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Abstract

The inverse temperature parameter of the Potts model governs the strength of spatial
cohesion and therefore has a substantial influence over the resulting model fit. A difficulty
arises from the dependence of an intractable normalising constant on the value of this
parameter and thus there is no closed form solution for sampling from the posterior
distribution directly. There are a variety of computational approaches for sampling from
the posterior without evaluating the normalising constant. These algorithms differ in their
levels of accuracy and their scalability for datasets of realistic size.

This R package provides implementations of Markov chain Monte Carlo algorithms
for sampling from the intractable posterior distribution of the Potts model. The algo-
rithms include pseudolikelihood, the exchange algorithm, path sampling, and approximate
Bayesian computation. The following vignette explains these algorithms, providing the
necessary theoretical background as well as implementation details specific to our R pack-
age. We address important questions such as how the computational cost increases with
the size of the images, as well as how much accuracy is lost by using faster, more approx-
imate methods. This document is intended to provide guidance on selecting a suitable
algorithm for Bayesian image analysis. For nontrivial images, this necessarily involves
some degree of approximation to produce an acceptable compromise between accuracy
and computational cost.

Keywords: approximate Bayesian computation, composite likelihood, hidden Markov random
field, image analysis, pseudo-marginal method, thermodynamic integration.

1. Introduction

Markov random field (MRF) models have seen widespread use in image analysis since their
introduction by Besag (1974), as surveyed by Winkler (2003) and Li (2009). A MRF is a
generalisation of the Markovian dependence structure to more than one dimension: satellite
imagery has two spatial dimensions, while medical images such as computed tomography
(CT) are three-dimensional. The hidden Potts (1952) model employs a latent MRF on discrete
states to describe spatial dependence between adjacent neighbours. The degree of dependence
in the model is governed by a parameter known as the inverse temperature due to its origin
in statistical physics. It is difficult to set this parameter by trial and error, particularly for
noisy images. Rather than using a fixed value, it would be preferable to estimate the inverse
temperature as part of the model. However, the intractable normalising constant of the Potts
model depends on the value of the inverse temperature, which means that there is no closed
form solution for estimating its posterior distribution.
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Rydén and Titterington (1998) derived a pseudolikelihood (PL) approximation (Besag 1975)
to the intractable posterior density. Gelman and Meng (1998) instead approximated the ratio
of normalising constants using thermodynamic integration (TI), also known as path sampling.
Møller et al. (2006) introduced an auxiliary variable method that gives an exact MCMC al-
gorithm for the special case of a 2 component Potts model, also known as an Ising model.
Murray et al. (2006) proposed a variant of the exact method known as the exchange algo-
rithm or multiple auxiliary variable method. By replacing the expensive perfect sampling
step (Propp and Wilson 1996) with an approximation such as Gibbs sampling, Cucala et al.
(2009) developed an approximate exchange algorithm (AEA) that can be applied for Potts
models with k > 2. Friel et al. (2009) introduced the reduced dependence approximation
(RDA) which uses recursion to calculate the normalising constant on small sub-lattices. Mc-
Grory et al. (2012) generalised RDA to an irregular lattice. Grelaud et al. (2009) used the
sufficient statistic of the Potts model to estimate the inverse temperature using approximate
Bayesian computation (ABC). Everitt (2012) combined the approximate exchange algorithm
with particle Markov chain Monte Carlo (PMCMC) and also implemented ABC with sequen-
tial Monte Carlo (SMC-ABC) for the Ising model. Although all of these methods work very
well in theory, the largest image used in any of these papers to demonstrate an algorithm is
less than ten thousand pixels. This does not give a reliable indication of how these algorithms
might perform when applied to images of a more substantial size.

2. Hidden Potts model

Image segmentation can be viewed as the task of labelling the observed pixels y according
to a finite set of discrete states z ∈ {1, . . . , k}. The hidden Potts model allows for spatial
correlation between neighbouring labels in the form of a Markov random field. The latent
labels follow a Gibbs distribution, which is specified in terms of its conditional probabilities:

p(zi|z\i, β) =
exp {β

∑
i∼` δ(zi, z`)}∑k

j=1 exp {β
∑

i∼` δ(j, z`)}
(1)

where β is the inverse temperature, z\i represents all of the labels except zi, i ∼ ` are the
neighbouring pixels of i, and δ(u, v) is the Kronecker delta function. Thus,

∑
i∼` δ(zi, z`) is a

count of the neighbours that share the same label.

If the labels zi are indexed row-wise, the nearest (first-order) neighbours i ∼ ` in a regular
2D lattice with c columns are {zi−1, zi−c, zi+c, zi+1}. Pixels situated at the boundary of the
image domain have less than four neighbours. Likewise, voxels in a regular 3D lattice have
a maximum of 6 first-order neighbours. These neighbourhood relationships are reciprocal, so
h ∈ i ∼ ` implies i ∈ h ∼ `. If E is the set of all unique neighbour pairs, or edges in the image
lattice, then |E| = 2(n−

√
n) for a square lattice and 3(n− n2/3) for a cube.

The observation equation links the latent labels to the corresponding pixel values:

p(y|z,θ) =

n∏
i=1

p(yi|zi, θzi) (2)

where θj are the parameters that govern the distribution of the pixel values with label j. The
hidden Potts model can thus be viewed as a spatially-correlated generalisation of the finite
mixture model (Rydén and Titterington 1998). Green and Richardson (2002) used a Poisson
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likelihood for (2), with intensity λj . Instead we follow Geman and Geman (1984); Alston
et al. (2007), and many others in assuming that the pixels with label j share a common mean
µj corrupted by additive Gaussian noise with variance σ2j :

yi|zi = j, µj , σ
2
j ∼ N

(
µj , σ

2
j

)
(3)

The Gibbs distribution is a member of the exponential family and so there is a sufficient
statistic for this model, as noted by Grelaud et al. (2009):

S(z) =
∑
i∼`∈E

δ(zi, z`) (4)

This statistic represents the total number of like neighbour pairs in the image. The likelihood
p(y, z|θ, β) can therefore be factorised into p(y|z,θ)p(S(z)|β), where the second factor does
not depend on the observed data, but only on the sufficient statistic. The joint posterior is
then:

p(θ, β, z|y) ∝ p(y|z,θ)π(θ)p(S(z)|β)π(β) (5)

The conditional distributions p(θ|z,y) and p(zi|z\i, β, yi,θzi) can be simulated using Gibbs
sampling, but p(β|y, z,θ) involves an intractable normalising constant C(β):

p(β | y, z,θ) ∝ p(S(z)|β)π(β) (6)

∝ exp {β S(z)}
C(β)

π(β) (7)

The normalising constant is also known as a partition function in statistical physics. It has
computational complexity of O(nkn), since it involves a sum over all possible combinations
of the labels z ∈ Z:

C(β) =
∑
z∈Z

exp {β S(z)} (8)

It is infeasible to calculate this value exactly for nontrivial images, thus computational ap-
proximations are required.

The conditional expectation of S(z) given β can be expressed in terms of the normalising
constant:

Ez|β[S(z)] =
d

dβ
log{C(β)} (9)

As β approaches infinity, all of the pixels in the image are almost surely assigned the same
label, thus the expectation of S(z) approaches the total number of edges |E| asymptotically,

while the variance approaches zero. When β = 0, (1) simplifies to
(∑

j exp{0}
)−1

, hence the

probability of any pair of neighbours being assigned the same label follows an independent
Bernoulli distribution with p = k−1. In this case, S(z) follows a Binomial distribution with
expectation |E|/k and variance |E|k−1(1 − k−1). In a finite image lattice the distribution
of S(z) changes smoothly between these two extremes, as illustrated by Figure 1, but its
computation is intractable for nontrivial images.

The Potts model undergoes a phase transition at the critical value of β, switching from a
disordered to an ordered state. Potts (1952) showed that the critical value for a 2D lattice on
a cylinder can be calculated exactly according to:

βcrit = log
{

1 +
√
k
}

(10)
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(a) Expectation for n = 12 and increasing val-
ues of k ∈ {2, 3, 4}.
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(b) Expectation for k = 3 and increasing val-
ues of n ∈ {4, 6, 9, 12}.
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(c) Standard deviation for n = 12 and increas-
ing values of k ∈ {2, 3, 4}.

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

β

σ

n

4

6

9

12

(d) Standard deviation for k = 3 and increas-
ing values of n ∈ {4, 6, 9, 12}.

Figure 1: Distribution of the sufficient statistic of the Potts model for increasing values
of the inverse temperature β, the number of pixels n, and the number of unique labels k.
The expectation and standard deviation of S(z) were calculated exactly, using a brute force
method.
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The periodic boundary condition does not apply to the lattices considered in this paper, so for
example the critical value for the images in Figure 1 is different to (10). However, the error
introduced by the finite boundary diminishes as n increases. Figure 2 shows that (10) is very
accurate in predicting the behaviour of S(z) for a 2D image with a maximum value of S(z)
for first-order neighbours of 1,954,672, with k=6 mixture components and βcrit ≈ 1.24. S(z)
is approximated by simulation using the algorithm of Swendsen and Wang (1987). Figure 2a
shows that the gradient of the expectation becomes very steep near the critical region, which is
reflected in the super-exponential increase of the standard deviation illustrated by Figure 2c.
As n → ∞ the derivative of the likelihood at the critical point, and hence the variance, is
unbounded (Pickard 1987). This heteroskedasticity has important implications for many of
the methods discussed in Section 3.

There is no exact formula for βcrit in 3D images, although Hajduković (1983) developed an
empirical approximation that works reasonably well:

βcrit ≈
2

3
log

{
1

2

(√
2 +
√

4k − 2
)}

(11)

The behaviour of Ez|β[S(z)] for a 3D image with |E| approximately equal to three million,
k = 9 and βcrit ≈ 0.86 is illustrated by Figure 2b. The standard deviation is shown in
Figure 2d. It is evident that (11) has underestimated βcrit since the maximum value of the
standard deviation occurs at β = 0.9.

3. Computational methods

In this section we describe the four major algorithms for intractable likelihoods in Bayesian
image analysis. These methods provide alternative means to simulate parameter values from
(7) without computing the normalising constant. We describe the algorithms in terms of
Markov chain Monte Carlo (MCMC) to enable direct comparison, although we also mention
other approaches where applicable, such as particle-based (SMC and PMCMC) methods. Ref-
erence implementations of all of these methods are available from various sources described
below, but for the purpose of comparison we have reimplemented the algorithms using Rcp-
pArmadillo (Eddelbuettel and Sanderson 2014).

3.1. Pseudolikelihood and composite likelihood

Pseudolikelihood is the simplest of the methods that we have considered and also the fastest.
Rydén and Titterington (1998) showed that the intractable distribution (7) could be approx-
imated using the product of the conditional densities given by (1). This enables updates for
the inverse temperature at iteration t to be simulated using a Metropolis-Hastings (M-H)
step, as shown in Algorithm 1.

The M-H proposal density q(β′|βt−1) can be any distribution such that
∫
q(β′|βt−1) dβ′ = 1.

However, there is a tradeoff between exploring the full state space and ensuring that the
probability of acceptance (at line 10) is sufficiently high. We use the adaptive random walk
(RWMH) algorithm of Garthwaite et al. (2016), which automatically tunes the bandwidth
of the proposal density to target a given M-H acceptance rate. When a symmetric proposal
density is used, q(β′|βt−1) = q(βt−1|β′) and so this term cancels out in the M-H ratio on
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(a) Expectation for a 2D Potts model with k =
6.
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(b) Expectation for a 3D Potts model with
k = 9.
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(c) Standard deviation for a 2D Potts model
with k = 6.
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(d) Standard deviation for a 3D Potts model
with k = 9.

Figure 2: Approximate distribution of S(z) using Swendsen-Wang for a 2D image with k = 6
and |E| ≈ 2 × 106 (left) and a 3D image with k = 9 and |E| ≈ 3 × 106 (right). The vertical
line is the critical value of β.
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Algorithm 1: MCMC with pseudolikelihood (PL)

1 I n i t i a l i s e β0,µ0,σ
2
0, z0

2 for t ∈ 1 . . . T do
3 Update the l a b e l s zi ∼ p(yi|zi, µzi , σ2zi) p(zi|z\i, β) ∀i ∈ {1, . . . , n}
4 Calcu la te s u f f i c i e n t s t a t i s t i c s ȳj , s

2
j ∀zi = j, ∀j ∈ {1, . . . , k}

5 Update the no i s e parameters µj , σ
2
j ∼ p(ȳj , s2j |µj , σ2j )π(µj |σ2j )π(σ2j )

6 Draw proposed parameter va lue β′ ∼ q(β′|βt−1)
7 Approximate p(z|β′) and p(z|βt−1) us ing :

p(z|β) ≈
n∏
i=1

p(zi|z\i, β) (12)

8 Calcu la te the M−H r a t i o ρ = min
(

1, p(z|β′)π(β′)q(βt−1|β′)
p(z|βt−1)π(βt−1)q(β′|βt−1)

)
9 Draw u ∼ Uniform[0, 1]

10 i f u < ρ then
11 βt ← β′

12 else
13 βt ← βt−1
14 end i f
15 end for

line 8. The natural logarithm of ρ is used in practice to improve the numerical stability of
Algorithm 1.

Pseudolikelihood is exact when β = 0 and provides a reasonable approximation for small
values of the inverse temperature. However, the approximation error increases rapidly for
β ≥ βcrit, as illustrated by Figure 3. This is due to long-range dependence between the
labels, which is inadequately modelled by the local approximation.

Rydén and Titterington (1998) referred to Equation (12) in Algorithm 1 as point pseudo-
likelihood, since the conditional distributions are computed for each pixel individually. They
suggested that the accuracy could be improved using block pseudolikelihood. This is where
the likelihood is calculated exactly for small blocks of pixels, then (12) is modified to be the
product of the blocks:

p(z|β) ≈
NB∏
i=1

p(zBi |z\Bi
, β) (13)

where NB is the number of blocks, zBi are the labels of the pixels in block Bi, and z\Bi
are

all of the labels except for zBi . This is a form of composite likelihood, where the likelihood
function is approximated as a product of simplified factors (Varin et al. 2011). Friel (2012)
compared point pseudolikelihood to composite likelihood with blocks of 3 × 3, 4 × 4, 5 × 5,
and 6× 6 pixels. Friel showed that (13) outperformed (12) for the Ising (k = 2) model with
β < βcrit. Okabayashi et al. (2011) discuss composite likelihood for the Potts model with
k > 2 and have provided an open source implementation in the R package potts (Geyer and
Johnson 2014).

Evaluating the conditional likelihood in (13) involves the normalising constant for zBi , which
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Figure 3: Approximation error of pseudolikelihood for n = 12, k = 3 in comparison to the
exact likelihood calculated using a brute force method: (a)

∑
z∈Z S(z)p(S(z)|β) using either

Equation (7) or (12); (b)
√∑

z∈Z
(
S(z)− Ez|β[S(z)]

)2
p(S(z)|β)
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is a sum over all of the possible configurations ZBi . This is a limiting factor on the size
of blocks that can be used. The brute force method that was used to compute Figure 1
and 3 is too computationally intensive for this purpose. Pettitt et al. (2003) showed that
the normalising constant can be calculated exactly for a cylindrical lattice by computing
eigenvalues of a kr × kr matrix, where r is the smaller of the number of rows or columns.
The value of (8) for a free boundary lattice can then be approximated using path sampling.
Friel and Pettitt (2004) extended this method to larger lattices using a composite likelihood
approach.

The reduced dependence approximation (RDA) is another form of composite likelihood.
Reeves and Pettitt (2004) introduced a recursive algorithm to calculate the normalising con-
stant using a lag-r representation. Friel et al. (2009) divided the image lattice into sub-lattices
of size r1 < r, then approximated the normalising constant of the full lattice using RDA:

C(β) ≈ Cr1×n(β)r−r1+1

Cr1−1×n(β)r−r1
(14)

McGrory et al. (2009) compared RDA to pseudolikelihood and the exact method of Møller
et al. (2006), reporting similar computational cost to pseudolikelihood but with improved
accuracy in estimating β. Source code for RDA is available in the online supplementary
material for McGrory et al. (2012).

3.2. Thermodynamic integration

Gelman and Meng (1998) derived an approximation to the log ratio of normalising constants
using the path sampling identity:

log

{
C(βt−1)
C(β′)

}
=

∫ βt−1

β′
Ez|β[S(z)] dβ (15)

which follows from the definition of Ez|β[S(z)] in (9). The value of this definite integral can
be approximated by simulating from the Gibbs distribution for fixed values of β and then
interpolating between them. We used the Swendsen-Wang algorithm for simulating from z|β,
as mentioned in section 2. Figure 4a illustrates linear interpolation of S(z) on a 2D lattice
for k = 6 and β ranging from 0 to 2 in increments of 0.05. This approximation can be
precomputed using the same method that was used to produce Figure 2. Figure 4b illustrates
interpolation of S(z) on a 3D lattice for k = 9.

TI is explained in further detail by Chen et al. (2000, chap. 5). A reference implementation in
R is available from the website accompanying Marin and Robert (2007). This algorithm has
an advantage over auxiliary variable methods such as AEA or ABC because the additional
simulations are performed prior to fitting the model, rather than at each iteration. This is
particularly the case when analysing multiple images that all have approximately the same
dimensions. However, the computational cost is still slightly higher than PL, which does not
require a pre-computation step.

3.3. Pseudo-marginal methods

Møller et al. (2006) demonstrated that it is possible to simulate from the posterior distribution
of β by introducing an auxiliary variable, so that C(β) cancels out in the M-H ratio. The



10 R package bayesImageS

0.0 0.5 1.0 1.5 2.0

5
0

0
0

0
0

1
0

0
0

0
0

0
1

5
0

0
0

0
0

2
0

0
0

0
0

0

β

E
S

(z
)

(a) 2D Potts model with k = 6.
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(b) 3D Potts model with k = 9.

Figure 4: Approximation of Ez|β[S(z)] by simulation for fixed values of β, with linear inter-
polation.
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Algorithm 2: Path sampling (TI)

1 I n i t i a l i s e β0,µ0,σ
2
0, z0

2 for t ∈ 1 . . . T do
3 Update the l a b e l s zi ∼ p(yi|zi, µzi , σ2zi) p(zi|z\i, β) ∀i ∈ {1, . . . , n}
4 Calcu la te s u f f i c i e n t s t a t i s t i c s ȳj , s

2
j ∀zi = j, ∀j ∈ {1, . . . , k}

5 Update the no i s e parameters µj , σ
2
j ∼ p(ȳj , s2j |µj , σ2j )π(µj |σ2j )π(σ2j )

6 Draw proposed parameter va lue β′ ∼ q(β′|βt−1)
7 Estimate Ez|β[S(z)] for β ∈ {β′, βt−1} by i n t e r p o l a t i o n

8 Evaluate the d e f i n i t e i n t e g r a l in Equation (15)
9 Calcu la te the log M−H acceptance r a t i o :

log{ρ} = min

(
0, log

{
C(βt−1)
C(β′)

}
+ (β′ − βt−1)S(z) + log

{
π(β′)q(βt−1|β′)
π(βt−1)q(β′|βt−1)

})
(16)

10 Draw u ∼ Uniform[0, 1]
11 i f u < ρ then
12 βt ← β′

13 else
14 βt ← βt−1
15 end i f
16 end for

exchange algorithm of Murray et al. (2006) improves the performance of this method and
avoids the need for a fixed estimate of β. The drawback of this approach is that it requires
perfect sampling from the stationary distribution of the Potts model. This is possible using
coupling from the past (Propp and Wilson 1996; Huber 2016) but can be computationally
prohibitive, particularly for large images. McGrory et al. (2009) reported that the time
required for perfect sampling increased sharply for larger values of β. For this reason, Cucala
et al. (2009) substitute 500 iterations of Gibbs sampling on the auxiliary variable to produce
an approximate sample from its stationary distribution. The details of this method are shown
in Algorithm 3.

The M-H ratio given by Equation (17) can be considerably simplified if a uniform prior is
used for β and β′ is drawn from a symmetric M-H proposal density. In this case, log{ρ}
simplifies to (β′− βt−1)S(z) + (βt−1− β′)S(w). The similarity with Equation (16) shows that
the exchange algorithm is closely related to path sampling, since it is a form of importance
sampling. An implementation of the exchange algorithm is available in the online supplemen-
tary material accompanying Friel and Pettitt (2011). Everitt (2012) provides source code for
the approximate exchange algorithm with particle MCMC.

3.4. Approximate Bayesian computation

Like the exchange algorithm, ABC uses an auxiliary variable w to decide whether to accept or
reject the proposed value of β′. Instead of a M-H ratio such as (17), the summary statistics of
the auxiliary variable and the observed data are directly compared. The proposal is accepted
if the distance between these summary statistics is within the ABC tolerance, ε. This produces
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Algorithm 3: Approximate exchange algorithm (AEA)

1 I n i t i a l i s e β0,µ0,σ
2
0, z0

2 for t ∈ 1 . . . T do
3 Update the l a b e l s zi ∼ p(yi|zi, µzi , σ2zi) p(zi|z\i, β) ∀i ∈ {1, . . . , n}
4 Calcu la te s u f f i c i e n t s t a t i s t i c s ȳj , s

2
j ∀zi = j, ∀j ∈ {1, . . . , k}

5 Update the no i s e parameters µj , σ
2
j ∼ p(ȳj , s2j |µj , σ2j )π(µj |σ2j )π(σ2j )

6 Draw proposed parameter va lue β′ ∼ q(β′|βt−1)
7 Generate w|β′ by sampling from Equation (1)
8 Calcu la te the M−H acceptance r a t i o accord ing to Equation (7):

ρ = min

(
1,

q(βt−1|β′)π(β′) exp {β′S(z)} C(βt−1)
q(β′|βt−1)π(βt−1) exp {βt−1S(z)} C(β′)

exp {βt−1S(w)} C(β′)
exp {β′S(w)} C(βt−1)

)
(17)

9 Draw u ∼ Uniform[0, 1]
10 i f u < ρ then
11 βt ← β′

12 else
13 βt ← βt−1
14 end i f
15 end for

the following approximation when the labels z are observed without error:

p (β | z) ≈ πε (β | ‖S(w)− S(z)‖ < ε) (18)

where ‖ · ‖ is a suitable norm. In this paper we simply use the absolute difference between
S(w) and S(z), since the summary statistic (4) is univariate. S(z) is sufficient for β, as noted
by Grelaud et al. (2009), therefore the ABC approximation (18) approaches the true posterior
as n→∞ and ε→ 0. In practice there is a tradeoff between the number of parameter values
that are accepted and the size of the ABC tolerance.

Everitt (2012) introduced ABC for noisy data, such as the Ising model, but only when the
observations are discrete and so S(y) is defined. Moores et al. (2015) showed that ABC can
also be applied when the domain of the observed data is continuous, such as with the additive
Gaussian noise of Equation (3). In this type of model the posterior distribution of β does not
depend directly on the observed data y, as shown by Equation (6). The ABC approximation
(18) for the hidden Potts model becomes:

p (β | y, z,θ) ≈ πε (β | ‖S(w)− S(z)‖ < ε) (19)

The other parameters can be updated using the current value of β and then the summary
statistic S(z) can be computed from the current values of the labels, using an ABC within
Gibbs approach as shown in Algorithm 4. Equation (19) can be considered as a moving target,
since S(z) could change whenever the labels are updated. As a consequence, ABC with noisy
data can be more prone to getting stuck in low probability regions of the parameter space.

Grelaud et al. (2009) used a rejection sampler, where the proposals are drawn independently
from the prior and thus q(β′|βt−1) = π(β). Under a sparse or uninformative prior, such as
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Algorithm 4: ABC-MCMC with noisy data

1 I n i t i a l i s e β0,µ0,σ
2
0, z0

2 for t ∈ 1 . . . T do
3 Update the l a b e l s zi ∼ p(yi|zi, µzi , σ2zi) p(zi|z\i, β) ∀i ∈ {1, . . . , n}
4 Calcu la te s u f f i c i e n t s t a t i s t i c s ȳj , s

2
j ∀zi = j, ∀j ∈ {1, . . . , k}

5 Update the no i s e parameters µj , σ
2
j ∼ p(ȳj , s2j |µj , σ2j )π(µj |σ2j )π(σ2j )

6 Draw proposed parameter va lue β′ ∼ q(β′|βt−1)
7 Generate w|β′ by sampling from Equation (1)
8 Draw u ∼ Uniform[0, 1]

9 i f u < π(β′)q(βt−1|β′)
π(βt−1)q(β′|βt−1)

and ‖S(w)− S(z)‖ < ε then

10 βt ← β′

11 else
12 βt ← βt−1
13 end i f
14 end for

the uniform prior used in this study, too many proposals are rejected for this approach to
be viable. Instead we have based Algorithm 4 on the ABC-MCMC algorithm of Marjoram
et al. (2003). This form of ABC algorithm is best suited for direct comparison with the other
intractable likelihood methods in this article.

There have been many extensions to ABC, as reviewed by Marin et al. (2012). Of particu-
lar interest are adaptive ABC algorithms that automatically adjust the tolerance ε and the
proposal bandwidth σ2MH . ABC with sequential Monte Carlo (SMC-ABC) algorithms use a
sequence of target distributions πεt (β | ‖S(w)− S(z)‖ < εt) such that ε1 > ε2 > · · · > εT ,
where the number of SMC iterations T can be determined dynamically using a stopping rule.
The SMC-ABC algorithm of Drovandi and Pettitt (2011) uses multiple MCMC steps for each
SMC iteration, while the algorithm of Del Moral et al. (2012) uses multiple replicates of the
summary statistics for each particle. Everitt (2012) has provided a MATLAB implementation
of SMC-ABC with the online supplementary material accompanying his paper.

The computational efficiency of ABC is dominated by the cost of drawing updates to the
auxiliary variable, as reported by Everitt (2012). Thus, we would expect that the execution
time for ABC would be similar to the approximate exchange algorithm. Various approaches to
improving this runtime have recently been proposed, such as the Gaussian process emulation
of Wilkinson (2014), the “lazy ABC” of Prangle (2016), and methods involving auxiliary
models (Cabras et al. 2014; Moores et al. 2015; Buzbas and Rosenberg 2015).
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