This package implements an adpatation of the Higher-Criticism (HC) test to discriminate two frequency counts (one-way) tables footnotes1.
The package consists of two main functions: - tables.pvals â for comuting P-values of each feature in the two tables. - HC.vals â for comuting the HC score of the P-values.
A third function tables.HC combines the two functions above so that the HC score of the two tables is obtained using a single function call.
text1 = "Should I stay or should I go ?"
text2 = "I should stay . I should not go !"
tb1 = table(strsplit(tolower(text1),' '))
tb2 = table(strsplit(tolower(text2),' '))
pv = tables.pval(tb1,tb2)
print(pv$pv)
> [1] 1.0000 1.0000 0.2304 1.0000 1.0000 1.0000 NA 0.1936 NA
print(pv$Var1)
> go i or say should stay you and not
HC.vals(pv$pv)
> $HC
> 0.323954762194625
> $HC.star
> 0.323954762194625
> $p
> 0.2304
> $p.star
> 0.2304
n = 1000 #number of features
N = 10*n #number of observations
seq = seq(1,n)
P = 1 / seq #sample from Zipf law distribution
P = P / sum(P)
tb1 = data.frame(Feature = seq(1,n), # sample 1
Freq = rmultinom(n = 1, prob = P, size = 10*n))
k = 0.1*n # nuber of features to change
seq[sample(seq,k)] <- seq[sample(seq,k)]
Q = 1 / seq
Q = Q / sum(Q)
tb2 = data.frame(Feature = seq(1,n), # sample 2
Freq = rmultinom(n = 1, prob = Q, size = 10*n))
PV = tables.pval(tb1, tb2) #compute P-values
HC.vals(PV$pv) # HC test
# can also test using a single function call
tables.HC(tb1,tb2)
See David Donoho and Alon Kipnis Higher Criticism for Discriminating Word-Frequency Tables and Testing Authorship (2019)âŠī¸