , gm(x)) ∈
Rm, DxG is defined recursively as:

DxG =
(
Dxg1 | Dxg2 | · · · | Dxgm

)
=


∂x1g1 ∂x1g2 · · · ∂x1gm
∂x2g1 ∂x2g2 · · · ∂x2gm

...
...

. . .
...

∂xng1 ∂xng2 · · · ∂xngm


Furthermore, we’ll let H(f) denote the Hessian of f . That is, H(f)ij = ∂xixjf (and if f ∈ C1(R), H(f)
is symmetric). For G, we need something slightly more elaborate: H(G)kij = H(gk)ij . Hence, H(G) is a
3-dimensional array whose last index points to the Hessian of a particular component of G. For the sake of
this paper, the last index of H(G) is the “fastest”, in that for λ ∈ Rm, the object ⟨λ,H(G)⟩ is an n× n matrix

and ⟨λ,H(G)⟩ij =
m∑

k=1

λkH(G)kij .
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Armed with these definition, let’s do some calculus:

∇θΛ(θ) = DθΛ(θ)

= (DxΛ(x, λ), DλΛ(x, λ))
T

=

(
Dxf −Dx[Gλ]

−GT

)
=

(
(Dxf −Dx[G]λ

−GT

)
Hence,

h(θ) =
1

2
∥∇θΛ(θ)∥2

=
1

2
(DθΛ(θ))

T
(DθΛ(θ))

=
1

2
(Dxf −Dx[G]λ)

T
(Dxf −Dx[G]λ) +

1

2

(
−GT

)T (−GT
)

=
1

2
(Dxf −Dx[G]λ)

T
(Dxf −Dx[G]λ) +

1

2
GGT

Now, F ∆
= (Dxf − (DxG)λ)T is a 1× n (row) vector. Thus, if Fj denotes the jth component of F , then

Dθ

[
1

2
FTF

]
= Dθ

1
2

n∑
j=1

F 2
j

 =
n∑

j=1

Dθ[Fj ]Fj = Dθ[F ]FT

Consequently, we see that
Dθ[h] = Dθ[F ]FT +Dθ[G]GT

So our problem has reduced to calculating Dθ[F ] and Dθ[G]. The latter is trivial:

Dθ[G] =

(
Dxg1 Dxg2 · · · Dxgm
Dλg1 Dλg2 · · · Dλgm

)
=

(
Dx[G]

0

)
For the former, we’ll consider building up Dθ[F ] column-by-column. First, let’s write out Fj and consider
Dx[Fj ] and Dλ[Fj ].

Fj = ∂xjf −
m∑
ℓ=1

λℓ∂xjgℓ

Hence,

Dx[Fj ] = Dx[∂xjf ]−Dx

[
m∑
ℓ=1

λℓ∂xjgℓ

]

=

∂x1xjf
...

∂xnxjf

−
m∑
ℓ=1

λℓ

∂x1xjgℓ
...

∂xnxjgℓ


= H(f)ej −

m∑
k=1

λkH(gk)ej
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where ej ∈ Rn is the jth standard basis vector. Furthermore,

Dλ[Fj ] = Dλ[∂xjf ]−Dλ

[
m∑
ℓ=1

λℓ∂xjgℓ

]

= −
m∑
ℓ=1

Dλ[λℓ]∂xjgℓ

= −Dx[G]T ej

Thus,

Dθ[F ] =
(
DθF1 | DθF2 | · · · | DθFn

)
=

(
H(f)e1 −

∑m
k=1 λkH(gk)e1 · · · H(f)en −

∑m
k=1 λkH(gk)en

−Dx[G]T e1 · · · −Dx[G]T en

)
=

(
H(f)− ⟨λ,H(G)⟩

−Dx[G]T

)
Putting this all together, we have

Dθ[h] =

(
H(f)− ⟨λ,H(G)⟩

−Dx[G]T

)
(Dxf −Dx[G]λ) +

(
Dx[G]GT

0m×1

)
=

(
(H(f)− ⟨λ,H(G)⟩) (Dxf −Dx[G]λ) +Dx[G]GT

−Dx[G]T (Dxf −Dx[G]λ)

)
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do?

. ..Does data fit
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..
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..Try
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.

.
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.

No

.

No

.
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Figure 9: Decision tree
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