
Instructions for using TestScorer 1.0
Manel Salamero

manelsalamero@gmail.com

Revision date: 2013.04.08

1. Introduction

The TestScorer package allows users to score different kind of tests, questionnaires or
clinical scales. The user has to previously define the scoring instruction. This task is
also facilitated by the package. All the functions are launched from a user-friendly
graphical user interface (GUI). This document provides an overview of the usage of the
TestScorer package.

To install R on your computer (free under GNU General Public License), go to the
home website of R: http://www.r-project.org/. And do the following:
- Click “download packages CRAN” in the left bar
- Choose the download site nearest to you
- Choose the version for your operating system
- Click “base”
- Install the program when downloaded.

Open R clicking on the icon which was created on your screen. From the menu bar
choose the option “Packages” and then “Install package(s)”. Finally, locate
“TestScorer” in the list and select it. These operations need only be done for the first
time. You can also load the package from a local file: Packages → Install package(s)
from a local zip file... .

To load the package enter at the R prompt:

> library(TestScorer)

And then:

> TestScorerGUI()

The program will ask for a directory where to score questionnaires Tree example tests
and this document are copied to the directory. A batch file with name “TestScorer.cmd”
is created in this directory only for Windows system. In subsequent uses, clicking over
this file will open R and launch the TestScorer. Also you can create a direct link
pointing to “TestScorer.cmd”, and drag it to the desktop or other more convenient
directory.

The GUI has two main functions: entering items and scoring an existing test (see section
2) or managing the catalog of tests including deleting or defining new ones (see section
3). A button allows to quit from TestScorer” and from R. If you quit R from the console

1

mailto:manelsalamero@gmail.com
http://www.r-project.org/

a window would emerge, asking if you want “Save the workspace image”. Answer
“No”.

2. Entering items and scoring a test

2.1 Choosing a test
Note that all gray windows are non editable, they show useful information. The first
step is choosing the test whose items you want to introduce and score. In the upper left
corner you will find a window labeled “Which test would you like to score”. Find the
test name using the scrolling bar if necessary, and click on it. The test’s name will be
highlighted. Now you can see the characteristics of this test on the window labeled
“Test details”. Beyond the name of the test, its authors and some cooment, you will find
the number of items, the valid answers, and the codes for missing answers.

2.2 Entering the identification data of the subject
In the middle part of the window you can enter some data on the subject. These are
optional fields which admit any characters, except for sex which is recorded through
radio buttons.

2.3 Entering the items
On the upper right corner of the main window you will find the area for entering the
items which is labeled “Entry items window”. The first line shows the number of the
item to be entered. You have to put the cursor in the white rectangle located on the left.
Do not move the cursor from this position while entering items, all the necessary actions
are done through the keyboard. The numerical keypad is the most convenient way to
introduce the answers, but the numerical keys and the spacebar of the main keyboard
can also be used.

Enter the answer of the items using the keyboard. Only the valid and missing characters
shown in the “Test details” window are allowed. If you enter an invalid character a pop-
up window appears highlighting the error and the program is blocked until the error
window is closed.

Every time you enter a valid answer the counter of items will increase in one unit until
all the items are entered. The progression is reflected in two ways. First, the “Item to
enter” is updated. Second, in the lower part of the window will appear the answers just
introduced and an asterisk (*) showing the position of the next answer to be entered (see
figure 1). As any gray window of the GUI, this one is non editable. Every line shows
ten items, corresponding to the numbers shown in the right margin, and the upper
margin indicates the position in the group of ten.

The window allows the representation of 100 items, but the ones which exceed the
length of the test are crossed out with an equal symbol (=). Had the test more than one
hundred items, the window would be refreshed showing the next hundred automatically.

In case of error, you can move through the answers using the arrow keys and introduce
the correction for the appropriate items. Right and left arrow move to the previous or
posterior answer respectively. The up and down arrows jump to the tenth previous or
following answer. The use of the arrows updates the number of the new answer to be
introduced and the position of the asterisk indicator automatically. If you try to go to an

2

answer beyond the limits of the test a pop-up window will alert you of the invalid
choice.

2.4 Scoring the test
When you have entered all the answers press the “Score” button to get the results which
appear on the R’s main window. From the R’s menu bar you can print or save the
results.

2.5 Recording scores and answers to a file
It is possible to record the scores and items of the tests in a file for further statistical
analysis. To do so, click on the button labeled “Click here to choose a file for saving the
results”. This opens a system window for choosing or creating a file for recording. If the
file already exists the new information will be appended. The chosen file will be
showed in the window labeled “Where would you like to save the scores?”. Some tests
are carried out to ensure that the old file structure is compatible with the new data, but
the user must be careful and take the necessary precautions themselves. The radio
buttons beneath the “Would you like to save the items” label allow recording the
answers (as introduced through the keyboard without further processing) in addition to
the scores.

The data are written to an ascii text file with semicolons between fields as delimiters.
These kinds of file are easily imported by almost any program and also by R.

2.6 Other buttons
At the bottom of the screen you will find different buttons. “Score” is for scoring as
explained previously. “Exit Scorer & R” closes both the TestScorer window and the R
session. “Clean Items”, cleans the items but maintains the identification information of
the subject. So you can introduce and score another test of the same subject without
reintroducing his or her data. “Clean all”, cleans both the items and the identification
data. “Test manager” is for creating new test score instruction or deleting the existent.
Its functions will be explained in section 3. “Help” shows a brief summary of the
information contained in this document.

3. Test manager

3.1 Deleting a test
Clicking the “Test Manager” button gives you access to two functions: deleting an
existing test and creating a new one. If you choose to delete a test, the test is not actually
deleted but the file extension is changed from “.r” to “.bak”, giving you the possibility
to recover it later.

3.2 Creating a new test
This option opens a menu for defining the general characteristics of the test. In this
window you should introduce the information of the test. Any entry, unless otherwise
specified, should be filled in. When the “Ok” button is pressed the program checks the
validity of the information and a pop-up window is opened in case of errors. When
closing this window you can correct the invalid entries.

3

Next a window for each scale opens. The required information should be entered and is
checked for errors when pressing the “Ok” button. This process is repeated for each
scale of the test.

Using this information the program generates a script which is written in a file in the
working directory. The catalog test is automatically updated and you can begin to score
the new test.

4 Editing the script manually to enhance the scoring capacities

4.1 The general structure of TestScorer
The scoring of tests usually consists of computing the scores of each scale by summing
or computing the mean of their items. Sometimes the raw scores are transformed to T-
scores according to the normative mean and standard deviation for each sex. Other
times, the transformation is done through a table of equivalences. The instructions for
these computations are automatically generated when a new test is defined through the
GUI. Nevertheless, sometimes the test requires other data manipulations not performed
by the basic script and in these cases it is necessary to edit the instruction manually.

Only a basic knowledge of R language is needed to adapt the script to the scoring
peculiarities demanded by a test. To do this, it is worth to knowing the internal scoring
process. When the GUI is launched, the working directory is scanned to detect any
script for scoring tests. These scripts are identified when their name begins with the
prefix “TST_”. The characteristics of the tests are read from these scripts, especially the
number of items and the valid answers.

The GUI is governed by a main function which takes care of the introduction of items
and the identifying information of the subject. During the introduction of the answers,
the function checks the validity of the pressed keys. When the “Score” button is clicked,
the main function reads the script for scoring this test and launches the scoring function.
It sends (as parameters) a character vector with the answers and the data of the subject.
These last parameters are used to control the transformation of the raw scores if required
(e.g.: transformation is different for each sex).

When the scoring process is finished, the scoring function returns a list to the main
function with three (optional) elements: “results.lst”, “results.df”, and “results.scores”.
The “results.lst” is a list with character strings. The “results.df” is a data frame with the
scores of the test’s scales. It can comprise the acronym and name of the scale, the raw
score and a graphic representation of the score (this two last elements are optional).
Finally, “results.scores” is a data frame with only one row with the obtained scores. The
main function prints the “results.lst” and the “results.df” to the R console and, if
required, writes the “results.scores” to an external ascii data file.

4.2 Editing the script
Creating a new test means creating an R script with the necessary commands defining
the entering template of answers and the scoring procedure. The automatically
generated script (section 3) is saved in the chosen directory, appending the test acronym
to the prefix “TST_” with the usual R extension type “.r”. It can be edited using any text
editor. The whole process is illustrated bellow through an example.

4

Since comments are included in the script, it is easy to follow the scoring process and, if
necessary, include modification to accommodate the atypical demands of some tests. As
an example, see the three public domain test which scoring script are copied to the
installation directory of the TestScorer.

The first one, the “Multidimensional Health Locus of Control” (MHLC,
http://www.nursing.vanderbilt.edu/faculty/kwallston/mhlcscales.htm), shows a simple
raw scoring. In this case, the score is the mean of the answers corresponding to each of
the three scales. No additional code was added to the script created by the program.

The “Depression, Anxiety and Stress Scores” (DASS,
http://www2.psy.unsw.edu.au/dass/), includes a percentil transformation which is the
same for both sexes. Some score conversions are plain percentile while other are ranges.
Any character, no only numbers, is allowed in the conversion which gives great
flexibility to the procedure. However, if characters are included, it prevents using this
transformation for generating a graphical representation, since the program has no way
for computing the position of the score in a continuum.

The “Revised Adult Attachment Scale” (RAAS, www.openpsychassessment.org/wp-
content/uploads/2011/06/AdultAttachmentScale.pdf) shows a T’scores conversion using
the mean and standard deviation which are different for males and females. Also a
schematically graphical representation of the profile is included. All these instructions
were created through the menu. The resulting script was further edited to enhance the
results.

In the following paragraphs the structure of the script is commented to facilitate the task
of manually modifying the instructions to the interested users (see appendix). The
automatic script is comprised of two main parts: a list with information about the test
(lines 5 to 13) and a main function (lines 15 to 137

The list “testChar” includes the characteristics of the test. As mentioned before, when
the GUI is launched, it looks in the directory for all the files whose name begins with
“TST_”. The program reads the “testChar” list to form the catalog which is displayed in
the main window. In this way the program knows which tests can be corrected, and for
each test the number of items, the valid answers and the characters defined as missing.
This information is used to construct the entry items window and scans the validity of
the answers introduced by the user.

When the “Score” button is pressed the program loads the script corresponding to the
test being considered and reads and executes the main function “scoring.fun”. The main
program sends to it a character string with the answers and the identification
characteristics of the subject. This last information is useful in transforming scores (e.g.;
differences between sexes). Lines 17 to 23 convert the characters answers to numbers
and, if appropriate, invert the answers scoring of selected items. Line 24 initializes a
data frame for storing the results.

If requested a function for converting raw scores (in this case into T’scores, lines 26 to
31) and another for producing a simple graphic display of the T-scores (lines 33 to 43)
are added.

5

http://www.openpsychassessment.org/wp-content/uploads/2011/06/AdultAttachmentScale.pdf
http://www.openpsychassessment.org/wp-content/uploads/2011/06/AdultAttachmentScale.pdf
http://www2.psy.unsw.edu.au/dass/
http://www.nursing.vanderbilt.edu/faculty/kwallston/mhlcscales.htm

Next you will find the scoring commands for each scale (lines 5 to 76). In each block
the number of missing and the raw score of the scale is calculated. TestScorer allows to
compute the raw scores as a sum of items with or without prorating missing and, also,
as a mean of items. If required, raw scores are transformed. The options are
transforming to T’scores using the mean and standard deviation or through a table and
other transformations (e.g., percentiles) using a table. All this information is added to
the results data frame (lines 63 to 65).

In lines 80 to 83 a one row data frame with the scores is created. This data frame is used
to append to a text file intended for further statistical analysis. The data frame will be
passed to the main program which manages these tasks.

In lines 117 to 132 a list is constructed which initially only contains the number of
missing answers. This list, as described below, can be extended to add any information
which can not be transferred through a data frame.

Finally, line 136 brings the results back to the main program which will print them to
the R console and write to a file if required.

All the previous instructions were written by the GUI and were later edited to include
some peculiarities specific to the RAAS test. Lines 87 to 113 compute new indexes
(“CD” and “style”) combining the scores of two of the original scales. It is worth noting
that one of these indexes was incorporated to the results data frame (“CD” in lines 89 to
91), while the other was transmitted via the results list (variable “style” in line 127). The
graphical capabilities of R also allowed creating a plot (lines 102 to 112). Finally, lines
117 to 130 modify the results list including textual information and the variable “style”
computed before.

6

Appendix

001 # RAAS scale scoring commands
002 # Creation date: 2013-04-02
003 # --------------
004
005 testChar <- list(
006 acronym="RAAS",
007 name="Revised Adult Attachment Scale",
008 ref="Collins, 1996",
009 n.items=18,
010 valid=c(1, 2, 3, 4, 5),
011 miss=c(0),
012 comm="Public domain: www.openpsychassessment.org/wp-

content/uploads/2011/06/AdultAttachmentScale.pdf"
013) # end testChar
014
015 scoring.fun <- function(answers, sex, age=0, id, date.test, comm)
016 # "answer" is a *character* vector as introduced through the keyboard.
017 {
018 answers <- as.numeric(answers) # transform to numeric for easier sco-

ring
019 answers[answers %in% c(0)] <- NA # missing characters to NA
020 blanks <- sum(is.na(answers)) # compute number of missings
021 pcnt.blanks <- round((blanks / 18) * 100) # compute % of missings
022 reversed.items=c(2, 7, 8, 13, 16, 17, 18)
023 answers[reversed.items] <- (5 + 1) - answers[reversed.items] # reverse

items
024 results <- data.frame(NULL) # Null data frame for results
025
026 toT <- function(raw.score, mean, sd) # compute T score
027 {
028 T.score <- round(((raw.score - mean) / sd) * 10 + 50)
029 return(T.score)
030 } # end toT
031
032 makeGraph <- function(T.score) # make graph
033 {
034 if (!is.na(T.score)) # avoids error
035 {
036 graph <- "| : : | : | : | : : |"
037 if (T.score < 0) T.score <- 0
038 else if (T.score > 100) T.score <- 100
039 position <- round((T.score/2)+1)
040 graph <- paste(substr(graph, 1, position-1), substr(graph, positi-

on + 1, nchar(graph)), sep="o")
041 }
042 else graph <- NA
043 } # end makeGraph
044
045 # C scale scoring commands
046 # --------------
047 results[1, "Acronym"] <- "C" # acronym
048 results[1, "Scale"] <- "Close" # name of the scale
049 items <- c(1, 6, 8, 12, 13, 17) # items making up the scale
050 results[1, "Miss"] <- sum(is.na(answers[items])) # number of missings
051 results[1, "Raw"] <- round(mean(answers[items], na.rm=TRUE), 2) # raw

score (mean answered items
052 if (sex=="male") results[1, "T"] <- toT(results[1, "Raw"], 21.54,

5.14) # compute T score
053 else results[1, "T"] <- toT(results[1, "Raw"], 21.92, 5.19)

7

054 results[1, "Graph"] <- makeGraph(results[1, "T"]) # make the graph
055
056 # D scale scoring commands
057 # --------------
058 results[2, "Acronym"] <- "D" # acronym
059 results[2, "Scale"] <- "Dependent" # name of the scale
060 items <- c(2, 5, 7, 14, 16, 18) # items making up the scale
061 results[2, "Miss"] <- sum(is.na(answers[items])) # number of missings
062 results[2, "Raw"] <- round(mean(answers[items], na.rm=TRUE), 2) # raw

score (mean answered items
063 if (sex=="male") results[2, "T"] <- toT(results[2, "Raw"], 20.59, 5) #

compute T score
064 else results[2, "T"] <- toT(results[2, "Raw"], 19.51, 5.14)
065 results[2, "Graph"] <- makeGraph(results[2, "T"]) # make the graph
066
067 # A scale scoring commands
068 # --------------
069 results[3, "Acronym"] <- "A" # acronym
070 results[3, "Scale"] <- "Anxiety" # name of the scale
071 items <- c(3, 4, 9, 10, 11, 15) # items making up the scale
072 results[3, "Miss"] <- sum(is.na(answers[items])) # number of missings
073 results[3, "Raw"] <- round(mean(answers[items], na.rm=TRUE), 2) # raw

score (mean answered items
074 if (sex=="male") results[3, "T"] <- toT(results[3, "Raw"], 13.86,

5.36) # compute T score
075 else results[3, "T"] <- toT(results[3, "Raw"], 15.7, 6.05)
076 results[3, "Graph"] <- makeGraph(results[3, "T"]) # make the graph
077
078 # One row data frame with scores, for writing scores into a data file
079 # --------------------
080 results.scores <- data.frame(t(c(blanks, results[, "Raw"],

results[,"T"])))
081 names(results.scores) <- c("blanks", paste(results[["Acronym"]],

"raw", sep="_"), paste(results[["Acronym"]], "T", sep="_"))
082
083 # Ruler for graph column name
084 # --------------------
085 names(results)[6] <- "0 10 20 30 40 50 60 70 80 90

100"
086
087 # ===== ADDITIONAL CODE INSERTED MANUALLY
088 # Combine C & D scales
089 CD <- round(mean(c(results[1, 'Raw'], results[2, 'Raw'])), 2)
090 results[4,] <- c('', '','','','','') # blank row to improve readabi-

lity
091 results[5,] <- c('CD', 'Close/Dependent', '', CD, '', '') # no data

for computing T score
092
093 # Attachment style assignement
094 style <- 'Located at midline'
095 if (is.na(CD)) style <- 'Not evaluable' # if all answers are missings
096 else if (CD > 3 & results[3, 'Raw'] < 3) style <- 'Secure'
097 else if (CD > 3 & results[3, 'Raw'] > 3) style <- 'Preoccupied'
098 else if (CD < 3 & results[3, 'Raw'] < 3) style <- 'Dismissing'
099 else if (CD < 3 & results[3, 'Raw'] > 3) style <- 'Fearful'
100 else style <- 'Not classificable'
101
102 # Show style as a plot
103 windows(title="Attachment style")
104 plot(CD, results[3, 'Raw'], xlim=c(1,5), ylim=c(1,5), pch=3, cex=2,

col='blue', lwd=5,

8

105 xlab='Close/Dependent', ylab='Anxiety', main=paste(id,
date.test),

106 font.sub=2, sub='Position of the subject is represented by a blue
cross')

107 abline(v=3)
108 abline(h=3)
109 text(2, 2, labels='Dismissing', col='gray60', font=2, cex=2)
110 text(4, 2, labels='Secure', col='gray60', font=2, cex=2)
111 text(2, 4, labels='Fearful', col='gray60', font=2, cex=2)
112 text(4, 4, labels='Preocupied', col='gray60', font=2, cex=2)
113 # ===== END ADDITIONAL CODE INSERTED MANUALLY
114
115 # Output in form of list
116 # ------------------
117 results.lst <- list(paste("Total number of missings: ", blanks, " (",

pcnt.blanks, "%)", sep=""),
118 # ===== ADDITIONAL CODE INSERTED MANUALLY
119 "",
120 "RAAS Collis, 1996. Public domain document downlo-

adable from:",
121 "http://www.openpsychassessment.org/wp-

content/uploads/2011/06/",
122 "AdultAttachmentScale.pdf, downloaded: 29 sept

2012.",
123 "",
124 "According to the author, attach styles assigne-

ment 'is quite exploratory...",
125 "[use] with caution, and only in conjunction with

the continuous measures.'",
126 "",
127 paste("Attach style:", style),
128 "",
129 "T scores computed using data from 414 USA college

students reported",
130 "by Ledley et al. J Psychopath Behav Assess 2006,

28:33-40."
131 # ===== END ADDITIONAL CODE INSERTED MANUALLY
132)
133
134 # Return results
135 # ------------------
136 return(list(results.lst=results.lst, results.df=results, results.sco-

res=results.scores))
137
138 } # end of scoring.fun

9

