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Bayesian Estimation of the GARCH(1,1)
Model with Student-t Innovations
by David Ardia and Lennart F. Hoogerheide

Abstract This note presents the R package
bayesGARCH which provides functions for the
Bayesian estimation of the parsimonious and ef-
fective GARCH(1,1) model with Student-t inno-
vations. The estimation procedure is fully auto-
matic and thus avoids the tedious task of tuning
an MCMC sampling algorithm. The usage of the
package is shown in an empirical application to
exchange rate log-returns.

Introduction

Research on changing volatility using time series
models has been active since the pioneer paper by
Engle (1982). From there, ARCH (AutoRegressive
Conditional Heteroscedasticity) and GARCH (Gen-
eralized ARCH) type models grew rapidly into a rich
family of empirical models for volatility forecasting
during the 80’s. These models are widespread and
essential tools in financial econometrics.

In the GARCH(p,q) model introduced by Boller-
slev (1986), the conditional variance at time t of the
log-return yt (of a financial asset or a financial index),
denoted by ht, is postulated to be a linear function of
the squares of past q log-returns and past p condi-
tional variances. More precisely:

ht
.
= α0 +

q

∑
i=1

αi y2
t−i +

p

∑
j=1

β jht−j ,

where the parameters satisfy the constraints αi ≥ 0
(i = 0, . . . ,q) and β j ≥ 0 (j = 1, . . . , p) in order to en-
sure a positive conditional variance. In most empir-
ical applications it turns out that the simple speci-
fication p = q = 1 is able to reproduce the volatil-
ity dynamics of financial data. This has led the
GARCH(1,1) model to become the workhorse model
by both academics and practitioners. Given a model
specification for ht, the log-returns are then modelled
as yt = εth1/2

t , where εt are i.i.d. disturbances. Com-
mon choices for εt are Normal and Student-t distur-
bances. The Student-t specification is particularly
useful, since it can provide the excess kurtosis in the
conditional distribution that is often found in finan-
cial time series processes (unlike models with Nor-
mal innovations).

Until recently, GARCH models have mainly been
estimated using the classical Maximum Likelihood
technique. Several R packages provide functions
for their estimation; see, e.g. fGarch (Wuertz and
Chalabi, 2009), rgarch (Ghalanos, 2010) and tseries

(Trapletti and Hornik, 2009). The Bayesian approach
offers an attractive alternative which enables small
sample results, robust estimation, model discrimi-
nation, model combination, and probabilistic state-
ments on (possibly nonlinear) functions of the model
parameters.

The package bayesGARCH (Ardia, 2007) imple-
ments the Bayesian estimation procedure described
in Ardia (2008, chapter 5) for the GARCH(1,1) model
with Student-t innovations. The approach, based
on the work of Nakatsuma (1998), consists of a
Metropolis-Hastings (MH) algorithm where the pro-
posal distributions are constructed from auxiliary
ARMA processes on the squared observations. This
methodology avoids the time-consuming and diffi-
cult task, especially for non-experts, of choosing and
tuning a sampling algorithm. The program is writ-
ten in R with some subroutines implemented in C in
order to speed up the simulation procedure. The va-
lidity of the algorithm as well as the correctness of
the computer code have been verified by the method
of Geweke (2004).

Model, priors and MCMC scheme

A GARCH(1,1) model with Student-t innovations for
the log-returns {yt} may be written via data aug-
mentation (see Geweke, 1993) as

yt = εt
(

ν−2
ν vt ht

)1/2 t = 1, . . . , T

εt
iid∼N (0,1)

vt
iid∼ IG

(ν

2
,
ν

2

)
ht

.
= α0 + α1y2

t−1 + βht−1 ,

(1)

where α0 > 0, α1, β ≥ 0 and ν > 2; N (0,1) denotes
the standard normal distribution; IG denotes the in-
verted gamma distribution. The restriction on the
degrees of freedom parameter ν ensures the condi-
tional variance to be finite and the restrictions on the
GARCH parameters α0,α1 and β guarantee its posi-
tivity. We emphasize the fact that only positivity con-
straints are implemented in the MH algorithm; no
stationarity conditions are imposed in the simulation
procedure.

In order to write the likelihood function, we de-
fine the vectors y .

= (y1, . . . ,yT)
′, v

.
= (v1, . . . ,vT)

′

and α
.
= (α0,α1)

′. We regroup the model parameters
into the vector ψ

.
= (α, β,ν). Then, upon defining the

T × T diagonal matrix

Σ .
= Σ(ψ,v) = diag

(
{vt

ν−2
ν ht(α, β)}T

t=1

)
,
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where ht(α, β)
.
= α0 + α1y2

t−1 + βht−1(α, β), we can
express the likelihood of (ψ,v) as

L(ψ,v |y) ∝ (detΣ)−1/2 exp
[
− 1

2 y′Σ−1y
]

. (2)

The Bayesian approach considers (ψ,v) as a random
variable which is characterized by a prior density de-
noted by p(ψ,v). The prior is specified with the help
of parameters called hyperparameters which are ini-
tially assumed to be known and constant. Moreover,
depending on the researcher’s prior information, this
density can be more or less informative. Then, by
coupling the likelihood function of the model param-
eters with the prior density, we can transform the
probability density using Bayes’ rule to get the pos-
terior density p (ψ,v | y) as follows:

p (ψ,v | y) = L (ψ,v | y) p (ψ,v)∫
L (ψ,v | y) p (ψ,v)dψdv

. (3)

This posterior is a quantitative, probabilistic descrip-
tion of the knowledge about the model parameters
after observing the data. For an excellent introduc-
tion on Bayesian econometrics we refer the reader to
Koop (2003).

We use truncated normal priors on the GARCH
parameters α and β

p (α) ∝ φN2 (α | µα,Σα) 1
{

α ∈ R2
+

}
p (β) ∝ φN1

(
β | µβ,Σβ

)
1{β ∈ R+} ,

where µ• and Σ• are the hyperparameters, 1{·} is the
indicator function and φNd is the d-dimensional nor-
mal density.

The prior distribution of vector v conditional on
ν is found by noting that the components vt are in-
dependent and identically distributed from the in-
verted gamma density, which yields

p (v | ν) =
(ν

2

) Tν
2
[
Γ
(ν

2

)]−T
(

T

∏
t=1

vt

)− ν
2−1

× exp

[
−1

2

T

∑
t=1

ν

vt

]
.

We follow Deschamps (2006) in the choice of the
prior distribution on the degrees of freedom parame-
ter. The distribution is a translated exponential with
parameters λ > 0 and δ ≥ 2

p (ν) = λexp [−λ (ν− δ)] 1{ν > δ} .

For large values of λ, the mass of the prior is con-
centrated in the neighborhood of δ and a constraint
on the degrees of freedom can be imposed in this
manner. Normality of the errors is assumed when
δ is chosen large. As pointed out by Deschamps
(2006), this prior density is useful for two reasons.
First, it is potentially important, for numerical rea-
sons, to bound the degrees of freedom parameter

away from two to avoid explosion of the conditional
variance. Second, we can approximate the normal-
ity of the errors while maintaining a reasonably tight
prior which can improve the convergence of the sam-
pler.

The joint prior distribution is then formed by as-
suming prior independence between the parameters,
i.e. p(ψ,v) = p(α)p(β)p(v | ν)p(ν).

The recursive nature of the GARCH(1,1) variance
equation implies that the joint posterior and the full
conditional densities cannot be expressed in closed
form. There exists no (conjugate) prior that can rem-
edy this property. Therefore, we cannot use the sim-
ple Gibbs sampler and need to rely on a more elab-
orated Markov Chain Monte Carlo (MCMC) simu-
lation strategy to approximate the posterior density.
The idea of MCMC sampling was first introduced by
Metropolis et al. (1953) and was subsequently gen-
eralized by Hastings (1970). The sampling strategy
relies on the construction of a Markov chain with re-
alizations (ψ[0],v[0]), . . . , (ψ[j],v[j]), . . . in the parame-
ter space. Under appropriate regularity conditions,
asymptotic results guarantee that as j tends to infin-
ity, (ψ[j],v[j]) tends in distribution to a random vari-
able whose density is (3). Hence, after discarding a
burn-in of the first draws, the realized values of the
chain can be used to make inference about the joint
posterior.

The MCMC sampler implemented in the pack-
age bayesGARCH is based on the approach of Ardia
(2008, chapter 5), inspired from the previous work by
Nakatsuma (1998). The algorithm consists of a MH
algorithm where the GARCH parameters are up-
dated by blocks (one block for α and one block for β)
while the degrees of freedom parameter is sampled
using an optimized rejection technique from a trans-
lated exponential source density. This methodology
has the advantage of being fully automatic. More-
over, in our experience, the algorithm explores the
domain of the joint posterior efficiently compared to
naive MH approaches or the Griddy-Gibbs sampler
of Ritter and Tanner (1992).

Illustration

We apply our Bayesian estimation methods to daily
observations of the Deutschmark vs British Pound
(DEM/GBP) foreign exchange log-returns. The sam-
ple period is from January 3, 1985, to December 31,
1991, for a total of 1974 observations. This data set
has been promoted as an informal benchmark for
GARCH time series software validation. From this
time series, the first 750 observations are used to
illustrate the Bayesian approach. The observation
window excerpt from our data set is plotted in Fig-
ure 1.
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Figure 1: DEM/GBP foreign exchange daily log-
returns.

We fit the GARCH(1,1) model with Student-t in-
novations to the data for this observation window
using the bayesGARCH function

> args(bayesGARCH)

function (y, mu.alpha = c(0, 0),
Sigma.alpha = 1000 * diag(1,2),
mu.beta = 0, Sigma.beta = 1000,
lambda = 0.01, delta = 2,
control = list())

The input arguments of the function are the vec-
tor of data, the hyperparameters and the list control
which can supply any of the following elements:

• n.chain: number of MCMC chain(s) to be gen-
erated; default 1.

• l.chain: length of each MCMC chain; default
10000.

• start.val: vector of starting values of the
chain(s); default c(0.01,0.1,0.7,20). Alter-
natively, the starting values could be set to the
maximum likelihood estimates using the func-
tion fGarch available in the package fGarch,
for instance.

• addPriorConditions: function which allows
the user to add any constraint on the model pa-
rameters; default NULL, i.e. not additional con-
straints are imposed.

• refresh: frequency of reports; default 10.

• digits: number of printed digits in the reports;
default 4.

As a prior distribution for the Bayesian estima-
tion we take the default values in bayesGARCH, which
are diffuse priors. We generate two chains for 5000
passes each by setting the control parameter values
n.chain = 2 and l.chain = 5000.

> data(dem2gbp)
> y <- dem2gbp[1:750]
> set.seed(1234)
> MCMC <- bayesGARCH(y, control = list(

l.chain = 5000, n.chain = 2))

chain: 1 iteration: 10
parameters: 0.0441 0.212 0.656 115
chain: 1 iteration: 20
parameters: 0.0346 0.136 0.747 136
...
chain: 2 iteration: 5000
parameters: 0.0288 0.190 0.754 4.67

The function outputs the MCMC chains as an ob-
ject of the class "mcmc" from the package coda (Plum-
mer et al., 2010). This package contains functions
for post-processing the MCMC output; see Plummer
et al. (2006) for an introduction. Note that coda is
loaded automatically with bayesGARCH.

A trace plot of the MCMC chains (i.e. a plot of
iterations vs. sampled values) can be generated us-
ing the function traceplot; the output is displayed
in Figure 2.

Convergence of the sampler (using the diagnostic
test of Gelman and Rubin (1992)), acceptance rates
and autocorrelations in the chains can be computed
as follows:

> gelman.diag(MCMC)

Point est. 97.5% quantile
alpha0 1.02 1.07
alpha1 1.01 1.05
beta 1.02 1.07
nu 1.02 1.06

Multivariate psrf

1.02

> 1 - rejectionRate(MCMC)

alpha0 alpha1 beta nu
0.890 0.890 0.953 1.000

> autocorr.diag(MCMC)

alpha0 alpha1 beta nu
Lag 0 1.000 1.000 1.000 1.000
Lag 1 0.914 0.872 0.975 0.984
Lag 5 0.786 0.719 0.901 0.925
Lag 10 0.708 0.644 0.816 0.863
Lag 50 0.304 0.299 0.333 0.558

The convergence diagnostic shows no evidence
against convergence for the last 2500 iterations (only
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Figure 2: Trace plot of the two MCMC chains (in black and gray) for the four model parameters generated by
the MH algorithm.

the second half of the chain is used by default
in gelman.diag) since the scale reduction factor is
smaller than 1.2; see Gelman and Rubin (1992) for
details. The MCMC sampling algorithm reaches very
high acceptance rates ranging from 89% for vector α
to 95% for β suggesting that the proposal distribu-
tions are close to the full conditionals. The rejection
technique used to generate ν allows a new value to
be drawn at each pass in the MH algorithm.

The one-lag autocorrelations in the chains range
from 0.87 for parameter α1 to 0.98 for parameter ν.
Using the function formSmpl, we discard the first
2500 draws from the overall MCMC output as a burn
in period, keep only every second draw to diminish
the autocorrelation, and merge the two chains to get
a final sample length of 2500.

> smpl <- formSmpl(MCMC, l.bi = 2500,
batch.size = 2)

n.chain : 2
l.chain : 5000
l.bi : 2500
batch.size: 2
smpl size : 2500

Basic posterior statistics can be easily obtained
with the summary method available for mcmc objects.

> summary(smpl)

Iterations = 1:2500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 2500

1. Empirical mean and standard deviation
for each variable, plus standard error
of the mean:

Mean SD Naive SE Time-series SE
alpha0 0.0345 0.0138 0.000277 0.00173
alpha1 0.2360 0.0647 0.001293 0.00760
beta 0.6832 0.0835 0.001671 0.01156
nu 6.4019 1.5166 0.030333 0.19833

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha0 0.0126 0.024 0.0328 0.0435 0.0646
alpha1 0.1257 0.189 0.2306 0.2764 0.3826
beta 0.5203 0.624 0.6866 0.7459 0.8343
nu 4.2403 5.297 6.1014 7.2282 10.1204

The marginal distributions of the model param-
eters can be obtained by first transforming the out-
put into a matrix and then using the function hist.
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Marginal posterior densities are displayed in Fig-
ure 3. We clearly notice the asymmetric shape of the
histograms; this is especially true for parameter ν.
This is also reflected by the differences between the
posterior means and medians. These results should
warn us against the abusive use of asymptotic justifi-
cations. In the present case, even 750 observations
do not suffice to justify the asymptotic symmetric
normal approximation for the parameter estimator’s
distribution.

Probabilistic statements on nonlinear functions of
the model parameters can be straightforwardly ob-
tained by simulation from the joint posterior sample.
In particular, we can test the covariance stationarity
condition and estimate the density of the uncondi-
tional variance when this condition is satisfied. Un-
der the GARCH(1,1) specification, the process is co-
variance stationary if α1 + β < 1, as shown by Boller-
slev (1986, page 310). The term (α1 + β) is the degree
of persistence in the autocorrelation of the squares
which controls the intensity of the clustering in the
variance process. With a value close to one, past
shocks and past variances will have a longer impact
on the future conditional variance.

To make inference on the persistence of the
squared process, we simply use the posterior sam-
ple and generate (α

[j]
1 + β[j]) for each draw ψ[j] in

the posterior sample. The posterior density of the
persistence is plotted in Figure 4. The histogram is
left-skewed with a median value of 0.923 and a max-
imum value of 1.050. In this case, the covariance sta-
tionarity of the process is supported by the data. The
unconditional variance of the GARCH(1,1) model is
α0/(1− α1 − β) given that α1 + β < 1. Conditionally
upon existence, the posterior mean is 0.387 and the
90% credible interval is [0.274,1.378]. The empirical
variance is 0.323.

Other probabilistic statements on interesting
functions of the model parameters can be obtained
using the joint posterior sample. Under specifica-
tion (1), the conditional kurtosis is 3(ν − 2)/(ν − 4)
provided that ν > 4. Using the posterior sample, we
estimate the posterior probability of existence for the
conditional kurtosis to be 0.994. Therefore, the exis-
tence is clearly supported by the data. Conditionally
upon existence, the posterior mean of the kurtosis is
8.21, the median is 5.84 and the 95% confidence in-
terval is [4.12,15.81], indicating heavier tails than for
the normal distribution. The positive skewness of the
posterior for the conditional kurtosis is caused by a
couple of very large values (the maximum simulated
value is 404.90). These correspond to draws with ν
slightly larger than 4. Note that if one desires to rule
out large values for the conditional kurtosis before-
hand, then one can set δ > 4 in the prior for ν. For
example, the choice δ = 4.5 would guarantee the kur-
tosis to be smaller than 15.

α1 + β

0.8 0.9 1.0 1.1

0

100

200

300

400

Figure 4: Posterior density of the persistence. The
histogram is based on 2500 draws from the joint pos-
terior distribution.

Prior restrictions and normal innovations

The control parameter addPriorConditions can be
used to impose any type of constraints on the model
parameters ψ during the estimation. For instance,
to ensure the estimation of a covariance stationary
GARCH(1,1) model, the function should be defined
as

> addPriorConditions <- function(psi)
+ psi[2] + psi[3] < 1

Finally, we can impose normality of the innova-
tions in a straightforward manner by setting the hy-
perparameters λ = 100 and δ = 500 in the bayesGARCH
function.

Practical advice

The estimation strategy implemented in
bayesGARCH is fully automatic and does not re-
quire any tuning of the MCMC sampler. This is
certainly an appealing feature for practitioners. The
generation of the Markov chains is however time
consuming and estimating the model over several
datasets on a daily basis can therefore take a signifi-
cant amount of time. In this case, the algorithm can
be easily parallelized, by running a single chain on
several processors. This can be easily achieved with
the package foreach (REvolution Computing, 2010),
for instance. Also, when the estimation is repeated
over updated time series (i.e. time series with more
recent observations), it is wise to start the algorithm
using the posterior mean or median of the param-
eters obtained at the previous estimation step. The
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Figure 3: Marginal posterior distributions of the model parameters. This histograms are based on 2500 draws
from the joint posterior sample.

impact of the starting values (burn-in phase) is likely
to be smaller and thus the convergence faster.

Finally, note that as any MH algorithm, the sam-
pler can get stuck at a given value, so that the chain
does not move anymore. However, the sampler
uses Taylor-made candidate densities that are espe-
cially constructed at each step, so it is almost im-
possible for this MCMC sampler to get stuck at a
given value for many subsequent draws. For ex-
ample, for our data set we still obtain posterior re-
sults that are almost equal to the results that we
obtained for the reasonable default initial values
c(0.01,0.1,0.7,20), even if we take the very poor
initial values c(0.1,0.01,0.4,50). In the unlikely
case that such ill behaviour does occur, one could
scale the data (to have standard deviation 1), or run
the algorithm with different initial values or a differ-
ent random seed.

Summary

This note presented the Bayesian estimation of the
GARCH(1,1) model with Student-t innovations us-
ing the R package bayesGARCH. We illustrated the
use of the package with an empirical application to

foreign exchange rate log-returns.
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