
Time Series Database Interface (TSdbi)
Guide and Illustrations

Paul D. Gilbert
September 20, 2013

Contents

1 Introduction 1

2 Simple Examples of Time Series Data from the Internet 2
2.1 TShistQuote and TSgetSymbol 2
2.2 TSgetSymbol with FRED . 5
2.3 TSjson with Statistics Canada 10
2.4 TSxls . 14
2.5 TSzip . 17

3 SQL Time Series Databases 19
3.1 Writing to SQL Databases . 20

4 More Examples 24
4.1 Examples Using SQL Databases 24

5 Comparing Time Series Databases 27

6 Vintages of Realtime Data 30

7 Just Want Data in a xls or csv File 32

8 Appendix A: Connection Specific Details 34
8.1 TSMySQL Connection Details 35
8.2 TSPostgreSQL Connection Details 36
8.3 TSSQLite Connection Details . 36
8.4 TSodbc Connection Details . 37

8.4.1 Example ODBC configuration file 38
8.5 TSOracle Connection Details . 39
8.6 TSjson Connection Details . 40
8.7 TSfame Connection Details . 40

9 Appendix B: Underlying SQL Database Structure and Loading
Data 41

10 Appendix C: Examples Using DBI and direct SQL Queries 44

11 Appendix D: TSjson README regarding Python details 45

2

1 Introduction

This vignette illustrates the various R (R Core Team, 2012) TSdbi packages
using time series data from several sources. The main purpose of TSdbi is to
provide a common API, so simplicity of changing the data source is a primary
feature. The vignette also illustrates some simple time series manipulation and
plotting using packages tframe and tfplot.

To generate this vignette requires most of the TS* packages, but users will
only need one, or a few of these packages. For example, a time series database
can be built with several SQL database backends, but typically only one would
be used. On the other hand, several packages pull data from various Internet
sources, so several of these might be used to accommodate the various specifics
of the sources.

If package TSdata is installed on your system, it should be possible to
view the pdf version of this guide with vignette(”Guide”, package=”TSdata”).
Otherwise, consider getting the pdf file directly from CRAN at http://cran.

at.r-project.org/web/packages/TSdata/index.html Many parts of the vi-
gnette can be run by loading the appropriate packages, but some examples use
data that has been loaded into a larger database and it will not be possible to
reproduce those examples without the underlying database.

Section 2 of this vignette illustrates the mechanism for connecting to a data
source. The connection contains all the source specific information so, once
the connection is established, the syntax for retrieving data is similar for differ-
ent sources. The section also illustrates packages that pull data from Internet
sources. This currently includes TSgetSymbol, TShistQuote, TSjson, TSxls,
and TSzip, but others are in progress. These packages only get data, they do
not support writing data to the database. Finally, the section also illustrates
the flexibility to return different types of time series objects.

Section 3 illustrates the SQL packages TSPostgreSQL, TSMySQL, TSSQLite,
and TSodbc. These use a very standard SQL table structure and syntax, so it
should be possible to use other SQL backends. The package TSOracle is avail-
able on R-forge at http://tsdbi.r-forge.r-project.org/ but I currently do
not have a server in place to test it properly. (If anyone would be interested in
doing this, please contact me, pgilbert.ttv9z@ncf.ca.) These packages get data
and also support writing data to the database. See Appendix“B”(section 9) and
the vignette in package TSdbi for more explanation of the underlying database
tables, and for bulk loading of data into a database. The section illustrates
writing artificial data to the database.

Section 4 provides additional examples of TSdbi functionality and of using
and graphing series. Subsection 4.1 illustrates fetching data from the web and
loading it into a local database.

Section 5 illustrates package TScompare for comparing time series databases,
and Section 6 illustrates the use of realtime vintages of data.

Section 7 illustrates some functions for exporting time series data from R
into .xls and .csv files. While regular R users may not be too interested in this,
it can be useful for colleagues that are not yet regular users. The section is

1

http://cran.at.r-project.org/web/packages/TSdata/index.html
http://cran.at.r-project.org/web/packages/TSdata/index.html
http://tsdbi.r-forge.r-project.org/

fairly self contained. (But will give non-users some exposure to R, so they may
decide they do not actually need to export the data.)

Appendix “A” provides connection details specific to the different database
sources, Appendix“B”provides more details about the structure of SQL databases,
and Appendix “C” provides some examples of SQL queries that may be useful
for database maintenance. Finally, Appendix “D” reproduces the README
file for package TSjson, to give details regarding installation of Python helper
utilities.

Many of the TS* packages are wrappers of other packages. The purpose is to
provide a common API for interfacing with time series databases, and an easy
mechanism to specify the type of time series object that should be returned,
for example, a ts object or a zoo (Zeileis and Grothendieck, 2005) object. One
consequence of providing a common interface is that special strengths of some of
the underlying packages cannot always be used. If you really need some of these
features then you may need to go directly to the underlying package. However,
if you limit your reliance on these underlying features then you will be able to
move from one data source to another much more easily.

Loading a TS* package will also load required packages TSdbi, DBI (R
Special Interest Group on Databases, 2009), methods (R Core Team, 2013),
tframePlus, zoo, and then any underlying package that the specific TS* package
uses.

2 Simple Examples of Time Series Data from
the Internet

This section uses packages to pull data from the Internet. The general syntax
of a connection is illustrated, and some simple calculations and graphs are done
to demonstrate how the data might be used. However, the purpose of the TS*
packages is to provide a common interface, not to do all time series calculations
and graphics. Once you have the data, you should be able to use whatever other
R packages you like for your calculations and graphs.

The generic aspect of the interface API is accomplished by putting the in-
formation specific to the underlying source into the “connection”. Once the
connection is established, other aspects of using data are the same, so one con-
nection can be easily interchanged with another, and so your programs do not
need to be changed when the data source is changed. (But, of course, some
changes will be needed if the names of the variables change.)

2.1 TShistQuote and TSgetSymbol

Packages TShistQuote and TSgetSymbol provide mechanisms to retrieve histor-
ical quote data from various sources. TShistQuote is a wrapper to get.hist.quote
in package tseries (Trapletti and Hornik, 2012). A connection to Yahoo Finance
is established, and data retrieved and plotted by

2

> library("TShistQuote")

> yahoo <- TSconnect("histQuote", dbname="yahoo")

> x <- TSget("^gspc", quote = "Close", con=yahoo)

> library("tfplot")

> tfplot(x)

1995 2000 2005 2010

40
0

80
0

12
00

16
00

^g
sp

c

Package TSgetSymbol is a wrapper to getSymbols in package quantmod
(Ryan, 2011). A connection to Yahoo using this, and retrieving the same data,
can be done by

> library("TSgetSymbol")

> yahoo <- TSconnect("getSymbol", dbname="yahoo")

> x <- TSget("^gspc", quote = "Close", con=yahoo)

> tfplot(x)

2007 2008 2009 2010 2011 2012 2013

80
0

12
00

16
00

^g
sp

c

Notice that the only difference is the library that is loaded and the name of
the driver provided when establishing the connection. After that, the code is the
same (and the data from the two connections should be the same, other than
the difference in the default start date). This is the coding approach one would
typically follow, so that changing the data source is easy. However, sometimes

3

it is interesting to compared the same data from differrent sources, so here is
an example where the connections are given different names, so the same data
through two different connection methods can be more easily compared:

> ya1 <- TSconnect("getSymbol", dbname="yahoo")

> ya2 <- TSconnect("histQuote", dbname="yahoo")

> ibmC1 <- TSget("ibm", ya1, quote = "Close", start="2011-01-03")

> ibmC2 <- TSget("ibm", ya2, quote = "Close", start="2011-01-03")

In this example the underlying packages both return zoo time series objects,
but the encoding of the date index vectors are of different classes (Date vs
POSIXct). This is usually not a problem because one would usually work with
one package or the other, but it does become a problem when comparing the two
objects returned by the different methods. The time representation of ibmC1
can be changed from POSIXct to Date by:

> tframe(ibmC1) <- as.Date(tframe(ibmC1))

The two series can then be plotted:

> tfplot(ibmC2, ibmC1,

ylab="IBM Close",

title="IBM via getSymbol and histQuote",

lastObs=TRUE,

legend=c("via histQuote (black)", "via getSymbol (red)"),

source="Source: Yahoo")

2011 2012 2013

15
0

17
0

19
0

21
0

IB
M

 C
lo

se

Source: Yahoo Last observation: 2013−09−19

via histQuote (black)
via getSymbol (red)

IBM via getSymbol and histQuote

Or the difference can be used to check equality:

> max(abs(ibmC2 - ibmC1))

[1] 0

(Note that this difference calculation does not catch a difference in length,
which occurs if new data has been release on one connection and not the other.

4

At some point Yahoo was releasing partial data early, and these connection are
correcting differently for this. So, at some times of day, the last available data
point is not the same on these two connections.)

A certain amount of meta data can be returned with the time series object
and can be extracted with these utilities:

> TSdescription(x)

[1] "^gspc Close from yahoo"

> TSdoc(x)

[1] "^gspc Close from yahoo retrieved 2013-09-20 08:15:41"

> TSlabel(x)

[1] "^gspc Close"

> TSsource(x)

[1] "yahoo"

2.2 TSgetSymbol with FRED

Package TSgetSymbol can also be used to get data from the Federal Reserve
Bank of St.Louis, as will be illustrated here. (Look at http://research.

stlouisfed.org/fred/ to find series identifiers.)

> library("TSgetSymbol")

> fred <- TSconnect("getSymbol", dbname="FRED")

> tfplot(TSget("M2", fred))

1980 1990 2000 2010

20
00

60
00

10
00

0

M
2

A connection can be specified to be used as the default, so it does not need
to be specified each time:

5

http://research.stlouisfed.org/fred/
http://research.stlouisfed.org/fred/

> options(TSconnection=fred)

> tfOnePlot(percentChange(TSget("M2"), lag=52),

title = "Running commentary, blah, blah, blah",

subtitle="Broad Money (M2)",

ylab= "y/y percent change*",

source="Source: Federal Reserve Bank of St.Louis (M2)",

footnoteLeft = "seasonally adjusted data",

footnoteRight = "* approximated by 52 week growth",

lastObs = TRUE)

1985 1990 1995 2000 2005 2010

0
2

4
6

8
10

y/
y

pe
rc

en
t c

ha
ng

e*

Running commentary, blah, blah, blah
Broad Money (M2)

Source: Federal Reserve Bank of St.Louis (M2) Last observation: 2013−09−09

seasonally adjusted data * approximated by 52 week growth

Several different connections will be used in this vignette, and so a default
will not be used. To unset the default

> options(TSconnection=NULL)

It is also possible to return multiple series, but they should all be of the same
frequency. (The FRED series called M2 is a weekly series).

> x <- TSget(c("CPIAUCNS","M2SL"), fred)

> tfplot(x,

title = "Running commentary, blah, blah, blah",

subtitle=c("Consumer Price Index for All Urban Consumers: All Items", "Broad Money"),

ylab= c("Index 1982-84=100", "Billions of dollars"),

source= c("Data Source: Federal Reserve Bank of St.Louis (CPIAUCNS)",

"Data Source: Federal Reserve Bank of St.Louis (M2SL)"),

footnoteLeft = c("not seasonally adjusted", "seasonally adjusted"),

footnoteRight = paste("Extracted:", date()),

lastObs = TRUE)

6

1920 1940 1960 1980 2000

50
10

0
15

0
20

0

In
de

x
19

82
−

84
=

10
0

Consumer Price Index for All Urban Consumers: All Items

Data Source: Federal Reserve Bank of St.Louis (CPIAUCNS) Last observation: Aug 2013

not seasonally adjusted Extracted: Fri Sep 20 08:15:43 2013

Running commentary, blah, blah, blah

1920 1940 1960 1980 2000

0
20

00
60

00
10

00
0

B
ill

io
ns

 o
f d

ol
la

rs

Broad Money

Data Source: Federal Reserve Bank of St.Louis (M2SL) Last observation: Aug 2013

seasonally adjusted Extracted: Fri Sep 20 08:15:43 2013

> TSdates(c("CPIAUCNS","M2SL"), fred)

[,1]

[1,] "CPIAUCNS from 1913 1 to 2013 8 12"

[2,] "M2SL from 1959 1 to 2013 8 12"

By default, TSget returns ts time series for annual, quarterly, and monthly
data, and zoo series otherwise. It is possible to specify the type of object to
return:

> x <- TSget(c("CPIAUCNS","M2SL"), fred, TSrepresentation="zoo")

> class(x)

A session default can also be set for this with

> options(TSrepresentation="zoo")

in which case all results will be return as zoo objects unless otherwise specified.
The session default is unset with

> options(TSrepresentation=NULL)

7

Beware that it does not make sense to set ts as the default, because it is already
the default for all series that can be represented as ts, and will not work correctly
for other series. Other representations are possible. See the TSget help for more
details.

The following connects to yahoo and loads the ticker symbol for Ford. This
is a multivariate time series with open, close, etc.

> yahoo <- TSconnect("getSymbol", dbname="yahoo")

> x <- TSget("F", con=yahoo)

> plot(x)

5
10

15

F.
O

pe
n

5
10

15

F.
H

ig
h

2007 2008 2009 2010 2011 2012 2013

Index

5
10

15

F.
Lo

w

5
10

15

F.
C

lo
se

0e
+

00
2e

+
08

4e
+

08

F.
V

ol
um

e

2007 2008 2009 2010 2011 2012 2013

Index

5
10

15

F.
A

dj
us

te
d

x

Most of the plots in this vignette are done with the utilities in the tfplot
package, but the usual plot function, used above, produces slightly different
results that may be preferable in some situations. Also, for some time series
objects, the plot method has been much improved from the default, so if you
are using these objects you may find that plot provides attractive features.

In the case of the ticker data above, tfplot displays graphs in verticle panels.
However, six panels do not nicely fit on a printed page. The first three are
displayed with:

> tfplot(x,series=1:3)

8

2007 2008 2009 2010 2011 2012 2013

5
10

15

F.
O

pe
n

2007 2008 2009 2010 2011 2012 2013

5
10

15

F.
H

ig
h

2007 2008 2009 2010 2011 2012 2013

5
10

15

F.
Lo

w

It is possible to specify the number of graphs on an ouput screen with
graphs.per.page, for example, tfplot(x, graphs.per.page=3). Set par(ask=TRUE)
if you want to stop and prompt for <Return> between pages in the graphics
output.

The quote argument to TSget can be used to specify that only a subset of
the market data should be returned:

9

> tfOnePlot(TSget("F", con=yahoo, quote=c("Open", "Close")),

title="Ford from Yahoo; Open (black); Close (red)",

ylab="Price")

2007 2008 2009 2010 2011 2012 2013

5
10

15

P
ric

e

Ford from Yahoo; Open (black); Close (red)

2.3 TSjson with Statistics Canada

Package TSjson provides a mechanism to extract data from websites and pass
it to R in JavaScript Object Notation (JSON) using package rjson (Couture-
Beil, 2013). Package RJSONIO (Lang, 2012) has previously been used to bring
the data into R but is not the current method. TSjson uses Python code to
mechanize clicking though web pages to get a downloadable file. This really
should be considered a temporary solution, until the data provider implements
a true API. The current version of TSjson provides a connection to Statistics
Canada’s http://www.statcan.gc.ca Cansim database. (You should look at
the Statistics Canada site to find series identifiers.) Please contact the package
maintainer if you would like to help implement connections to other sites.

The connection can be established in two different ways. The simplest re-
quires a system with Python installed, and Python modules sys, json, mechanize,
re, csv and urllib2. This requires Python 2 as not all modules are available for
Python 3. Additional details are provided in a README file distributed with
the TSjson package and also copied in an appendix here. Installing Python
may be difficult in environments where users cannot easily install software, but
a second method using a proxy server can be used. The proxy server needs
Python and the modules, as well as server software (e.g. Web2Py), but the
client machine requires nothing special other than R and TSjson. The proxy
server can be anywhere on the Internet.

The following examples use the first method. More details on establishing
connections with the second method are provided in the appendix section 8.6.
First, establish a connection

> require("TSjson")

> cansim <- TSconnect("json", dbname="cansim")

10

http://www.statcan.gc.ca

Now data can be retrieved and a plot generated by

> x <- TSget("v498086", cansim)

> tfplot(x)

1960 1970 1980 1990 2000 2010

0
50

00
00

15
00

00
0

v4
98

08
6

Meta data can also be retrieved:

> TSdescription("v498086", cansim)

[1] "Gross domestic product (GDP) at market prices (x 1,000,000)"

> TSdoc("v498086", cansim)

[1] "Table 380-0002: Gross domestic product, expenditure-based; Canada; Current prices; Seasonally adjusted at annual rates; Gross domestic product (GDP) at market prices (x 1,000,000)"

> TSlabel("v498086", cansim)

[1] "v498086"

> TSsource("v498086", cansim)

[1] "Statistics Canada: Table 380-0002; v498086"

A transformation of the data can be done, more detail added to the graph,
and a start date specified:

> tfplot(ytoypc(x), start=c(1975,1),

ylab="Year-to-Year Growth Rate",

title="Canadian GDP",

source=paste("Statistics Canada ", seriesNames(x)),

lastObs=TRUE)

11

1980 1990 2000 2010

−
5

0
5

10
15

Ye
ar

−
to

−
Ye

ar
 G

ro
w

th
 R

at
e

Statistics Canada v498086 Last observation: Q2 2012

Canadian GDP

Sometimes it is useful to check availability:

> TSdates(c("v498086", "v498087"), cansim)

[,1]

[1,] "v498086 from 1961 1 to 2012 2 4"

[2,] "v498087 from 1961 1 to 2012 2 4"

Or, plot more than one series:

> oldpar <- par(omi=c(0.1,0.1,0.1,0.1),mar=c(3.1,4.1,0.6,0.1))

> tfplot(ytoypc(TSget(c("v498086", "v498087"), cansim)))

> par(oldpar)

12

1960 1970 1980 1990 2000 2010

−
5

0
5

10
15

20

y
to

 y
 %

ch
 v

49
80

86

1960 1970 1980 1990 2000 2010

0
5

10
15

y
to

 y
 %

ch
 v

49
80

87

The default settings of tfplot parameters usually work fairly well for interac-
tive use. The above illustrates one way to achieve more specific control, which
will often be necessary for generating pdf documents.

The meta data can also be retrieved with the series, which will generally be
faster than retreiving it separately, if it is needed:

> resMorg <- TSget("V122746", cansim, TSdescription=TRUE, TSdoc=TRUE, TSlabel=TRUE)

> TSdescription(resMorg)

[1] "Total outstanding balances (x 1,000,000)"

> TSdoc(resMorg)

[1] "Table 176-0069: Residential mortgage credit; Canada; Average at month-end; Seasonally adjusted; Total outstanding balances (x 1,000,000)"

> TSlabel(resMorg)

[1] "V122746"

> TSseriesIDs(resMorg)

[1] "V122746"

13

> TSsource(resMorg)

[1] "Statistics Canada: Table 176-0069; v122746"

> seriesNames(resMorg) <- "Residential Mortgage Credit (SA)"

> tfplot(ytoypc(resMorg), annualizedGrowth(resMorg),

title=seriesNames(resMorg),

subtitle="year-to-year (black) and annualize monthly growth (red)",

ylab="Growth Rate",

source=paste("Bank of Canada, ", TSsource(x)),

lastObs=TRUE)

1970 1980 1990 2000 2010

0
10

20
30

G
ro

w
th

 R
at

e

year−to−year (black) and annualize monthly growth (red)

Bank of Canada, Statistics Canada: Table 380−0002; v498086 Last observation: Jul 2013

Residential Mortgage Credit (SA)

2.4 TSxls

TSxls provides methods for the TSdbi interface, allowing the use of spreadsheets
as if they are a database. (This is a poor substitute for a real database, but
is sometimes convenient.) TSxls uses package read.xls in gdata (Warnes et˜al.,
2011) TSxls does not support writing data to the spreadsheet (but to write time
series data to a spreadsheet see TSwriteXLS in tframePlus, discussed in section
7). The spreadsheet can be a remote file, which is retrieved when the connection
is established.

The following retrieves a file from the Reserve Bank of Australia and maps
the elements that are used: data, dates, identifiers, and series names.

> library("TSxls")

> rba <- TSconnect("xls",

dbname="http://www.rba.gov.au/statistics/tables/xls/d03hist.xls",

map=list(ids =list(i=11, j="B:Q"),

data =list(i=12:627, j="B:Q"),

dates=list(i=12:627, j="A"),

names=list(i=4:7, j="B:Q"),

description = NULL,

tsrepresentation = function(data,dates){

ts(data,start=c(1959,7), frequency=12)}))

14

This also illustrates how tsrepresentation can be specified as an arbitrary
function to set the returned time series object representation.

Beware that data is read into R when the connection is established, so
changes in the spreadsheet will not be visible in R until a new connection is
established.

> x <- TSget("DMACN", rba)

> require("tfplot")

> tfplot(x)

1960 1970 1980 1990 2000 2010

0
10

20
30

40

D
M

A
C

N

> x <- TSget(c("DMAM1N", "DMAM3N"), rba)

> tfplot(x)

> TSdescription(x)

[1] " from http://www.rba.gov.au/statistics/tables/xls/d03hist.xls"

[2] " from http://www.rba.gov.au/statistics/tables/xls/d03hist.xls"

15

1960 1970 1980 1990 2000 2010

0
50

10
0

20
0

D
M

A
M

1N

1960 1970 1980 1990 2000 2010

0
40

0
80

0
12

00

D
M

A
M

3N

tfplot treats each series in the first argument as a panel to be plotted. It is
possible to specify the number of graphs on each page of the output device with
the argument graphs.per.page. As previously illustrated, it is also possible to
specify that a subset of the series should be selected. (Also, as already illustrated
above, the function plot displays the series somewhat differently than tfplot, and
possibly differently depending on the objects time series representation.)

tfplot takes additional time series objects as arguments. Series in the first
argument are plotted in separate panels. Series in subsequent time series objects
will be plotted respectively on the same panels as the first, so the number of
series in each object must be the same.

> tfplot(TSget(c("DMAM1S", "DMAM3S", "DMABMS"), rba),

TSget(c("DMAM1N", "DMAM3N", "DMABMN"), rba),

ylab=c("DMAM1", "DMAM3", "DMABM"),

title="Australian Monetary Aggregates")

16

1960 1970 1980 1990 2000 2010

0
50

10
0

20
0

D
M

A
M

1
Australian Monetary Aggregates

1960 1970 1980 1990 2000 2010

0
40

0
80

0
12

00

D
M

A
M

3

1960 1970 1980 1990 2000 2010

0
40

0
80

0
12

00

D
M

A
B

M

2.5 TSzip

TSzip provides methods for the TSdbi interface, allowing the use of zipped files
that can be read by read.table as if each file is a database series (or group of
series such as high, low, open, close, for a stock). The dbname is a directory or
url. TSzip does not support writing data to the database.

The following retrieves zipped files from http://pitrading.com/free_market_

data.htm which provides some end of day data free of charge.

> library("TSzip")

> pitr <- TSconnect("zip", dbname="http://pitrading.com/free_eod_data")

> z <- TSget("INDU", pitr)

> tfplot(z, series=c(1,4))

17

http://pitrading.com/free_market_data.htm
http://pitrading.com/free_market_data.htm

1920 1940 1960 1980 2000

0
40

00
80

00
12

00
0

IN
D

U
.O

pe
n

1920 1940 1960 1980 2000

0
40

00
80

00
12

00
0

IN
D

U
.C

lo
se

The following illustrates returning an xts (Ryan and Ulrich, 2011) time series
object.

> z <- TSget(c("EURUSD", "GBPUSD"), pitr, quote=c("Open","Close"),

TSrepresentation=xts)

> tfplot(z,

title="EURUSD and GBPUSD open and closing values from pitrading",

start="1995-01-01",

par=list(omi=c(0.1,0.3,0.1,0.1),mar=c(2.1,3.1,1.0,0.1)))

18

1995 2000 2005 2010

0.
8

1.
0

1.
2

1.
4

1.
6

E
U

R
U

S
D

.O
pe

n

EURUSD and GBPUSD open and closing values from pitrading

1995 2000 2005 2010

0.
8

1.
0

1.
2

1.
4

1.
6

E
U

R
U

S
D

.C
lo

se

1995 2000 2005 2010

1.
4

1.
6

1.
8

2.
0

G
B

P
U

S
D

.O
pe

n

1995 2000 2005 2010

1.
4

1.
6

1.
8

2.
0

G
B

P
U

S
D

.C
lo

se

The default appearance of graphs can be changed (improved) by adjusting
graphics device margins omi and mar. (They are set by the vector in order:
bottom, left, top, right.) They can be set directly using par() or passed to
tfplot() as in this example. The default behaviour of tfplot() is a compromise
that usually works reasonally well for both screen and printed output. It is often
useful to adjust these when generating pdf files for publication.

3 SQL Time Series Databases

This section gives several simple examples of putting series on and reading them
from a database. (If a large number of series are to be loaded into a database,
one would typically do this with a batch process using the database program’s
utilities for loading data.) The examples in this section will use TSMySQL
but, other than the initial connection, access will be similar for other SQL TS*
packages. The syntax for connecting with other packages, and other options for
connecting with TSMySQL, are provided in Appendix “A”.

The packages TSPostgreSQL, TSMySQL, TSSQLite, and TSodbc use un-
derlying packages RPostgreSQL (Conway et˜al., 2012), RMySQL (James and
DebRoy, 2012), RSQLite (James, 2011), and RODBC (Ripley and from 1999˜to

19

Oct 2002 Michael˜Lapsley, 2012). The TS* packages provide access to an SQL
database with an underlying table structure that is set up to store time series
data.

The next lines of code do some preliminary setup of the database. This uses
the underlying database connection (dbConnect) rather than TSconnect, be-
cause TSconnect will not recognize the database until it has been setup. Func-
ton removeTSdbTables() is used first to remove any existing tables, which would
cause createTSdbTables() to fail.

WARNING: running this will overwrite the “test” database on your server.

> library("TSMySQL")

> con <- dbConnect("MySQL", dbname="test")

> require("TSsql")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> dbDisconnect(con)

3.1 Writing to SQL Databases

This subsection illustrates writing some simple artifical data to a database, and
reading it back. This part of the vignette is generated using TSMySQL, but
other backend SQL servers work in a similar way. See Appendix “A” for details
of establishing other SQL database connections.

The first thing to do is to establish a TSdbi connection to the database:

> library("TSMySQL")

> con <- TSconnect("MySQL", dbname="test")

TSconnect uses dbConnect from the DBI package, but checks that the database
has expected tables, and checks for additional features. (It cannot be used before
the tables are created, as was done above.)

The follow illustrates the use of the TSdbi interface, which is common to all
extension packages.

This puts a series called vec on the database and then reads is back

> z <- ts(rnorm(10), start=c(1990,1), frequency=1)

> seriesNames(z) <- "vec"

> if(TSexists("vec", con)) TSdelete("vec", con)

> TSput(z, con)

> z <- TSget("vec", con)

Note that the series name(s) and not the R variable name (in this case, vec
not z) are used on the database. If the retrieved series is printed it is seen to
be a “ts” time series with some extra attributes.

TSput fails if the series already exists on the con, so the above example
checks and deletes the series if it already exists. TSreplace does not fail if the

20

series does not yet exist, so examples below use it instead. TSput, TSdelete,
TSreplace, and TSexists all return logical values TRUE or FALSE.

Several plots below show original data and the data retrieved after it is
written to the database. In the plot below, one is added to the original data so
that both lines are visible.

The R variable can contain multiple series of the same frequency. They are
stored separately on the database.

> z <- ts(matrix(rnorm(200),100,2), start=c(1995,1), frequency=12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z+1, TSget(c("mat2c1","mat2c2"), con),

lty=c("solid", "dashed"), col=c("black", "red"))

1996 1998 2000 2002

−
3

−
1

0
1

2
3

m
at

2c
1

1996 1998 2000 2002

−
2

−
1

0
1

2
3

m
at

2c
2

The following extract information about the series from the database, al-
though not much information has been added for these examples.

> TSmeta("mat2c1", con)

21

serIDs: mat2c1

from dbname test using TSMySQLConnection

> TSmeta("vec", con)

serIDs: vec

from dbname test using TSMySQLConnection

> TSdates("vec", con)

[,1]

[1,] "vec from 1990 1 to 1999 1 A "

> TSdescription("vec", con)

[1] NA

> TSdoc("vec", con)

[1] NA

> TSlabel("vec", con)

[1] NA

Data documentation can be in three forms. A description specified by TS-
description, longer documentation specified by TSdoc, or a short label, typically
useful on a graph, specified by TSlabel. These can be added to the time se-
ries object, in which case they will be written to the database when TSput or
TSreplace is used to put the series on the database. Alternatively, they can
be specified as arguments to TSput or TSreplace. The description or documen-
tation will be retrieved as part of the series object with TSget only if this is
specified with the logical arguments TSdescription and TSdoc. They can also
be retrieved directly from the database with the functions TSdescription and
TSdoc.

> z <- ts(matrix(rnorm(10),10,1), start=c(1990,1), frequency=1)

> TSreplace(z, serIDs="Series1", con)

[1] TRUE

> zz <- TSget("Series1", con)

> TSreplace(z, serIDs="Series1", con,

TSdescription="short rnorm series",

TSdoc="Series created as an example in the vignette.")

[1] TRUE

> zz <- TSget("Series1", con, TSdescription=TRUE, TSdoc=TRUE)

> start(zz)

22

[1] 1990 1

> end(zz)

[1] 1999 1

> TSdescription(zz)

[1] "short rnorm series"

> TSdoc(zz)

[1] "Series created as an example in the vignette."

> TSdescription("Series1", con)

[1] "short rnorm series"

> TSdoc("Series1", con)

[1] "Series created as an example in the vignette."

The following examples use dates and times which are not handled by ts, so
the zoo time representation is used. It is necessary to specify the table where the
data should be stored in cases where it is difficult to determine the periodicity
of the data. See Appendix “B” for details of the specific tables.

> require("zoo")

> z <- zoo(matrix(rnorm(200),100,2), as.Date("1990-01-01") + 0:99)

> seriesNames(z) <- c("zooc1", "zooc2")

> TSreplace(z, con, Table="D")

[1] TRUE

> tfplot(z+1, TSget(c("zooc1","zooc2"), con),

lty=c("solid", "dashed"), col=c("black", "red"))

>

23

Jan Mar

−
2

0
1

2
3

4

zo
oc

1

Jan Mar

−
2

−
1

0
1

2
3

zo
oc

2

> z <- zoo(matrix(rnorm(200),100,2), as.Date("1990-01-01") + 0:99 * 7)

> seriesNames(z) <- c("zooWc1", "zooWc2")

> TSreplace(z, con, Table="W")

[1] TRUE

> dbDisconnect(con)

> detach(package:TSMySQL)

> detach(package:RMySQL)

4 More Examples

4.1 Examples Using SQL Databases

This section illustrates fetching data from the web and loading it into the
database. This would be a very slow way to load a database, but provides exam-
ples of different kinds of time series data. The fetching is done with TShistQuote.
Fetching data can fail due to lack of an Internet connection or delays, which will
cause the generation of this vignette to fail.

24

This part of the vignette is generated using TSPostgreSQL, but other back-
end SQL servers work in a similar way. See Appendix “A” for details of estab-
lishing other SQL database connections.

First establish a connection to the database where data will be saved:

> require("TSPostgreSQL")

> host <- Sys.getenv("POSTGRES_HOST")

> con <- TSconnect("PostgreSQL", dbname="test", host=host)

Now connect to the web server and fetch data:

> require("TShistQuote")

> yahoo <- TSconnect("histQuote", dbname="yahoo")

> x <- TSget("^gspc", quote = "Close", con=yahoo)

Then write the data to the local server, specifying table B for business day
data (using TSreplace in case the series is already there from running this ex-
ample previously):

> TSreplace(x, serIDs="gspc", Table="B", con=con)

[1] TRUE

and check the saved version:

> TSrefperiod(TSget(serIDs="gspc", con=con))

[1] "Close"

> TSdescription("gspc", con=con)

[1] "^gspc Close from yahoo"

> TSdoc("gspc", con=con)

[1] "^gspc Close from yahoo retrieved 2013-09-20 08:16:56"

> tfplot(TSget(serIDs="gspc", con=con))

1995 2000 2005 2010

40
0

80
0

12
00

16
00

gs
pc

25

> x <- TSget("ibm", quote = c("Close", "Vol"), con=yahoo)

> TSreplace(x, serIDs=c("ibm.Cl", "ibm.Vol"), con=con, Table="B",

TSdescription.=c("IBM Close","IBM Volume"),

TSdoc.= paste(c(

"IBM Close retrieved on ",

"IBM Volume retrieved on "), Sys.Date()))

[1] TRUE

> z <- TSget(serIDs=c("ibm.Cl", "ibm.Vol"),

TSdescription=TRUE, TSdoc=TRUE, con=con)

> TSdescription(z)

[1] "IBM Close" "IBM Volume"

> TSdoc(z)

[1] "IBM Close retrieved on 2013-09-20"

[2] "IBM Volume retrieved on 2013-09-20"

> tfplot(z, xlab = TSdoc(z), title = TSdescription(z))

> tfplot(z, title="IBM", start="2007-01-01")

1995 2000 2005 2010

50
10

0
15

0
20

0
25

0

IBM Close retrieved on 2013−09−20

ib
m

.C
l

IBM Close
IBM Volume

1995 2000 2005 2010

0e
+

00
3e

+
07

6e
+

07

IBM Volume retrieved on 2013−09−20

ib
m

.V
ol

26

Oanda has maximum of 500 days, so the start date is specified here so as to
not exceed that.

> Oanda <- TSconnect("histQuote", dbname="oanda")

> x <- TSget("EUR/USD", start=Sys.Date() - 495, con=Oanda)

> TSreplace(x, serIDs="EUR/USD", Table="D", con=con)

[1] TRUE

Then check the saved version:

> z <- TSget(serIDs="EUR/USD",TSlabel=TRUE,

TSdescription=TRUE, con=con)

> tfplot(z, title = TSdescription(z), ylab=TSlabel(z),

start="2007-03-01")

2013

1.
25

1.
30

1.
35

EUR/USD Close from oanda

> dbDisconnect(con)

> dbDisconnect(yahoo)

> dbDisconnect(Oanda)

> detach(package:TSPostgreSQL)

> detach(package:RPostgreSQL)

5 Comparing Time Series Databases

The purpose of package TScompare is to compare pairs of series on two database.
These series might have the same name, but for generality the main function,
TScompare, is set up to use name pairs. The pairs to compare are indicated by
a matrix of strings with two columns. (It would also be possible to compare
pairs on the same database, which might make sense if the names are different.)

The connections are established using other TSdbi packages such as TSMySQL,
TSPostgreSQL, etc. It will be necessary to establish two database connections,
so it will also be necessary to load the database specific packages. Examples
below use TShistQuote, TSMySQL and TSSQLite.

27

> library("TScompare")

> library("TShistQuote")

> library("TSMySQL")

> library("TSSQLite")

First setup database tables that are used by TSdbi using a dbConnect con-
nection, after which a TSconnect connection can be used. This requires the
package TSsql which does not need to be attached for most purposes, but is
needed for the initial setup and for removing TSdbi database tables (which de-
stroys the structure TSconnect expects). When this is re-done it insure the
databases are empty:

> con <- dbConnect("MySQL", dbname="test")

> require("TSsql")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> dbDisconnect(con)

> con <- dbConnect("SQLite", dbname="test")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> dbDisconnect(con)

Now TS connections to the databases are established.

> con1 <- TSconnect("MySQL", dbname="test")

> con2 <- TSconnect("SQLite", dbname="test")

Next a connection to yahoo is used to get some series and write them to
the local test database. TSreplace is used because TSput will fail if the series
already exisits.

> yahoo <- TSconnect("histQuote", dbname="yahoo")

> x <- TSget("^ftse", yahoo)

> TSreplace(x, serIDs="ftse", Table="B", con=con1)

[1] TRUE

> TSreplace(x, serIDs="ftse", Table="B", con=con2)

[1] TRUE

> x <- TSget("^gspc", yahoo)

> TSreplace(x, serIDs="gspc", Table="B", con=con1)

[1] TRUE

> TSreplace(x, serIDs="gspc", Table="B", con=con2)

[1] TRUE

28

> x <- TSget("ibm", con=yahoo, quote = c("Close", "Vol"))

> TSreplace(x, serIDs=c("ibmClose", "ibmVol"), Table="B", con=con1)

[1] TRUE

> TSreplace(x, serIDs=c("ibmC", "ibmV"), Table="B", con=con2)

[1] TRUE

Now to do a comparison:

> ids <- AllIds(con1)

> ids

[1] "ftse" "gspc" "ibmClose" "ibmVol"

If the second database has the same names then ids can be made into a
matrix with identical columns.

> ids <- cbind(ids, ids)

> eq <- TScompare(ids, con1, con2, na.rm=FALSE)

> summary(eq)

4 of 4 are available on con1.

2 of 4 are available on con2.

2 of 2 remaining have the same window.

2 of 2 remaining have the same window and values.

> eqrm <- TScompare(ids, con1, con2, na.rm=TRUE)

> summary(eqrm)

4 of 4 are available on con1.

2 of 4 are available on con2.

2 of 2 remaining have the same window.

2 of 2 remaining have the same window and values.

Since names are not identical the above indicates discrepancies, which are
resolves by indicating the corresponding name pairs:

> ids <- matrix(c("ftse","gspc","ibmClose", "ibmVol",

"ftse","gspc","ibmC", "ibmV"),4,2)

> ids

[,1] [,2]

[1,] "ftse" "ftse"

[2,] "gspc" "gspc"

[3,] "ibmClose" "ibmC"

[4,] "ibmVol" "ibmV"

29

> eq <- TScompare(ids, con1, con2, na.rm=FALSE)

> summary(eq)

4 of 4 are available on con1.

4 of 4 are available on con2.

4 of 4 remaining have the same window.

4 of 4 remaining have the same window and values.

> eqrm <- TScompare(ids, con1, con2, na.rm=TRUE)

> summary(eqrm)

4 of 4 are available on con1.

4 of 4 are available on con2.

4 of 4 remaining have the same window.

4 of 4 remaining have the same window and values.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> dbDisconnect(con1)

> dbDisconnect(con2)

> dbDisconnect(yahoo)

> detach(package:TSMySQL)

> detach(package:RMySQL)

> detach(package:TSSQLite)

> detach(package:RSQLite)

6 Vintages of Realtime Data

Examples in the section have been disabled pending availability of a different
dataset.

Data vintages, or “realtime data” are snapshots of data that was available
at different points in time. The most obvious feature of earlier snapshots is
that the series end earlier. However, the reason for retaining vintages is that
data is often revised, so, for some observations, earlier vintages have different
data. Typically most revisions happen for the most recent periods, but this is
often the data of most interest for forcasting and policy decisions. Thus, the
revision records are valuable for understanding the implications of differences
between early and revised releases of the data. A simple mechanism for accessing
vintages of data is available in several TS* packages. This is illustrated here
with an SQL database that has been set up with vintage support.

First establish a connection to th database and get a vector of the available
vintages:

> require("TSMySQL")

> require("tfplot")

> ets <- TSconnect("MySQL",dbname="etsv")

> v <- TSvintages(ets)

30

The following checks if a certain variable (Consumer Credit – V122707) is
available in the different vintages. (V numbers replaced B numbers circa 2003,
so the V numbers do not exist in older vintages. This could be supported by
implementing aliases, but that has not been done here.)

> ve <- TSexists("V122707", vintage=v, con=ets)

> ve[224:length(ve)] <- FALSE

The vintages can them be retrieved and plotted by

> CC <- TSget(serIDs="V122707", con=ets, vintage=v[ve])

> tfOnePlot(ytoypc(CC), start=c(2000,1),

ylab="Consumer Credit (V122707) y/y Growth",

title=paste("Vintages", v[ve][1], "to", v[ve][189]),

lastObs=TRUE, source="Source: Bank of Canada")

With package TSfame vintages are supported if the vintages are stored in
files with names like “etsmfacansim 20110513.db”. Then the vintages can be
accessed as follows:

> dbs <- paste("ets /path/to/etsmfacansim_", c(

"20110513.db", "20060526.db", "20110520.db"), sep="")

> names(dbs) <- c("2011-05-13", "2006-05-26", "2011-05-20")

> conetsV <-TSconnect("fame", dbname=dbs, "read", current="2011-05-13")

> z <- TSget("V122646", con=conetsV, vintage=c("2011-05-13", "2006-05-26"))

> dbDisconnect(conetsV)

(The above example should work, but beware that I am no longer testing it
because I no longer have Fame access.)

The package googleVis can be used to produce a plot that is very useful for
examining vintage more closely, and finding outliers and other data problems.
The names are used in the legend of this next plot, so the series names are
specified in the argument to ytoypc. (Otherwise they get reset to indicate the
year-to-year calculation, which makes the legend messy to read.)

> require("googleVis")

> tfVisPlot(ytoypc(CC, names=seriesNames(CC)), start=c(2006,1),

options=list(title="Vintages of Consumer Credit (V122707) y/y Growth"))

This will produce a graph in your web browser. It is not reproduced here.
(And beware that it may not be very fast.) Pointing your mouse at the legend
of this plot will highlight the corresponding vintage, and pointing at the graph
will give information about the source of a data point.

> dbDisconnect(ets)

> detach(package:TSMySQL)

> detach(package:RMySQL)

31

7 Just Want Data in a xls or csv File

Occasionally one may need to get data into a program other than R. Or, perhaps
you have a friend that does not want to use R but would like easy access to data.
This section describes two utilities for putting time series data obtained with
TSdbi connections into .xls and .csv files. Since it is often straight forward to
downlaod an xls or csv file from a web site in the first place, the advantage of
this will usually be only in the case where you need to repeatedly get the data.
In that case, the process can be automated with these tools.

The starting point will be to get some data. Previous sections illustrate
several possibilities. For example purposes here use

> require("TSjson")

> cansim <- TSconnect("json", dbname="cansim")

> z <- TSget(c("V36415","V122707","V122746"), con=cansim)

> seriesNames(z) <- c("Total", "Consumer", "ResMort")

While this is optional, it might be useful to look at the data to see if it is
really what you expect:

> library("tframePlus")

> library("tfplot")

> tfplot(z, title="Canadian Household Debt")

32

1960 1970 1980 1990 2000 2010

0
50

00
00

10
00

00
0

15
00

00
0

To
ta

l
Canadian Household Debt

1960 1970 1980 1990 2000 2010

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

C
on

su
m

er

1960 1970 1980 1990 2000 2010

0
20

00
00

60
00

00
10

00
00

0

R
es

M
or

t

In this case the dates of one series start in 1956, but data is NA until about
1970. It is possible to trim the NA data from the beginning with

> z <- trimNA(z, endNAs=FALSE)

By default, trimNA will trim all series if any one of them is NA, so trimming
the end will not be what you want if you are interested in the most recent data.

33

Setting endNAs=FALSE) overrides the default.
It is also possible to trim the data to a specified subsample with

> z <- tfwindow(z, start=c(1995,1))

Now write the data to an .xls file using TSwriteXLS which uses WriteXLS
(Schwartz, 2012) but automatically adds time information:

> library("WriteXLS")

> tofile <- tempfile(fileext = ".xls")

> TSwriteXLS(z, FileName=tofile)

> unlink(tofile)

In this case a temporary file is written, then removed with unlink, so that
scratch files do not accumulate from building this vignette, but you would typ-
ically use a more meaningful name, and not remove the file. It is also possible
to write multiple sheets in the file. For more details on this see the help

> ?TSwriteXLS

The dates are written in some different formats in the .xls file, since this
is often convenient for calculations and graphing in a spreadsheet program.
Beware that .xls files have size limitations that you might encounter if you try
to put large amounts of data into the file. Consider using .csv files in that case.

To write the data to a .csv file

> tofile <- tempfile(fileext = ".csv")

> TSwriteCSV(z, FileName=tofile)

> unlink(tofile)

8 Appendix A: Connection Specific Details

This appendix provides details of the different connections which are specific
to individual packages and backend databases. In order to make the examples
complete, for the SQL versions, test databases are first created with the tables
expected by the TS* packages. Note that this is done with a dbConnect connec-
tion rather than a TSconnect connection, because TSconnect expects the tables
to exist already.

WARNING: running these example will overwrite tables in the“test”database
on the server.

The database setup might typically be done by an administrator, rather
than by an end user. Here it is done using a function createTSdbTables in
the TSsql package. The instructions for building the database tables can be
seen by examining that function. The instruction could be used to build the
database using database utilites rather than R, which might be the way a system
administrator would build the database.

34

In many cases there are two or more ways to pass information like the user-
name, password, and server or host. One mechanism is that this information
is specified in a configuration file in the user’s home directory. The database
driver then reads this information and it is not part of the user’s R session. (Of-
ten this is considered the most secure way.) Another way is that environment
variables are set, and the database driver uses these. Again, this is not part of
the user’s R session. Still another way is that the user passes this information
in the call to TSconnect in their R session. In this case the character strings are
visible in the R session, and possibly recorded in the user’s R scripts, thus this is
typically not considered to be very secure. A modification, which is only a little
bit better, is for the user’s R scripts to read the information from environment
variables using, for example:

> user <- Sys.getenv("MYSQL_USER")

8.1 TSMySQL Connection Details

The MySQL user, password, and hostname should be set in MySQL client con-
figuration file (.my.cnf) in the user’s home directory before starting R. Alter-
natively, this information can be set with environment variables MYSQL USER,
MYSQL PASSWD and MYSQL HOST. (An environment variable MYSQL DATABASE
can also be set, but“test” is specified below.) Below the configuration file is used.

The next small section of code uses dbConnect to set up database tables that
expected by TSconnect.

> library("TSMySQL")

> con <- dbConnect("MySQL", dbname="test")

> require("TSsql")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> dbDisconnect(con)

Now a TSdbi connection to the database is established.

> con <- TSconnect("MySQL", dbname="test")

The alternative to pass the user/password information in the arguments to
the connection function would be:

> con <- TSconnect("MySQL", dbname="test", username=user, password=passwd, host=host)

This may be cumbersome to change, and is generally considered to be less
secure.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach(package:TSMySQL)

> detach(package:RMySQL)

35

8.2 TSPostgreSQL Connection Details

The PostgreSQL user, and password, can be set in PostgreSQL configuration file
(.pgpass in Linux) in the user’s home directory before starting R. The Postgress
documentation suggests that it should be possible to get the host from the .pg-
pass file too, but I have not been able to make that work. The PostgreSQL alter-
native to the configuration file is to use environment variables PGDATABASE,
PGHOST, PGPORT, and PGUSER. This package supports another alterna-
tively to set this information with environment variables POSTGRES USER,
POSTGRES PASSWD and POSTGRES HOST, which are read in the R code.
(An environment variable POSTGRES DATABASE can also be set, but “test”
is specified below.) Below, the environment variable POSTGRES HOST is used
to determine the host server, but the .pgpass file is used for the user and pass-
word information.

> host <- Sys.getenv("POSTGRES_HOST")

The next small section of code uses dbConnect to set up database tables that
expected by TSconnect.

> library("TSPostgreSQL")

> con <- dbConnect("PostgreSQL", dbname="test", host=host)

> require("TSsql")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> dbDisconnect(con)

Now a TSdbi connection to the database is established.

> con <- TSconnect("PostgreSQL", dbname="test", host=host)

Another alternative is to pass the user/password information in the argu-
ments to the connection function:

> con <- TSconnect("PostgreSQL", dbname="test", user=user, password=passwd, host=host)

This is may be cumbersome to change, and is generally considered to be less
secure.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach(package:TSPostgreSQL)

> detach(package:RPostgreSQL)

8.3 TSSQLite Connection Details

In SQLite there does not seem to be any need to set user or password informa-
tion, and examples here all use the localhost.

Now setup database tables that are used by TSdbi using a dbConnect con-
nection, after which a TSconnect connection can be used:

36

> library("TSSQLite")

> con <- dbConnect("SQLite", dbname="test")

> require("TSsql")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> dbDisconnect(con)

Now a TSdbi connection to the database is established.

> con <- TSconnect("SQLite", dbname="test")

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach(package:TSSQLite)

> detach(package:RSQLite)

8.4 TSodbc Connection Details

The ODBC user, password, hostname, etc, should be set in ODBC client config-
uration file in the user’s home directory (.odbc.ini in Linux) before starting R.
An example of this file is provided below. It will also be necessary to have the
appropriate driver installed on the system (Postgresql in the example below).
Alternatively, it should be possible to set this information with environment
variables ODBC USER, ODBC PASSWD and ODBC DATABASE. However,
the variable ODBC HOST does not seem to work for passing the ODBC con-
nection, so a properly setup ODBC configuration file is needed. Because of this,
the environment variable mechanism is not currently supported in TSodbc and
the user, passwd, and host settings should be done in the configuration file.

Now setup database tables that are used by TSdbi using a odbcConnect
connection, after which a TSconnect connection can be used:

> library("TSodbc")

> con <- odbcConnect(dsn="test")

> if(con == -1) stop("error establishing ODBC connection.")

> require("TSsql")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> odbcClose(channel=con)

Now a TSdbi connection to the database is established.

> con <- TSconnect("ODBC", dbname="test")

Another alternative is to pass the user/password information in the argu-
ments to the connection function:

> con <- TSconnect("ODBC", dbname="test", uid=user, pwd=passwd)

37

This is may be cumbersome to change, and is generally considered to be less
secure.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach(package:TSodbc)

> detach(package:RODBC)

8.4.1 Example ODBC configuration file

Following is an example ODBC configuration file I use in Linux (so the file is in
my home directory and called “.odbc.ini”) to connect to a remote PostgreSQL
server:

[test]

Description = test DB (Postgresql)

Driver = Postgresql

Trace = No

TraceFile = /tmp/test_odbc.log

Database = test

Servername = some.host

UserName = paul

Password = mySecret

Port = 5432

Protocol = 6.4

ReadOnly = No

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

ConnSettings =

[ets]

Description = ets DB (Postgresql)

Driver = Postgresql

Trace = No

TraceFile = /tmp/test_odbc.log

Database = ets

Servername = some.host

UserName = paul

Password = mySecret

Port = 5432

Protocol = 6.4

ReadOnly = No

38

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

ConnSettings =

The above depends on the driver tag “Postgresql” being defined in the file
/etc/odbcinst.ini, to give the actual driver file location. That file might have
something like

[PostgreSQL]

Description = PostgreSQL ODBC driver (Unicode version)

Driver = /usr/lib/x86_64-linux-gnu/odbc/psqlodbcw.so

Setup = /usr/lib/x86_64-linux-gnu/odbc/libodbcpsqlS.so

Debug = 0

CommLog = 1

UsageCount = 1

8.5 TSOracle Connection Details

This package is available on R-forge, but is not being tested, because I do not
currently have a server to test it. The code in this section of the vignette is not
being run. Please contact the package maintainer (Paul Gilbert) if you have an
Oracle server and are willing to test the package.

The Oracle user, password, and hostname should be set in Oracle client
configuration file (tnsnames.ora) before starting R.

The next small section of code uses dbConnect to set up database tables that
expected by TSconnect.

> library("TSOracle")

> con <- dbConnect("Oracle", dbname="test")

> require("TSsql")

> removeTSdbTables(con, yesIknowWhatIamDoing=TRUE)

> createTSdbTables(con, index=FALSE)

> dbDisconnect(con)

Now a TSdbi connection to the database is established.

> con <- TSconnect("Oracle", dbname="test")

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach(package:TSOracle)

> detach(package:ROracle)

39

8.6 TSjson Connection Details

The TSjson method TSconnect can establish a connection to a proxy server.
(See the main text for directly connecting to the web data source.)

> library("TSjson")

> con <- TSconnect("TSjson", dbname="proxy-cansim")

The dbname specifies the proxy server, for which credentials will be needed.
The user, password, and host, can be specified as arguments. If specified as
NULL (the default) then they will be determined by reading a file ˜/.TSjson.cfg
which should have a line with four fields:

[proxy-cansim] user password host
The first field should match the dbname specification. Currently only a single

line is supported, starting with ”[proxy-cansim]”, but the format is intended for
extension to support proxies to different web databases.

If the file does not exist then environment variables ”TSJSONUSER”, ”TSJ-
SONPASSWORD”, and ”TSJSONHOST” will be used.

> detach(package:TSjson)

> detach(package:RJSONIO)

8.7 TSfame Connection Details

I no longer have access to Fame so package TSfame is no longer being extensively
tested. (It has previously worked.) The code in this section of the vignette is
not being run. Please contact the package maintainer (Paul Gilbert) if you have
Fame and are willing to test the package.

Beware that the package fame may be installed but not functional because
the Fame HLI code is not available. A warning will be issued in this case.

Two variants of the Fame connect are available. The first requires a Fame
database available on the local system:

> con <- TSconnect("fame", dbname="testFame.db")

The second requires a Fame server:

> con <- TSconnect("fame", dbname="ets /path/to/etsmfacansim.db", "read")

where the characters before the space in the dbname string indicate the network
name of the server, and the path after the string indicates where the server
should find the database.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach(package:TSfame)

> detach(package:fame)

40

Table 1: Data Tables

Table Contents
Meta meta data and index to series data tables
A annual data
Q quarterly data
M monthly data
S semiannual data
W weekly data
D daily data
B business data
U minutely data
I irregular data with a date
T irregular data with a date and time

9 Appendix B: Underlying SQL Database Struc-
ture and Loading Data

More detailed description of the instructions for building the database tables
is given in the vignette for the TSdbi package. Those instruction show how to
build the database using database utilites rather than R, which might be the
way a system administrator would build the database.

The database tables are shown in the Table below. The Meta table is used for
storing meta data about series, such as a description and longer documentation,
and also includes an indication of what table the series data is stored in. To
retrieve series it is not necessary to know which table the series is in, since this
can be found on the Meta table. Putting data on the database may require
specifying the table, if it cannot be determined from the R representation of the
series.

In addition, there will be tables ”vintages” and ”panels” if those features are
used.

The following is done with dbConnect in place of a TSconnect, since they
are direct SQL queries and do not require the TSdbi structure.

The structure reported reflects the setup that was done previously. These
queries are Mysql specific but below is a generic SQL way to do this.

> library("TSMySQL")

> con <- dbConnect("MySQL", dbname="test")

> dbListTables(con)

[1] "A" "B" "D" "I" "M" "Meta" "Q" "S" "T" "U"

[11] "W"

> dbGetQuery(con, "show tables;")

41

Tables_in_test

1 A

2 B

3 D

4 I

5 M

6 Meta

7 Q

8 S

9 T

10 U

11 W

> dbGetQuery(con, "describe A;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 v double YES <NA>

> dbGetQuery(con, "describe B;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date date YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe D;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date date YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe M;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe Meta;")

Field Type Null Key Default Extra

1 id varchar(40) NO PRI <NA>

42

2 tbl char(1) YES MUL <NA>

3 refperiod varchar(10) YES <NA>

4 description text YES <NA>

5 documentation text YES <NA>

> dbGetQuery(con, "describe U;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date timestamp NO CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP

3 tz varchar(4) YES <NA>

4 period int(11) YES <NA>

5 v double YES <NA>

> dbGetQuery(con, "describe Q;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe S;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe W;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date date YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

If schema queries are supported then table information can be obtained in a
(almost) generic SQL way. On some systems this will fail because users do not
have read priveleges on the INFORMATION SCHEMA table. This does not
seem to be an issue in SQLite, but SQLite schema queries are not the same as
for other SQL engines.

> dbGetQuery(con, paste(

"SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.Columns ",

" WHERE TABLE_SCHEMA='test' AND table_name='A' ;"))

43

COLUMN_NAME

1 id

2 year

3 v

> dbGetQuery(con, paste(

"SELECT COLUMN_NAME, COLUMN_DEFAULT, COLLATION_NAME, DATA_TYPE,",

"CHARACTER_SET_NAME, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='A' ;"))

COLUMN_NAME COLUMN_DEFAULT COLLATION_NAME DATA_TYPE CHARACTER_SET_NAME

1 id <NA> latin1_swedish_ci varchar latin1

2 year <NA> <NA> int <NA>

3 v <NA> <NA> double <NA>

CHARACTER_MAXIMUM_LENGTH NUMERIC_PRECISION

1 40 NA

2 NA 10

3 NA 22

> dbGetQuery(con, paste(

"SELECT COLUMN_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='M';"))

COLUMN_NAME DATA_TYPE CHARACTER_MAXIMUM_LENGTH NUMERIC_PRECISION

1 id varchar 40 NA

2 year int NA 10

3 period int NA 10

4 v double NA 22

> dbDisconnect(con)

[1] TRUE

10 Appendix C: Examples Using DBI and direct
SQL Queries

The following examples are queries using the underlying ”DBI” functions. They
should not often be needed to access time series, but may be useful to get at
more detailed information, or formulate special queries. Typically these queries
may be more useful for systems administrators doing database maintenance than
they are for end users.

These queries depend on the underlying structure of the database, which
should be considered “opague” from the perspective of a TSdbi user. That is,
this structure could be changed without affecting the TSdbi functionality, but
the following queries would be affected.

44

> library("TSMySQL")

> con <- TSconnect("MySQL", dbname="test")

> dbGetQuery(con, "SELECT count(*) FROM Meta ;")

count(*)

1 0

> dbGetQuery(con, "SELECT max(year) FROM A ;")

max(year)

1 NA

Finally, to disconnect gracefully, one should

> dbDisconnect(con)

11 Appendix D: TSjson README regarding Python
details

Package TSjson needs Python 2 and Python modules sys, json, mechanize,

re, csv, and urllib2. The package has been tested with python 2.7.3 on

Ubuntu Linux and Windows XP. There is no obvious reason why it should not

work on other systems. (Please advise the package maintainer, Paul

Gilbert <pgilbert.ttv9z@ncf.ca> if you discover differently.) The python code

is fairly simple and may work in Python 3 versions but module mechanize,

which does the main part that cannot be done easily in R, is not available

for Python 3. (Also, module urllib2 is split into urllib.request and

urllib.error in Python 3.)

Python also needs to be on the path so that it can be found when run from

the R process. Some brief instructions are provided below, but installing

programs will be operating system dependent, so these are not comprehensive.

Instructions for installing python modules are further below.

Probably not necessary for using this package, but for those interested,

additional information and turorials on python are available at

https://wiki.python.org/moin/FrontPage

=========== Windows =====================

On Windows, python can be installed by dowloading and following intructions at

http://www.python.org/getit/

Python also needs to be on the search PATH. Setting the PATH will be

45

slightly different on different versions of Windows. (See, for example,

http://www.computerhope.com/issues/ch000549.htm)

The steps will be roughly:

-From Desktop or Start Menu, right-click My Computer and then Properties.

-In the System Properties window, click the Advanced tab.

-In the Advanced section, click the Environment Variables button.

-In the Environment Variables window, highlight the Path variable

in the Systems Variable section and click the Edit button. Modify

the path to indicate the location where python is installed. (Directories

in the Path are separated with a semicolon.)

There should typically be a part of this environment variable string that is

something like C:\Python27; but the exact string will depend

on the version and where it has been installed.

You can check that it is being found and the version by executing

python --version

at a Command Prompt. (Be sure to open this window after you set the path

as above.)

=========== Linux =====================

Python is usually already installed on Linux systems. (Your system is likely

badly broken if it is not.) You can check the version by executing

python --version

in a shell. If the command is not found then you need to ensure that python is

on your PATH. If it is not installed then the install can be done with the

usual system utilities. For example, on Debian based systems

sudo apt-get python

or you can install it from http://www.python.org/getit/. (But it really is

unlikely that you will need to install python. Also, I do not think that it

should be necessary to upgrade or change the version of Python to use the

package, and I do not recommend that, because too many other things on

your system depend on python.)

=========== Python modules =====================

Modules sys, re, csv, json, and urllib2 are provided with the Python Standard

46

Library so they will usually not need to be installed. Module mechanize will

usually need to be installed.

You can check if python modules are already installed by starting python in a

shell or in Windows at the Command Prompt:

python

and then at the python >>> prompt try to import the modules. (Python newbies

beware that indentation is part of the python syntax and you should not put

spaces at the beginning of the command.)

>>> import sys, json, re, csv, urllib2

>>> import mechanize

then

>>> quit()

to exit python.

Installing modules can be done in a number of different ways, for example,

using apt-get or Synaptic in some versions of Linux. The use of the python

program easy_install is described briefly below. Once the program easy_install

is installed (see https://wiki.python.org/moin/EasyInstall, or in debian based

systems sudo apt-get install python-setuptools), the process for

installing python modules is similar on different operating systems.

The easy_install program also needs to be found on your path, so add its

location in the same way that you added python to your path above. (In Windows,

easy_install.exe might be installed in C:\Python27\Scripts, in which case that

should be on your path.)

Then (in non-Windows systems you may need to prefix this with sudo)

easy_install mechanize

=========== Other data sites =====================

With python and modules installed you should be able to access data from

Statistics Canada directly from you R session. The python code that makes this

work is distributed with the source TSjson package in the file

exec/cansimGet.py. That code can also be executed directly as a python program.

The main reason for using python rather than doing this directly in R is that

47

the initial query to the web site returns a link to a dynamically generated

web page, which must be accessed in a second step. The python module mechanize

provides a mechanism to do this, whereas there is currently no easy

mechanism in R.

Other sites will be added over time, and you can help by sending the package

maintainer the details of accesss to other sites that are of interest to you.

References

Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S.˜K., and Tiffin, N.
(2012). RPostgreSQL: R interface to the PostgreSQL database system. R
package version 0.3-2.

Couture-Beil, A. (2013). rjson: JSON for R. R package version 0.2.13.

James, D.˜A. (2011). RSQLite: SQLite interface for R. R package version
0.11.1.

James, D.˜A. and DebRoy, S. (2012). RMySQL: R interface to the MySQL
database. R package version 0.9-3.

Lang, D.˜T. (2012). RJSONIO: Serialize R objects to JSON, JavaScript Object
Notation. R package version 1.0-1.

R Core Team (2012). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0.

R Core Team (2013). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria.

R Special Interest Group on Databases (2009). DBI: R Database Interface. R
package version 0.2-5.

Ripley, B. and from 1999˜to Oct 2002 Michael˜Lapsley (2012). RODBC: ODBC
Database Access. R package version 1.3-6.

Ryan, J.˜A. (2011). quantmod: Quantitative Financial Modelling Framework.
R package version 0.3-17.

Ryan, J.˜A. and Ulrich, J.˜M. (2011). xts: eXtensible Time Series. R package
version 0.8-2.

Schwartz, M. (2012). WriteXLS: Cross-platform Perl based R function to create
Excel 2003 (XLS) files. R package version 2.1.1.

Trapletti, A. and Hornik, K. (2012). tseries: Time Series Analysis and Compu-
tational Finance. R package version 0.10-28.

Warnes, G.˜R., with contributions˜from Ben˜Bolker, Gorjanc, G.,
Grothendieck, G., Korosec, A., Lumley, T., MacQueen, D., Magnus-
son, A., Rogers, J., and others (2011). gdata: Various R programming tools
for data manipulation. R package version 2.8.2.

48

Zeileis, A. and Grothendieck, G. (2005). zoo: S3 infrastructure for regular and
irregular time series. Journal of Statistical Software, 14(6):1–27.

49

	Introduction
	Simple Examples of Time Series Data from the Internet
	TShistQuote and TSgetSymbol
	TSgetSymbol with FRED
	TSjson with Statistics Canada
	TSxls
	TSzip

	SQL Time Series Databases
	Writing to SQL Databases

	More Examples
	Examples Using SQL Databases

	Comparing Time Series Databases
	Vintages of Realtime Data
	Just Want Data in a xls or csv File
	Appendix A: Connection Specific Details
	TSMySQL Connection Details
	TSPostgreSQL Connection Details
	TSSQLite Connection Details
	TSodbc Connection Details
	Example ODBC configuration file

	TSOracle Connection Details
	TSjson Connection Details
	TSfame Connection Details

	Appendix B: Underlying SQL Database Structure and Loading Data
	Appendix C: Examples Using DBI and direct SQL Queries
	Appendix D: TSjson README regarding Python details

