
The TDMR Tutorial:

Examples for Tuned Data Mining in R

Wolfgang Konen, Patrick Koch,
Cologne University of Applied Sciences

Initial version: June, 2012
Last update: May, 2016

Contents

1 Overview 2

2 Installing TDMR 3

3 Lessons 3

3.0 Lesson 0: A simple TDMR program . 3

3.1 Lesson 1: DM on task SONAR . 8

3.2 Lesson 2: SPOT tuning on task SONAR . 12

3.3 Lesson 3:
”
The Big Loop“ on task SONAR . 15

3.3.1 Multiple .conf Files . 15

3.3.2 Single .conf File . 16

3.4 Lesson 4: Regression Big Loop . 17

3.5 Lesson 5: Interactive Visualization . 17

3.6 Lesson 6: Performance Measure Plots . 19

3.7 Lesson 7: Tuner CMA-ES (rCMA) . 22

3.7.1 Fixing problems with the rJava installation 22

3.8 Lesson 8: Parallel TDMR . 23

3.9 Lesson 9: Tuning with fewer data . 23

3.9.1 Tuning . 23

3.9.2 Retrain on bigger data set . 24

A Appendix A: Frequently Asked Questions (FAQ) 27

A.1 I have already obtained a best tuning solution for some data set. How can I
rerun and test it on the same / other data? . 27

1

http://cran.r-project.org/web/packages/rCMA/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 2

A.2 How can I make with a trained model new predictions? 27

A.3 Why do I get sometimes ”Warning in randomForest.default(x, y): The response
has five or fewer unique values. Are you sure you want to do regression?” . . . 28

A.4 Why are there two similar functions tdmTuneIt and tdmBigLoop? Which func-
tion should I use when? . 28

A.5 My .RData files for saving envT are pretty big. Is there a way to make them
smaller? . 28

A.6 How can I add a new tuning parameter to TDMR? 29

A.7 How can I add a new tuning algorithm to TDMR? 29

A.8 How can I add a new machine learning algorithm to TDMR? 29

A.9 How can it happen that some variables have an importance that is exactly zero? 29

B Appendix B: Overview TDMR Demos 30

1 Overview

The TDMR framework is written in R with the aim to facilitate the training, tuning and
evaluation of data mining (DM) models. It puts special emphasis on tuning these data mining
models as well as simultaneously tuning certain preprocessing options.

This document (TDMR-tutorial.pdf)

• describes the TDMR installation

• shows example usages: how to use TDMR on new data mining tasks

• provides a FAQ-section (frequently asked questions)

This document should be read in conjunction with the companion document TDMR-
docu.pdf [Konen and Koch, 2012a], which describes more details and software concepts of
TDMR.

Both documents are available online as CIOP Reports (PDF, Konen and Koch [2012a,b])
from http://www.gm.fh-koeln.de/ciopwebpub.1

Both documents concentrate more on the software usage aspects of the TDMR package.
For a more scientific discussion of the underlying ideas and the results obtained, the reader is
referred to Konen et al. [2010, 2011], Konen [2011], Koch et al. [2012], Koch and Konen [2012],
Stork et al. [2013], Koch and Konen [2013], Koch et al. [2014].

1The precise links are http://www.gm.fh-koeln.de/ciopwebpub/Kone12a.d/Kone12a.pdf and
http://www.gm.fh-koeln.de/ciopwebpub/Kone12b.d/Kone12b.pdf. The same files are available as well
via the index page of the TDMR package (User guides and package vignettes).

http://www.gm.fh-koeln.de/ciopwebpub
http://www.gm.fh-koeln.de/ciopwebpub/Kone12a.d/Kone12a.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone12b.d/Kone12b.pdf

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 3

2 Installing TDMR

Once you have R (http://www.r-project.org/), > 2.14, up and running, simply install TDMR
with

install.packages("TDMR");

Then, library TDMR is loaded with

library(TDMR);

Loading required package: SPOT

Warning: package ’SPOT’ was built under R version 3.2.5

Loading required package: twiddler

Loading required package: tcltk

3 Lessons

NOTE: Many, but not all TDMR demos and functions will run under RStudio. That some
demos are not running under RStudio is due to some incompatibilities in RStudio’s graphic
device(s). All demos and functions will however run under RGui.

To start a demo, e.g. demo/demo00-0classif.r, type

demo("demo00-0classif")

or

demo("demo00-0classif",ask=F)

3.0 Lesson 0: A simple TDMR program

demo/demo00-0classif.r

demo/demo00-1regress.r

This demo shows the most simple TDMR program. It does not need any external files.

#*# --------- demo/demo00-0classif.r ---------

set all defaults for data mining process:

opts=tdmOptsDefaultsSet()

opts$TST.SEED=5 # reproducible results

gdObj <- tdmGraAndLogInitialize(opts); # init graphics and log file

http://www.r-project.org/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 4

data(iris)

response.vars="Species" # names, not data (!)

input.vars=setdiff(names(iris),"Species")

result = tdmClassifyLoop(iris,response.vars,input.vars,opts)

print(result$Err)

Here, tdmOptsDefaultsSet will construct a default list opts with all relevant settings. See
TDMR-docu.pdf Konen and Koch [2012a], Appendix B, for a complete list of all elements and
all defaults for list opts. After initializing graphics and log file, the dataset iris is loaded
and the target (Species) as well as the input variables (all other column names from iris)
are defined.

Now the classification DM task is started with tdmClassifyLoop.

Inside tdmClassifyLoop the following things happen:

Data partitioning: The dataset will be divided by random sampling in a training set (90%)
and validation set (10%), based on opts$TST.kind="rand", opts$TST.valiFrac=0.1.

Variable selection: Since you do not specify anything from the opts$SRF-block (sorted
random forest importance), you use the default SRF variable ranking (opts$SRF.kind ="xperc",
opts$SRF.Xperc=0.95). This means that the most important columns (containing in sum at
least 95% of the overall importance) will be selected.

Modeling and evaluation: Since you do not specify anything else, function tdmClassifyLoop

builds an RF (randomForest) model (opts$MOD.method="RF") using the training data and
evaluates it on training and validation data. It returns an object result. The object result
of class TDMclassifier is explained in more detail in Table 3 of TDMR-docu.pdf Konen and
Koch [2012a].

Repeated runs: Since the default setting opts$NRUN=2 is used, the whole procedure (ran-
dom partitioning into training and validation set, RF-based selection of the most important
variables, model building, and model evaluation) is repeated 2 times in 2 runs with different
random seeds (yielding different data partitions & different split decisions in RF). The different
runs are aggregated (usually by averaging).

We now take a look at the output generated by tdmClassifyLoop. Since we do not change
the default opts$VERBOSE=2, TDMR will print a lot of diagnostic output:

default.txt : Stratified random training-validation-index with opts$TST.valiFrac = 10 %

##

default.txt : Importance check ...

Clipping sampsize to 135

default.txt : Train RF (importance, sampsize= 135) ...

default.txt : Saving SRF (sorted RF) importance info on opts ...

Variables sorted by importance (4):

[1] "Petal.Width" "Petal.Length" "Sepal.Length" "Sepal.Width"

Dropped columns (0 [= 0.0% of total importance]):

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 5

Proc time: 0.02

Run 1 / 2 :

default.txt : Train RF with sampsize = 135 ...

Proc time: 0.07

default.txt : Apply RF ...

Proc time: 0.02

default.txt : Calc confusion matrix + gain ...

##

Training cases (135):

predicted

actual setosa versicolor virginica

setosa 45 0 0

versicolor 0 42 3

virginica 0 3 42

total gain: 129.0 (is 95.556% of max. gain = 135.0)

##

Validation cases (15):

predicted

actual setosa versicolor virginica

setosa 5 0 0

versicolor 0 5 0

virginica 0 1 4

setosa versicolor virginica Total

gain.vector 5 5 4 14

total gain : 14.0 (is 93.333% of max. gain = 15.0)

##

Relative gain on training set 95.55556 %

Relative gain on validation set 93.33333 %

##

default.txt : Stratified random training-validation-index with opts$TST.valiFrac = 10 %

##

default.txt : Importance check ...

Clipping sampsize to 135

default.txt : Train RF (importance, sampsize= 135) ...

default.txt : Saving SRF (sorted RF) importance info on opts ...

Variables sorted by importance (4):

[1] "Petal.Length" "Petal.Width" "Sepal.Length" "Sepal.Width"

Dropped columns (1 [= 0.5% of total importance]):

[1] "Sepal.Width"

Proc time: 0.02

Run 2 / 2 :

default.txt : Train RF with sampsize = 135 ...

Proc time: 0.06

default.txt : Apply RF ...

Proc time: 0.02

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 6

default.txt : Calc confusion matrix + gain ...

##

Training cases (135):

predicted

actual setosa versicolor virginica

setosa 45 0 0

versicolor 0 42 3

virginica 0 3 42

total gain: 129.0 (is 95.556% of max. gain = 135.0)

##

Validation cases (15):

predicted

actual setosa versicolor virginica

setosa 5 0 0

versicolor 0 5 0

virginica 0 0 5

setosa versicolor virginica Total

gain.vector 5 5 5 15

total gain : 15.0 (is 100.000% of max. gain = 15.0)

##

Relative gain on training set 95.55556 %

Relative gain on validation set 100 %

##

##

Average over all 2 runs:

cerr$train: (4.44444 +- 0.00000)%

cerr$vali: (3.33333 +- 4.71405)%

gain$train: (129.00 +- 0.00)

gain$vali: (14.50 +- 0.71)

rgain.train: 95.556%

rgain.vali: 96.667%

cerr.trn gain.trn rgain.trn ntrn cerr.tst gain.tst rgain.tst

[1,] 0.04444444 129 95.55556 135 0.06666667 14 93.33333

[2,] 0.04444444 129 95.55556 135 0.00000000 15 100.00000

cerr.tst2 gain.tst2 rgain.tst2 ntst

[1,] 0.06666667 14 6.222222 15

[2,] 0.00000000 15 6.666667 15

The first line tells us that TDMR has set aside 10% of the data (15 records in the case of
iris with 150 records) for validation, the remaining 135 are for training. A random forest is
trained to assess the importance of the input variables. We get with

[1] "Petal.Width" "Petal.Length" "Sepal.Length" "Sepal.Width"

the variables sorted by decreasing importance. It depends on the importance of the least
important variable (here: Sepal.Width) whether it will be dropped or not. In the first run it

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 7

is not dropped, because its importance is above the threshold 1−0.95 = 5%. In the second run
it is dropped, because due to statistical fluctuations now its importance is with 0.5% below
the threshold of 5%.

In the next step the DM model (here: RF) is trained with the selected variables and then
the trained model is applied to the training data and to the validation data. In each case the
confusion matrix (actual vs. predicted) is shown. The confusion matrices are below the lines
Training cases (135) and Validation cases (15), resp. In the case of RF, the prediction
on the training data is the OOB prediction.

Next, the total gain is reported as the sum of the element-wise product
”
gain matrix ×

confusion matrix“ where the gain matrix denotes for every classification outcome
”
actual vs.

predicted“ the associated gain.2 If nothing else is said, the gain matrix is the identity matrix.
In this case, relative gain is equivalent to the classification accuracy (percent of correctly
classified records). The relative gain is defined as

rgain =

∑
ij GijCij∑

ij GijC
(ideal)
ij

with G = gain matrix, C = confusion matrix and where C(ideal) is the perfect confusion matrix
(all records appear on the main diagonal).

As the final output from tdmClassifyLoop, below the line Average over all 2 runs, all
runs (2 in this example) are averaged and the average classification error cerr, the average
gain, and the average relative gain rgain are reported for training and validation set.

A similar information, but now for each run separately, is provided with the last statement
in the demo program

print(result$Err)

which gives for each run separately classification error (cerr), gain (gain), and relative gain
(rgain) on the training set (.trn) with ntrn=135 training records and on the test set (.tst)
with nst=15 records.3

cerr.trn gain.trn rgain.trn ntrn cerr.tst gain.tst rgain.tst

[1,] 0.04444444 129 95.55556 135 0.06666667 14 93.33333

[2,] 0.04444444 129 95.55556 135 0.00000000 15 100.00000

cerr.tst2 gain.tst2 rgain.tst2 ntst

[1,] 0.06666667 14 6.222222 15

[2,] 0.00000000 15 6.666667 15

If you add the line

2In this toy problem, the gain on the validation set is statistically not very meaningful since the validation
set has only 15 records.

3 The columns with .tst2 refer to a test set with special postprocessing, see TDMR-docu.pdf and the
TDMR manual pages for details.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 8

opts$VERBOSE <- opts$SRF.verbose <- 0

before calling tdmClassifyLoop, then tdmClassifyLoop is completely silent. The only output
you get is the printout of result$Err.

A similar demo program for regression is found in demo/demo00-1regress.r.

3.1 Lesson 1: DM on task SONAR

demo/demo01-1sonar.r

demo/demo01-2cpu.r

Now we want to conduct a data mining process with a pre-defined parameter set different
from the defaults (sonar_00.apd).

This lesson demonstrates the usage of TDMR for a somewhat bigger DM task: data are
read from file and the information for controlling TDMR is distributed over several files. This
may look complicated at first sight, but it is useful for two reasons:

Separate function file: As a preparation for the tuning process in subsequent lessons: It is
very useful if we can package the whole data mining process (from training-validation-
data generation over model building up to model evaluation) into one function or file. It
will be easily callable by the tuner.

Separate parameter file: For conducting slightly different variants, runs or experiments, it
is useful to package the parameter setting part in one (or several) files as well.

In this lesson we will look at four relevant files:

1. sonar_00.apd (the parameter settings)

2. main_sonar.r (the DM function main_sonar)

3. start_sonar.r (starter file)

4. demo01-1sonar.r (demo starter - only needed for TDMR-package demo)

Suppose that you have a dataset and want to build a DM model for it. To be concrete,
we consider the classification dataset SONAR4. The data file sonar.txt should be in the
subdirectory myDir/data relative to the other files.

If you want to build a DM classification model with TDMR, you need to provide two files,
sonar_00.apd and main_sonar.r.5 The first file, sonar_00.apd (.apd = algorithmic problem
design), is already in preparation for later tuning (see Lesson02 and Lesson03), it defines in list
opts all relevant settings for the DM model building process. The second file, main_sonar.r,
contains this DM model building process. It gets with list opts the settings and returns in

4see UCI repository or package mlbench for further info on SONAR)
5Templates for sonar 00.apd and main sonar.r are available from <inst>/demo02sonar where <inst> refers

to the installation directory of package TDMR as returned by find.package("TDMR").

http://archive.ics.uci.edu/ml/datasets
http://cran.r-project.org/web/packages/mlbench/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 9

list result the evaluation of the DM model. The list result is either inspected by the user
or by the tuning process.

sonar_00.apd

##

set the basic elements of list opts for task sonar. See ?tdmOptsDefaultsSet

for a complete list of all default settings and many explanatory comments

opts = tdmOptsDefaultsSet();

opts$dir.data <- "data/";

opts$filename <- "sonar.txt"

opts$READ.TrnFn <- readTrnSonar

opts$NRUN <- 1

opts$data.title <- "Sonar Data"

Here, tdmOptsDefaultsSet() will construct a default list opts with all relevant settings.
See TDMR-docu.pdf Konen and Koch [2012a], Appendix B, for a complete list of all ele-
ments and all defaults for list opts. You need to specify only those things which differ from
tdmOptsDefaultsSet(): in this case most importantly the filename and directory of the
SONAR dataset and a function opts$READ.TrnFn containing the data-reading command.

The file main_sonar.r contains two functions main_sonar and readTrnSonar:

main_sonar <- function(opts=NULL, dset=NULL, tset=NULL) {
if (is.null(opts)) source("sonar_00.apd", local=TRUE);

opts <- tdmOptsDefaultsSet(opts); # fill in all opts params not yet set

gdObj<-tdmGraAndLogInitialize(opts); # init graphics and log file

######## PART 1: READ DATA ##########################

if (is.null(dset)) {
cat1(opts,opts$filename,": Read data ...\n")
dset <- tdmReadData2(opts);

}
names(dset)[61] <- "Class" # 60 columns V1,...,V60 with input data, one

response column "Class" with levels ["M"|"R"]

response.vars <- "Class" # which variable(s) are target

which variables are input variables (in this case all others):

input.vars <- setdiff(names(dset), c(response.variable))

######## PART 2: Model building and evaluation #########

result <- tdmClassifyLoop(dset,response.vars,input.vars,opts,tset);

print summary output and attach certain columns

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 10

(here: y, sd.y, dset) to list result:

result <- tdmClassifySummary(result,opts,dset);

tdmGraAndLogFinalize(opts,gdObj); # close graphics and log file

result;

}

readTrnSonar <- function(opts) {
read.csv2(file=paste(opts$dir.data, opts$filename, sep=""),

dec=".", sep=",", nrow=opts$READ.NROW,header=FALSE);

}

To start the whole procedure, there is a small starter file start_sonar.r:

source("main_sonar.r");

result <- main_sonar(opts);

This file is invoked by demo01-1sonar.r:

--------- demo/demo01-1sonar.r ---------

path <- paste(find.package("TDMR"), "demo02sonar",sep="/");

source(paste(path,"main_sonar.r",sep="/")); # needed to define readTrnSonar

source(paste(path,"sonar_00.apd",sep="/"),local=TRUE); # set opts, needs readTrnSonar

source(paste(path,"start_sonar.r",sep="/"),chdir=TRUE,print.eval=TRUE);

The reason why we have the file chain

demo01-1sonar.r
source−−−−→ start sonar.r

call−−−−→ main sonar.r

is that main_sonar needs to perform certain file I/O in the directory path. Sourcing start_sonar.r
with source(...,chdir=TRUE) tells R that it changes to the directory path prior to sourcing
(and automatically returns to the actual working directory at the end of sourcing6).

The distinction between start_sonar.r and demo01-1sonar.r is only needed for the
TDMR-package demo. If you write your own application, you can have main_sonar.r together
with the .apd file in the same directory myDir. Then you only need one starter script in myDir

which simply reads like this:

source("main_sonar.r");

source("sonar_00.apd");

result <- main_sonar(opts);

6Even in the case of an error inside start sonar.r R will correctly return to the actual working directory.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 11

V39V45V29V60V13V9V2V43V16V54V20V24V41V27V4V56V25V40V34V47V26V50V52V49V35V1V17V21V18V19V14V32V28V37V15V36V48V10V12V11

1.0 1.5 2.0 2.5 3.0 3.5 4.0
MeanDecreaseAccuracy

V6V39V17V15V43V51V4V1V52V14V41V23V27V7V20V53V54V19V5V13V55V9V28V16V18V2V45V35V49V21V46V44V26V47V48V36V37V12V10V11

0 2 4 6 8
MeanDecreaseGini

res.SRF

Figure 1: Some plots from demo01-1sonar.r

V11

0.0 0.2 0.4 0.6 0.00 0.10 0.20 0.30

0.
1

0.
5

0.
0

0.
4 V12

V10

0.
0

0.
4

0.
00

0.
25

V48

0.1 0.3 0.5 0.7 0.0 0.2 0.4 0.6 0.0 0.4 0.8

0.
0

0.
6

V36

Sonar Data: The five most important inputs

Figure 2: Some plots from demo01-1sonar.r

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 12

M R

true
false

True/false classification on Validation set

0
2

4
6

8
10

Figure 3: Some plots from demo01-1sonar.r

3.2 Lesson 2: SPOT tuning on task SONAR

demo/demo02sonar.r

In this lesson we not only want to run the data mining process for a fixed parameter set
as in Lesson 01 (Sec. 3.1), but we want to tune the parameters, i. e. to find good or optimal
parameters within a certain range, the region of interest (.roi-file).

If you want to do a SPOT tuning [Bartz-Beielstein, 2010] on task SONAR, you should
follow the steps described in TDMR-docu.pdf (see Konen and Koch [2012a], Sec. 2.2 TDMR
Workflow, Level 2) and create in addition to main_sonar.r from Lesson 01 the three small
files sonar_01.conf, sonar_01.apd and sonar_01.roi. The content of these files may look
for example like this:

sonar 01.conf

alg.func = "tdmStartSpot"

alg.resultColumn = "Y"

alg.seed = 1235

io.apdFileName = "sonar_01.apd"

io.roiFileName = "sonar_01.roi"

spot.seed = 120 # 125

io.verbosity = 3;

auto.loop.steps = 50; # number of spot metamodels to be generated

http://cran.r-project.org/web/packages/SPOT/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 13

auto.loop.nevals = 50; # concurrently, max number of algo evaluations

init.design.func = "spotCreateDesignLhd";

init.design.size = 10; # number of initial design points

init.design.repeats = 1; # number of initial repeats

seq.merge.func <- mean;

seq.design.size = 100;

seq.design.retries = 15;

seq.design.maxRepeats = 2;

seq.design.oldBest.size <- 1;

seq.design.new.size <- 3;

seq.predictionModel.func = "spotPredictRandomForest";

report.func = "spotReportSens"

sonar 01.apd

opts = tdmOptsDefaultsSet();

opts$dir.data <- "data/";

opts$filename = "sonar.txt"

opts$READ.TrnFn <- readTrnSonar # defined in main_sonar.r

opts$data.title <- "Sonar Data"

opts$RF.mtry = 4

opts$NRUN = 1 # how many runs with different train & vali samples

- or - how many CV-runs, if TST.kind="cv"

opts$GD.DEVICE="non" # e.g. ["pdf"|"win"|"non"]

opts$GD.RESTART=F;

opts$VERBOSE = opts$SRF.verbose = 0;

opts$logFile=FALSE # no logfile (needed for Sweave/.Rnw only)

sonar 01.roi

name low high type

CUTOFF1 0.1 0.80 FLOAT

CLASSWT2 5 15 FLOAT

XPERC 0.90 1.00 FLOAT

%@

The three parameters CUTOFF1, CLASSWT2 and XPERC are tuned within the borders specified
by sonar_01.roi. Usually you should set opts$GRAPHDEV="non" and opts$GD.RESTART=F to
avoid any graphic output and any graphics device closing from main_sonar.r, so that you get
only the graphics made by SPOT.

To start the whole procedure, there is a small starter file start_bigLoop.r:

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 14

#*# --------- start_bigLoop.r ---------

envT <- tdmEnvTMakeNew(tdm);

opts <- tdmEnvTGetOpts(envT,1);

dataObj <- tdmSplitTestData(opts,tdm);

envT <- tdmBigLoop(envT,spotStep,dataObj);

This file is invoked by demo02sonar.r:

#*# --------- demo/demo02sonar.r ---------

path <- paste(find.package("TDMR"), "demo02sonar",sep="/");

tdm=list(mainFile="main_sonar.r",runList="sonar_01.conf");

spotStep = "auto";

source(paste(path,tdm$mainFile,sep="/"));

source(paste(path,"start_bigLoop.r",sep="/"),chdir=TRUE);

The reason why we have the file chain

demo02sonar.r
source−−−−→ start bigLoop.r

call−−−−→ tdmEnvTMakeNew

is the same as in Lesson 1: tdmEnvTMakeNew may need to perform certain file I/O in the
directory path. Sourcing start_bigLoop.r with source(...,chdir=TRUE) tells R that it
changes to the directory path prior to sourcing (and automatically returns to the actual
working directory at the end of sourcing7).

Again, as in Lesson 1, the distinction between start_bigLoop.r and demo02sonar.r is
only needed for the TDMR-package demo. If you write your own application, you can have
main_sonar.r together with the .apd, .roi and .conf files in the same directory myDir.
The data file sonar.txt should be in the subdirectory myDir/data. Then you only need one
starter script in myDir which simply reads like this:

tdm=list(mainFile="main_sonar.r",runList="sonar_01.conf");

source(paste(path,tdm$mainFile,sep="/"));

envT <- tdmEnvTMakeNew(tdm);

opts <- tdmEnvTGetOpts(envT,1);

dataObj <- tdmSplitTestData(opts,tdm);

envT <- tdmBigLoop(envT,"auto",dataObj);

In any case, what happens in this demo is the following:

• The first command sets the minimal tdm.

• The second command sources the main file.

• With the command tdmEnvTMakeNew(tdm) we construct an environment with all neces-
sary TDMR data and functions for this lesson. Inside tdmEnvTMakeNew the minimal tdm
is filled with all defaults (see tdmDefaultsFill).

7Even in the case of an error inside start bigLoop.r R will correctly return to the actual working directory.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 15

• The command tdmBigLoop is the main workhorse. It reads in the DM data, splits them
in a train/vali and a test part. Then it calls the desired tuner(s) (in this case only
SPOT, since the default for tdm$tuneMethod is "spot", but tdm$tuneMethod could be
a vector of tuners as well). Each tuner performs multiple DM runs in order to find the
best values for the tunable parameters defined in the .roi file. The results of the whole
tuning process are returned in envT, more details on envT are in the manual / help
section for tdmBigLoop.

3.3 Lesson 3:
”
The Big Loop“ on task SONAR

demo/demo03sonar.r

demo/demo03sonar_B.r

demo/demo03newdata.r

3.3.1 Multiple .conf Files

To start
”
The Big Loop“, you configure a file similar to demo/demo03sonar.r:

#*# --------- demo/demo03sonar.r ---------

path <- paste(find.package("TDMR"), "demo02sonar",sep="/");

tdm <- list(mainFile="main_sonar.r"

, runList = c("sonar_04.conf","sonar_06.conf")

, umode="CV" # { "CV" | "RSUB" | "TST" | "SP_T" }
, tuneMethod = c("lhd")

, filenameEnvT="demo03.RData" # file to save envT (in dir "path")

, nrun=3, nfold=2 # repeats and CV-folds for the unbiased runs

, nExperim=1

, parallelCPUs=1

, parallelFuncs=c("readTrnSonar")

, optsVerbosity = 3 # the verbosity for the unbiased runs

);

spotStep = "auto";

source(paste(path,tdm$mainFile,sep="/"));

source(paste(path,"start_bigLoop.r",sep="/"),chdir=TRUE,local=TRUE);

change dir to "path" while sourcing

This is very much the same as in Lesson 2, we reuse the small starter file start_bigLoop.r
from there. The only difference is that now multiple tuning runs can be performed with
respect to the following three dimensions:

• configuration files (elements of tdm$runList)

• tuners (elements of tdm$tuneMethod)

• repeated experiments with different random seeds (number tdm$nExperim).

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 16

The function tdmBigLoop realizes a triple for-loop over these dimensions. With
k =length(runList), m =length(tuneMethod), and n =nExperim we have in total kmn
tuning runs.

Here, the script demo03sonar.r will trigger the following sequence of experiments:

• sonar_04.conf is started with tuner lhd

• sonar_06.conf is started with tuner lhd.

This sequence of 2 tuning experiments is repeated nExperim=1 time. The corresponding 2
result lines are written to data frame envT$theFinals:

print(envT$theFinals);

CONF TUNER NEXP CUTOFF1 CLASSWT2 XPERC NEVAL RGain.bst

1 sonar_04 lhd 1 0.06907716 13.637625 0.8581948 10 91.66667

2 sonar_06 lhd 1 0.45476980 5.536813 0.6545237 10 97.22222

RGain.avg Time.TRN NRUN RGain.TRN sdR.TRN RGain.CV sdR.CV Time.TST

1 77.66667 0.96 3 82.47619 5.1428706 82.66667 1.5275252 0.35

2 88.55556 0.99 3 98.66667 0.5773503 96.66667 0.5773503 0.36

Here CUTOFF1, CLASSWT2, and XPERC are the tuning parameters, the other columns of the
data frame are defined in Table 2 of TDMR-docu.pdf Konen and Koch [2012a]. In the case of
the example above, the tuning process had a budget of NEVAL=10 model trainings, resulting
in a best solution with class accuracy RGain.bst (in %). The average class accuracy (mean
w.r.t. all design points) during tuning is RGain.avg. When the tuning is finished, the best
solution is taken and NRUN=3 unbiased evaluation runs are done with the parameters of the best
solution. The mean classification accuracy RGain.TRN from the 3 training runs is returned.8

Additionally, NRUN=3 trainings are done with cross validation (CV) with new randomly created
folds in each run, resulting in an average class accuracy RGain.CV. For each measure RGain.*

there is also an accompanying column sdr.* giving the standard deviation with respect to the
NRUN runs.

Tuning runs are rather short, to make this example run quickly. Do not expect good
numeric results. See demo/demo03sonar_B.r for a somewhat longer tuning run, with two
tuners SPOT and LHD.

3.3.2 Single .conf File

If you have only a single CONF file it is recommended that you use tdmTuneIt instead of
tdmBigLoop. tdmTuneIt has dataObj as a mandatory calling parameter. This makes it easier
to build up your task since it has a clearer data flow concept behind.

See Lesson 3.9 (Tuning with fewer data) for a fully worked-out example with tdmTuneIt.

Alternatively you may look at the demo demo03newdata for another example:

8Since the classification model in this example is RF (Random Forest), RGain.TRN refers to the OOB-error.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 17

#*# --------- demo/demo03newdata.r ---------

path <- paste(find.package("TDMR"), "demo02sonar",sep="/");

#path <- paste("../inst", "demo02sonar",sep="/");

oldwd <- getwd(); setwd(path);

envT <- tdmEnvTLoad("demo03.RData");

source(envTtdmmainFile);

source("sonar_06.apd") # opts

opts$READ.NROW=-1;

dataObj <- tdmSplitTestData(opts,envT$tdm);

envT <- tdmBigLoop(envT,"rep",dataObj);

setwd(oldwd);

Here we use tdmBigLoop (and not tdmTuneIt), since we have two CONF files in envT of
demo03.RData. tdmBigLoop will retrieve the best tuning parameters from each tuning run
and perform with it a re-training and re-evaluation on the new data.9

The results of the new unbiased evaluation runs are recorded in envT$theFinals:

print(envT$theFinals);

CONF TUNER NEXP CUTOFF1 CLASSWT2 XPERC NEVAL RGain.bst

1 sonar_04 lhd 1 0.06907716 13.637625 0.8581948 10 91.66667

2 sonar_06 lhd 1 0.45476980 5.536813 0.6545237 10 97.22222

RGain.avg Time.TRN NRUN RGain.TRN sdR.TRN RGain.CV sdR.CV Time.TST

1 77.66667 0.02 3 57.53205 1.468774 57.05128 0.2775722 1.14

2 88.55556 0.01 3 80.12821 2.001602 76.12179 4.8634586 0.99

3.4 Lesson 4: Regression Big Loop

demo/demo04cpu.r

The same as Lesson 3, but applied to a regression task (dataset CPU).

3.5 Lesson 5: Interactive Visualization

demo/demo05visMeta.r

Once a Lesson-3 experiment is completed, the return value envT from tdmBigLoop() contains
the result of such an experiment and may be visually inspected. Alternatively, envT may be
loaded from an appropriate .RData file. The call

9 Note that the dataset dataObj, when specified in tdmBigLoop, is used for every run (every CONF file) in
the big loop. If dataObj were not specified in the call to tdmBigLoop, each CONF file would construct its own
dataObj inside tdmBigLoop.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 18

Figure 4: The user interface in tdmPlotResMeta. The user may select the tuner,
the design variables to show on x- and y-axis, the display function (spotReport3d or
spotReportContour) and the metamodel function (modelFit). Two optional sliders are
nExper and nSkip (see text).

tdmPlotResMeta(envT);

allows to visually inspect all RES data frames contained in envT.

The user interface is shown and explained in Fig. 4. An additional combo box confFile

appears only, if envT$runList has more than one element. An additional slider nExper appears
only, if envTtdmnExperim>1.

The user selects with tuner, confFile and nExper a certain RES data frame from envT.
This data frame contains a collection of function evaluations for certain design points selected
by the tuner. With one of the metamodel construction functions (see package SPOT for further
details)

• spotPredictGausspr

• spotPredictRandomForest

• spotPredictMlegp

a metamodel is fitted to the RES data frame and the result is shown as shaded surface in the
plot. The RES data points are shown as black points in Fig. 5. Since certain ”bad” RES point
may dominate the plot as outliers and hinder the user to inspect the region near the optimum,
there are two options to suppress ”bad” points:

1. If the slider nSkip has a value > 0, then the nSkip RES data points with the worst
y-value are discarded.

2. If the checkbox ”Skip incomplete CONFIGs” is activated, then design points belonging

http://cran.r-project.org/web/packages/SPOT/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 19

Figure 5: Two example outputs from tdmPlotResMeta with reportFunc=spotReport3d. Left:
modelFit = spotPredictGausspr, right: = spotPredictRandomForest.

to a configuration which was not evaluated maxRepeats times are discarded (relevant for
SPOT only).

Note that both options will reduce the number of RES data points. This will also affect
the metamodel fit, so use both options with care, if the number of RES data points is small.

The plots created with spotReport3d make use of the rgl-package. They can be inter-
actively manipulated with the mouse. They can be selected and saved as PNG images with
commands like

rgl.set(7);

rgl.snapshot("myFile.png");

A complete demo example is invoked with:

demo(demo05visMeta);

3.6 Lesson 6: Performance Measure Plots

demo/demo06ROCR.r

With the help of package ROCR Sing et al. [2005], several area performance measures can be
used for binary classification. The file demo/demo06ROCR.r shows an example:

http://cran.r-project.org/web/packages/rgl/
http://cran.r-project.org/web/packages/ROCR/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 20

path <- paste(find.package("TDMR"), "demo02sonar",sep="/");

source(paste(path,"main_sonar.r",sep="/"),chdir=TRUE);

opts = tdmOptsDefaultsSet();

opts$filename = "sonar.txt"

opts$READ.TrnFn = readTrnSonar # defined in main_sonar.r

opts$data.title <- "Sonar Data";

opts$rgain.type <- "arROC";

source(paste(path,"start_sonar.r",sep="/"),chdir=TRUE);

ROC on validation set

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.4 0.8

0.
0

0.
6

0.
07

0.
61

(a) ROC curve

Lift on training set

Rate of positive predictions

Li
ft

va
lu

e

0.0 0.4 0.8

1.
0

1.
6

0.
02

0.
72

(b) Lift chart

Figure 6: (a) ROC curve on validation set with tdmROCRbase(result); (b) Lift chart on
training set with tdmROCRbase(...,typ="lift"). The bar on the right side shows a color
coding of the cutoff parameter.

As explained in Lesson 1 in more detail, the file start_sonar.r contains the line

result <- main_sonar(opts);

Once the variable result contains an object of class TDMclassifier, we can infer from it
with tdmROCRbase the area under the ROC curve and – as a side effect – plot the ROC curve
(Fig. 6(a)). The ROC curve is a plot ’false positive rate’ vs. ’true positive rate’, which is
obtained by varying the cutoff. Each record is rated by the model and if the model output is
above cutoff, then this record is marked ’positive’. The bigger the area between ROC curve
and main diagonal, the better the model.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 21

cat("Area under ROC-curve for validation data set: ",

tdmROCRbase(result),"\n"); # side effect: plot ROC-curve

Area under ROC-curve for validation data set: 0.92

Equally well we can infer with typ="lift" the area under the lift curve and plot a lift chart
(Fig. 6(b)). A lift chart is constructed in the following way: The records are sorted according
to model output. If a high cutoff is choosen only a small portion of the data is marked ’positive’
(we have a low rate of positive predictions), but within this portion the rate of true positives is
much higher than the overall ’true’ rate. The ratio ’true rate in portion’/’overall true rate’ is
the lift. If we move to lower cutoff values, the ’positive’ portion becomes bigger, it is eventually
the whole dataset, but at the same time the lift reduces to 1.0. The bigger the area between
the lift curve and the horizontal line at 1.0, the better the model.

cat("Area under lift curve for training data set: ",

side effect: plot lift chart:

tdmROCRbase(result,dataset="training",typ="lift"),"\n");

Area under lift curve for training data set: 0.5552925

The curves in Fig. 6(a) and 6(b) are colorized according to the cutoff, whose range is shown
in the colorbar to the right. That is, if the color is blue, the cutoff is 0.1 in the left plot. This
is a very low value, leading to the acceptance of every record. The true positive rate will be
1.0, but of course the false positive rate will be 1.0 as well.

Once the variable result contains an object of class TDMclassifier, it is also possible to
inspect such an object interactively with the following command:

tdmROCR(result);

A twiddler interface for object result shows up (Fig. 7) and allows to select between

• different performance measure plots (ROC-, lift- or precision-recall-chart)

• different data sets (training set or validation set)

• different runs stored in object result.

NOTE: The twiddler interface of tdmROCR(result) does sometimes not launch successfully
when issued from RStudio. If started a second or third time, it will normally launch, but even
then the interaction between RStudio’s graphics device and twiddler may have the problem,
that the next lift chart only shows after a second hit on the Eval button. If you observe such
problems, then start tdmROCR(result) from the normal R console (RGui under Windows),
this works always correctly.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 22

Figure 7: Twiddler interface for tdmROCR(result). The user may select the dataset (training
or validation), the type of plot (ROC, lift, or precision-recall) and the number of the run
(only if Opts(result)$NRUN>1).

3.7 Lesson 7: Tuner CMA-ES (rCMA)

demo/demo07cma_j.r

demo02sonar/sonar_03.conf

This demo conducts for tuner cma_j (Java version of CMA-ES Hansen [2006] interfaced to
R via package rCMA) a complete tuned data mining process (TDMR, level 3). Other settings
are the same as in demo03sonar.r, except that we use sonar_03.conf as configuration file.
rCMA uses rJava for the R-to-Java-interface.

3.7.1 Fixing problems with the rJava installation

On some operating systems, especially Windows 7, it may happen that the command require(rJava)

in demo07cma_j.r issues an error of the form

Error : .onLoad failed in loadNamespace() for rJava, details: ...

This means that rJava was not installed properly on your computer. Try then the following:

1. Define the environment variable JAVA_HOME: Explorer - RightMouse on ”Computer” -
Properties - Environment Variables, and add there

JAVA_HOME = C:\Program Files\Java\jdk1.7.0_11\jre7

and restart R. (The path is the correct one on my computer, on others it might be
slightly different.)

2. Package rJava needs to find the Java DLL jvm.dll. To enable this, expand the environ-
ment variable Path: Explorer - RightMouse on ”Computer” - Properties - Environment
Variables - Path - Edit, and add at the end of the Path string

http://cran.r-project.org/web/packages/rCMA/
http://cran.r-project.org/web/packages/rCMA/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 23

C:\Program Files\Java\jdk1.7.0_11\jre\bin\server

and restart R. (The path is the correct one on my computer, on others it might be
slightly different. It must be the directory of the current Java installation containing
jvm.dll.)

Note that the above remarks are for 64-bit-Java and 64-bit-R. If you use 32-bit-Java, the
locations might be slightly different as well.

On some Linux/UNIX systems there might be also problems with the installation of rJava
because R cannot locate the Java installation. In that case, fix it permanently by issuing the
command

sudo R CMD javareconf -e

at the UNIX prompt (needs admin rights). If you do not have admin rights, you may invoke

R CMD javareconf -e

in each session where you need rJava.

3.8 Lesson 8: Parallel TDMR

demo/demo08parallel.r

demo02sonar/sonar_04.conf

This demo does the same as demo03sonar.r, but it runs 4 experiments on 4 parallel cores
(if your environment supports parallel clusters with the R core-package parallel).

3.9 Lesson 9: Tuning with fewer data

examples/ex-winequality/start-wine.r

examples/ex-winequality/final-wine.r

3.9.1 Tuning

We add an extra feature to this demo lesson: Suppose you have a large dataset and you want to
do quick tuning runs. To reduce the tuning time (of course at the price of a somewhat reduced
tuning quality) you may specify the parameter opts$READ.NROW to a value smaller than the
size of the dataset.10 Then only this number of records is read and used for training and
validation during tuning. After tuning has finished, you may want to use the best parameters
found by tuning and to perform a high-quality training and evaluation on the full dataset to
assess the real strength of the tuning result.

Tuning is started with the function tdmTuneIt:

10Alternatively, you may reduce opts$RF.samp, the sampsize parameter in case of Random Forest, to a small
value. These settings are all done in the APD-file wine 01.apd, as specified in wine 01.conf.

http://cran.r-project.org/web/views/HighPerformanceComputing.html

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 24

#*# ---------ex-winequality/start_wine.r ---------

path <- paste(find.package("TDMR"), "examples/ex-winequality",sep="/");

oldwd=getwd(); setwd(path);

tdm=list(mainFile="main_wine.r"

,runList="wine_01.conf" # in "wine_01.apd": opts£READ.NROW=600

,umode="SP_T"

,U.saveModel=F

,optsVerbosity=1

,nrun=2

);

source(tdm$mainFile);

#

perform a complete tuning, but only with the first 600 records

#

envT <- tdmEnvTMakeNew(tdm); # construct envT from the TDMR settings in tdm

opts <- tdmEnvTGetOpts(envT,1);

dataObj <- tdmSplitTestData(opts,tdm);

envT <- tdmTuneIt(envT,"auto",dataObj); # start the tuning loop

Warning in randomForest.default(x, y): The response has five or fewer unique

values. Are you sure you want to do regression?

setwd(oldwd);

As usual, the file main_wine.r containts the function main_wine with the template for the data mining process and function \verbreadTrnFn+
to read the data. This tuning experiment is repeated nExperim=1 time. The corresponding 1
result line is written to data frame envT$theFinals:

print(envT$theFinals);

CONF TUNER NEXP XPERC NEVAL RGain.bst RGain.avg Time.TRN NRUN

1 wine_01 spot 1 0.9330384 11 65.0463 64.26768 5.74 2

RGain.TRN sdR.TRN RGain.SP_T sdR.SP_T Time.TST

1 63.88889 1.964186 57.91667 0.5892557 1.01

Tuning runs are rather short, to make this example run quickly. Do not expect good
numeric results.

3.9.2 Retrain on bigger data set

The tuning results are saved in wine_01.RData. The following code from final_wine.r shows
how to retrain with these tuning results.

We load this file, then set opts$READ.NROW = -1. This means that we now read all data
with tdmSplitTestData and split them into 10% test data (the default) and 90% training

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 25

data (since we specify with tdm$TST.valifrac=0 that we want no validation data).

Note the bracketing lines with
opts <- tdmEnvTGetOpts(envT,1)

and
tdmEnvTSetOpts(envT,opts).

Between these lines we first retrieve all opts-settings from envT and then modify specific
opts-values for the retraining. Here we set for example opts$RF.samp to a larger value.

Now we enter tdmTuneIt with the new dataset dataObj, the new opts, and with spotStep="rep"

indicating that we shall grab the best tuning result and perform training and evaluation on
the new dataset:

#*# ---------ex-winequality/final_wine.r ---------

path <- paste(find.package("TDMR"), "examples/ex-winequality",sep="/");

oldwd <- getwd(); setwd(path);

tdm=list(mainFile="main_wine.r"

,runList="wine_01.conf"

,umode="SP_T"

,TST.valiFrac=0

,U.saveModel=F

,optsVerbosity=1

,nrun=2

);

source(tdm$mainFile);

#

re-use prior tuning result (spotStep="rep"); do only spot-report and

unbiased eval on best tuning result.

But do so by training a model on 80% of all 4898 records.

#

tdm <- tdmDefaultsFill(tdm)

load(tdm$filenameEnvT); # envT

opts <- tdmEnvTGetOpts(envT,1);

opts$READ.NROW=-1; # read all 4898 records of winequality-white.csv

opts$RF.samp=5000;

envTtdmoptsVerbosity <- 1;

envTtdmU.saveModel <- tdm$U.saveModel;

envTtdmTST.valiFrac <- tdm$TST.valiFrac;

dataObj <- tdmSplitTestData(opts,envT$tdm);

envT <- tdmEnvTSetOpts(envT,opts);

envT <- tdmTuneIt(envT,"rep",dataObj);

setwd(oldwd);

The result of the new unbiased training + evaluation runs is again recorded in envT$theFinals:

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 26

print(envT$theFinals);

CONF TUNER NEXP XPERC NEVAL RGain.bst RGain.avg Time.TRN NRUN

1 wine_01 spot 1 0.9330384 11 65.0463 64.26768 0.03 2

RGain.TRN sdR.TRN RGain.SP_T sdR.SP_T Time.TST

1 67.81067 0.884109 71.1951 0.1444549 9.94

Note that we get a higher gain (lower error) on RGain.TRN and RGain.SP_T than we had
after tuning in Sec. 3.9.1. This is due to the increased number of data used during the unbiased
training and evaluation runs.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 27

A Appendix A: Frequently Asked Questions (FAQ)

A.1 I have already obtained a best tuning solution for some data set.
How can I rerun and test it on the same / other data?

As an example, we assume that demo03sonar.r has been run, so that demo03.RData is avail-
able. You may look at the demo demo03newdata already presented in Lesson 3.3:

#*# --------- demo/demo03newdata.r ---------

path <- paste(find.package("TDMR"), "demo02sonar",sep="/");

oldwd <- getwd(); setwd(path);

envT <- tdmEnvTLoad("demo03.RData");

source(envTtdmmainFile);

source("sonar_06.apd") # opts

opts$READ.NROW=-1;

dataObj <- tdmSplitTestData(opts,envT$tdm);

envT <- tdmBigLoop(envT,"rep",dataObj);

setwd(oldwd);

This will reload the tuning results from demo03.RData. Then all data will be read with
tdmSplitTestData into dataObj (Since envTtdmumode="CV", we will have all 208 data
records in the train-validation set. The split into 2 cross-validation folds with 104 records each
is done later in tdmClassifyLoop, for each seed differently.)

tdmTuneIt will use the best tuning parameters previously found, train it on the CV-
train data and test it on the CV-validate data. The results are reported, as usually, in
envT$theFinals.

A.2 How can I make with a trained model new predictions?

Run your Lesson-3 script or Lesson-4 script to produce an environment envT, which is an
object of class TDMenvir. There is an element lastModel defined in envT which contains the
model trained on the best tuning solution during the last unbiased run.11 TDMR defines a
function predict.TDMenvir , which makes it easy to do new predictions:

newdata=read.csv2(file="cpu.csv", sep="", dec=".")[1:15,];

z=predict(envT,newdata);

print(z);

Remarks:

• If the new data contain factor variables (e.g. vendor in case of CPU data), it is necessary
that levels(newdata$vendor) is the same as during training. Therefore we read in the
above code snippet first all CPU-data to get the levels right. Only then we shorten them
with [1:15,] to the first 15 records.

11The last model lastModel is available, if tdm$U.saveModel=TRUE, which is the default.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 28

• lastModel will be saved to .RData file only if tdm$U.saveModel=TRUE. This is however
the default.

• See also the examples in demo/demo04cpu.r and in predict.TDMenvir.

A.3 Why do I get sometimes ”Warning in randomForest.default(x,
y): The response has five or fewer unique values. Are you sure
you want to do regression?”

This comes from the report step in SPOT. If we have the setting

seq.predictionModel.func = "spotPredictRandomForest";

then the metamodel used in SPOT is Random Forest. If this model gets only a few data
points for training, it issues this warning, because the data could come also from a classification
task.

You can safely ignore this warning, we want to do regression at this point. (This is also
true if your data mining task is a classification.)

A.4 Why are there two similar functions tdmTuneIt and tdmBigLoop?
Which function should I use when?

If you only have a single CONF file, then tdmTuneIt is the recommended choice. It has a
clearer syntax, dataObj is a mandatory calling parameter and this makes the data flow more
easy to understand.12

If you want to process multiple CONF files in one TDMR experiment, then tdmBigLoop is
the recommended choice. If each CONF file works with the same dataObj, it is recommended
to pass dataObj as argument to tdmBigLoop. The argument dataObj is however optional in a
call to tdmBigLoop. This is for the cases where each CONF file needs different data: If dataObj
is not an argument to tdmBigLoop then dataObj is constructed anew on each loop-pass inside
tdmBigLoop.

A.5 My .RData files for saving envT are pretty big. Is there a way to
make them smaller?

It is the default, that the last DM model is saved in envT$result$lastRes$lastModel. Such
a DM model can be pretty big. If you do not want this, set tdm$U.saveModel=FALSE.

Note however, that it is then not possible to reload the .RData file with envT and do
directly new predictions. You would have to re-train a model first with appropriate training
data.

12 If you pass to tdmTuneIt a list of CONF files, only the first one will be taken.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 29

A.6 How can I add a new tuning parameter to TDMR?

• As a user: Add a new line to userMapDesign.csv in directory tdm$path. If such a file
does not exist yet, the user has to create it with a first line

roiValue; optsValue; isInt

Suppose you want to tune the variable opts$SRF.samp: add to file userMapDesign.csv

a line

SRF.SAMP; opts$SRF.samp; 0

This specifies that whenever SRF.SAMP appears in a .roi file in directory tdm$path, the
tuner will tune this variable. TDMR maps SRF.SAMP to opts$SRF.SAMP. The last 0

means that SRF.SAMP is not an integer but a continuous variable.

• As a developer: Add similarly a new line to tdmMapDesign.csv. This means that the
mapping is available for all tasks, not only for those in the current tdm$path.

• Optional, as a developer: For a new variable opts$Z, add to tdmOptsDefaultsSet() a
line specifying a default value for opts$Z. Then all existing and further tasks will have
this default for opts$Z.

A.7 How can I add a new tuning algorithm to TDMR?

See Sec. 10.1.2
”
How to integrate new tuners“ in TDMR-docu.pdf Konen and Koch [2012a].

A.8 How can I add a new machine learning algorithm to TDMR?

See Sec. 10.2
”
How to integrate new machine learning algorithms“ in TDMR-docu.pdf

Konen and Koch [2012a].

A.9 How can it happen that some variables have an importance that
is exactly zero?

Well, the importance for variables with low importance can be zero or even slightly negative
(as a consequence of some statistical fluctuations). All those zero or negative importance
values will be clipped to zero, therefore a variable with apparently exactly zero importance
can happen more frequently than expected.

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 30

B Appendix B: Overview TDMR Demos

demo/00Index

demo00-0classif Simple, self-contained classification with tdmClassifyLoop on task
iris

demo00-1regress Simple, self-contained regression with tdmRegressLoop on task cpu

demo01-1sonar TDMR, level 1: Simple TDMR classification on task sonar (one run /
no tuning)

demo01-2cpu TDMR, level 1: Simple TDMR regression on task cpu (one run / no
tuning)

demo02sonar TDMR, level 2: SPOT tuning for task sonar

demo03sonar TDMR, level 3: Tuning for TDMR classification task sonar (multiple
runs / short tuning)

demo03sonar_B TDMR, level 3: same as demo03sonar, but with parameters for a longer
tuning run

demo03newdata TDMR, level 3: apply the result of demo03sonar to new data (redo
training on new data with best-tuned parameters)

demo03newpredict TDMR, level 3: apply the result of demo03sonar to new data (use last
trained model in envT)

demo04cpu TDMR, level 3: Tuning for TDMR regression task cpu (multiple runs
/ short tuning)

demo05visMeta Interactive visualization of RES data frames generated by demo04cpu

and their metamodels
demo06ROCR Visualization of classification results using package ROCR

demo07cma_j Tuning demo for tuner cma_j (CMAES, Java version through rCMA,
runs on all platforms)

demo08parallel Demo for parallel execution (8 experiments of type demo03sonar on 4
cores)

References

Thomas Bartz-Beielstein. SPOT: An R package for automatic and interactive tuning of
optimization algorithms by sequential parameter optimization. arXiv.org e-Print archive,
http://arxiv.org/abs/1006.4645, June 2010.

N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano, P. Larranaga,
I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation. Advances on
estimation of distribution algorithms, pages 75–102. Springer, 2006.

Patrick Koch and Wolfgang Konen. Efficient sampling and handling of variance in tuning
data mining models. In Carlos Coello Coello, Vincenzo Cutello, et al., editors, PPSN’2012:
12th International Conference on Parallel Problem Solving From Nature, Taormina, pages
195–205, Heidelberg, September 2012. Springer. URL http://www.gm.fh-koeln.de/

ciopwebpub/Koch12a.d/Koch12a.pdf.

http://arxiv.org/abs/1006.4645
http://www.gm.fh-koeln.de/ciopwebpub/Koch12a.d/Koch12a.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Koch12a.d/Koch12a.pdf

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 31

Patrick Koch and Wolfgang Konen. Subsampling strategies in svm ensembles. In Frank Hoff-
mann and Eyke Hüllermeier, editors, Proceedings 23. Workshop Computational Intelligence,
pages 119–134. Universitätsverlag Karlsruhe, 2013. URL http://www.gm.fh-koeln.de/

~konen/Publikationen/kochGMA2013.pdf.

Patrick Koch, Bernd Bischl, Oliver Flasch, Thomas Bartz-Beielstein, Claus Weihs, and
Wolfgang Konen. Tuning and evolution of support vector kernels. Evolutionary Intel-
ligence, 5:153–170, 2012. URL http://www.gm.fh-koeln.de/~konen/Publikationen/

Koch11a-EvolIntel.pdf.

Patrick Koch, Tobias Wagner, Michael T. M. Emmerich, Thomas Bäck, and Wolfgang Ko-
nen. Efficient multi-criteria optimization on noisy machine learning problems. Applied Soft
Computing, (accepted for publication):1, 2014.

W. Konen and P. Koch. The TDMR Package: Tuned Data Mining in R. Technical Re-
port 02/2012, Research Center CIOP (Computational Intelligence, Optimization and Data
Mining), Cologne University of Applied Science, Faculty of Computer Science and Engineer-
ing Science, 2012a. URL http://www.gm.fh-koeln.de/ciopwebpub/Kone12a.d/Kone12a.

pdf. Last update: March, 2015.

W. Konen and P. Koch. The TDMR Tutorial: Examples for Tuned Data Mining in R. Technical
Report 03/2012, Research Center CIOP (Computational Intelligence, Optimization and
Data Mining), Cologne University of Applied Science, Faculty of Computer Science and
Engineering Science, 2012b. URL http://www.gm.fh-koeln.de/ciopwebpub/Kone12b.d/

Kone12b.pdf. Last update: March, 2015.

W. Konen, P. Koch, O. Flasch, and T. Bartz-Beielstein. Parameter-Tuned Data Min-
ing: A General Framework . In Proc. 20th Workshop Computational Intelligence, pages
136–150. KIT Scientific Publishing, http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000020316, 2010. URL http://www.gm.fh-koeln.de/~konen/Publikationen/GMACI10_

tunedDM.pdf.

W. Konen, P. Koch, O. Flasch, T. Bartz-Beielstein, M. Friese, and B. Naujoks. Tuned data
mining: A benchmark study on different tuners. In Natalio Krasnogor, editor, GECCO
’11: Proceedings of the 13th Annual Conference on Genetic andEvolutionary Computation,
volume 11, pages 1995–2002, 2011.

Wolfgang Konen. Self-configuration from a machine-learning perspective. CIOP Techni-
cal Report 05/11; arXiv: 1105.1951, Research Center CIOP (Computational Intelligence,
Optimization and Data Mining), Cologne University of Applied Science, Faculty of Com-
puter Science and Engineering Science, May 2011. URL http://www.gm.fh-koeln.de/

ciopwebpub/Kone11c.d/Kone11c.pdf. e-print published at http://arxiv.org/abs/1105.1951
and Dagstuhl Preprint Archive, Workshop 11181 ”Organic Computing – Design of Self-
Organizing Systems”.

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: visualizing classifier perfor-
mance in R. Bioinformatics, 21(20):3940–3941, 2005. URL http://rocr.bioinf.mpi-sb.

mpg.de/.

http://www.gm.fh-koeln.de/~konen/Publikationen/kochGMA2013.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/kochGMA2013.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/Koch11a-EvolIntel.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/Koch11a-EvolIntel.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone12a.d/Kone12a.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone12a.d/Kone12a.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone12b.d/Kone12b.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone12b.d/Kone12b.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020316
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020316
http://www.gm.fh-koeln.de/~konen/Publikationen/GMACI10_tunedDM.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/GMACI10_tunedDM.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone11c.d/Kone11c.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone11c.d/Kone11c.pdf
http://rocr.bioinf.mpi-sb.mpg.de/
http://rocr.bioinf.mpi-sb.mpg.de/

CIOP Report 03/2012 TDMR-Tutorial: Examples for Tuned Data Mining in R 32

Jörg Stork, Ricardo Ramos, Patrick Koch, and Wolfgang Konen. SVM ensembles are better
when different kernel types are combined. In Berthold Lausen, editor, European Conference
on Data Analysis (ECDA13). GfKl, 2013. URL http://www.gm.fh-koeln.de/~konen/

Publikationen/storkECDA-2013.pdf.

http://www.gm.fh-koeln.de/~konen/Publikationen/storkECDA-2013.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/storkECDA-2013.pdf

	Overview
	Installing TDMR
	Lessons
	Lesson 0: A simple TDMR program
	Lesson 1: DM on task SONAR
	Lesson 2: SPOT tuning on task SONAR
	Lesson 3: „The Big Loop“ on task SONAR
	Multiple .conf Files
	Single .conf File

	Lesson 4: Regression Big Loop
	Lesson 5: Interactive Visualization
	Lesson 6: Performance Measure Plots
	Lesson 7: Tuner CMA-ES (rCMA)
	Fixing problems with the rJava installation

	Lesson 8: Parallel TDMR
	Lesson 9: Tuning with fewer data
	Tuning
	Retrain on bigger data set

	Appendix A: Frequently Asked Questions (FAQ)
	I have already obtained a best tuning solution for some data set. How can I rerun and test it on the same / other data?
	How can I make with a trained model new predictions?
	Why do I get sometimes "Warning in randomForest.default(x, y): The response has five or fewer unique values. Are you sure you want to do regression?"
	Why are there two similar functions tdmTuneIt and tdmBigLoop? Which function should I use when?
	My .RData files for saving envT are pretty big. Is there a way to make them smaller?
	How can I add a new tuning parameter to TDMR?
	How can I add a new tuning algorithm to TDMR?
	How can I add a new machine learning algorithm to TDMR?
	How can it happen that some variables have an importance that is exactly zero?

	Appendix B: Overview TDMR Demos

