Dealing with quasi- models in R

Ben Bolker
January 27, 2012

Licensed under the Creative Commons attribution-noncommercial license
@ @ @ (http://creativecommons.org/licenses/by-nc/3.0/). Please share & remix non-
Lw commercially, mentioning its origin.

Computing “quasi-AIC” (QAIC), in R is a minor pain, because the R Core
team (or at least the ones who wrote glm, glmmPQL, etc.) are purists and don’t
believe that quasi- models should report a likelihood. As far as I know, there
are three R packages that compute/handle QAIC: bbmle, AICcmodavg (both on
CRAN) and MuMIn (formerly known as dRedging, on r-forge).

The basic problem is that quasi- model fits with glm return an NA for the
log-likelihood, while the dispersion parameter (¢, ¢, whatever you want to call
it) is only reported for quasi- models. Various ways to get around this are:

e fit the model twice, once with a regular likelihood model (family=binomial,
poisson, etc.) and once with the quasi- variant — extract the log-
likelihood from the former and the dispersion parameter from the latter

e only fit the regular model; extract the overdispersion parameter manually
with

> dfun <- function(object) {

+ with(object,sum((weights * residuals~2) [weights > 0])/df.residual)

+ }

e use the fact that quasi- fits still contain a deviance, even if they set the
log-likelihood to NA. The deviance is twice the negative log-likelihood (it’s
offset by some constant which I haven’t figured out yet, but it should still
work fine for model comparisons)

Example: use the values from one of the examples in ?glm:

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- ¢(18,17,15,20,10,20,25,13,12)

outcome <- g1(3,1,9)

treatment <- gl(3,3)

vV V. VvV

Fit Poisson and quasi-Poisson models with all combinations of predictors:

gIm0T.D93 <- glm(counts ~ outcome + treatment, family=poisson)
glm0.D93 <- update(glm0T.D93, . ~ . - treatment)

glmT.D93 <- update(glm0T.D93, . ~ . - outcome)

glmX.D93 <- update(glmT.D93, . ~ . - treatment)

gImQO0T.D93 <- update(glmOT.D93, family=quasipoisson)
gImQ0.D93 <- update(glm0.D93, family=quasipoisson)

glmQT.D93 <- update(glmT.D93, family=quasipoisson)

glmQX.D93 <- update(glmX.D93, family=quasipoisson)

vV VVVVYVVYV

Extract log-likelihoods:

> (sum(dpois(counts,
+ lambda=exp (predict (glm0T.D93)),10g=TRUE))) ## by hand

[1] -23.38066
> (logLik(glm0T.D93)) ## from Poisson fit
'log Lik.' -23.38066 (df=5)

The deviance (deviance(glm0T.D93)=5.129 is not the same as —2L (-
2*1logLik (glm0T.D93)=46.761), but the calculated differences in deviance are
consistent, and are also extractable from the quasi- fit even though the log-
likelihood is NA:

> (-2%(logLik(glmT.D93)-1ogLik (gIm0T.D93))) ## Poisson fit
'log Lik.' 5.452305 (df=3)

> (deviance(glmT.D93)-deviance (glm0T.D93)) ## Poisson fit
[1] 5.452305

> (deviance (glmQT.D93)-deviance (glmQOT.D93)) ## quasi-fit
[1] 5.452305

Compare hand-computed dispersion (in two ways) with the dispersion com-
puted by summary.glm() on a quasi- fit:

> (dfun(glm0T.D93))

[1] 1.2933

> (sum(residuals(glm0T.D93, "pearson") ~2)/glm0T.D93$df.residual)
[1] 1.2933

> (summary (glm0T.D93) $dispersion)

(1] 1

> (summary (glmQOT.D93) $dispersion)

[1] 1.2933

Examples

bbmle package (Ben Bolker), CRAN/R-forge

> library(bbmle)
> (qAIC(glm0T.D93,dispersion=dfun(glm0T.D93)))

[1] 46.15658
> (qAICc(glm0T.D93,dispersion=dfun(glm0T.D93) ,nobs=length(counts)))
[1] 90.15658

> ICtab(glm0T.D93,g1lmT.D93,g1lm0.D93,glmX.D93,
+ dispersion=dfun(glm0T.D93),type="qAIC")

dqAIC df
glm0.D93 0.0 3
glmXx.D93 0.2 1
glm0T.D93 4.0 5
glmT.D93 4.2 3

> ICtab(glm0T.D93,glmT.D93,glm0.D93,glmX.DI3,

+ dispersion=dfun(glm0T.D93),
+ nobs=length(counts), type="qAICc")
dgAICc df

glmX.D93 0.0 1
glm0.D93 7.8 3
glmT.D93 12.0 3
glmOT.D93 43.8 5

> detach("package:bbmle")

AICcmodavg package (Marc Mazerolle), CRAN

> library(AICcmodavg)

> aictab(list(glm0T.D93,glmT.D93,glm0.D93,g1lmX.D93),
+ modnames=c ("OT","T","0","X"),

+ c.hat=dfun (glm0T.D93))

Model selection based on QAICc :
(c-hat estimate = 1.2933)

K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL
X 2 46.37 0.00 0.98 0.98 -20.19
0 4 54.16 7.78 0.02 1.00 -18.08
T 4 58.37 12.00 0.00 1.00 -20.19
0T 6 90.16 43.78 0.00 1.00 -18.08

> detach ("package:AICcmodavg")

MuMIn package (Kamil Barton), r-forge

> library(MuMIn)
> (gg <- dredge(glm0T.D93,rank="QAIC", chat=dfun(glm0T.D93)))

Global model call: glm(formula = counts

Model selection table
(Intercept) otc trt df logLik QAIC delta weight

2 3.045 + 3 -23.381 44.2 0.00 0.464
1 2.813 1 -26.107 44.4 0.22 0.417
4 3.045 + + 5 -23.38148.2 4.00 0.063
3 2.813 + 3 -26.107 48.4 4.22 0.056

> (ggc <- dredge(glm0T.D93,rank="QAICc",chat=dfun(glm0T.D93)))

Global model call: glm(formula = counts
Model selection table
(Intercept) otc trt df logLik QAICc delta weight

1 2.813 1 -26.107 46.4 0.00 0.978
2 3.045 + 3 -23.381 54.2 7.78 0.020
3 2.813 + 3 -26.107 58.4 12.00 0.002
4 3.045 + + 5 -23.381 90.2 43.78 0.000

> detach("package:MuMIn")

Since dredge is clever, can work with quasi- models as well by using de-
viance():

> (ggqc <- dredge(glmQOT.D93,rank="QAICc",
+ chat=summary (g1lmQOT.D93) $dispersion))

gives identical results to the previous table.

Notes: ICtab only gives delta-IC, limited decimal places (on purpose, but
how do you change these defaults if you want to?). Need to add 1 to parame-
ters to account for scale parameter. When doing corrected-IC you need to get
the absolute number of parameters right, not just the relative number ... Not
sure which classes of models each of these will handle (Im, glm, (n)lme, lme4,
mle2 ...). Remember need to use overdispersion parameter from most com-
plex model. glmmPQL: needs to be hacked somewhat more severely (does not
contain deviance element, logLik has been NA’d out).

package ‘ Im glm (n)lme multinom polr 1me4d mle2
AICcmodavg | y y y y y ? ?
MuMIn ? ? ? ? ? ? ?
mle2 ? ? ? ? ? ? ?

outcome + treatment, family = poisson)

outcome + treatment, family = poisson)

