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1 Introduction

Statistical matching techniques aim at integrating two or more data sources (usually
data from sample surveys) referred to the same target population. In the basic statistical
matching framework, there are two data sources A and B sharing a set of variables X
while the variable Y is available only in A and the variable Z is observed just in B.
The X variables are common to both the data sources, while the variables Y and Z are
not jointly observed. The objective of statistical matching (hereafter denoted as SM)
consists in investigating the relationship between Y and Z at “micro” or “macro” level
(D’Orazio et al., 2006b). In the micro case the SM aims at creating a “synthetic” data
source in which all the variables, X, Y and Z, are available (usually A ∪B with all the
missing values filled in or simply A filled in with the values of Z). When the objective is
macro, the data sources are integrated to derive an estimate of the parameter of interest,
e.g. the correlation coefficient between Y and Z or the contingency table Y × Z.

A parametric approach to SM requires the explicit adoption of a model for (X,Y, Z);
obviously, if the model is misspecified the results will not be reliable. The nonparametric
approach is more flexible in handling complex situations (mixed type variables). The
two approaches can be mixed: first a parametric model is assumed and its parameters
are estimated then a completed synthetic data set is derived through a nonparametric
micro approach. In this manner the advantages of both parametric and nonparametric
approaches are maintained: the model is parsimonious while nonparametric techniques
offer protection against model misspecification. Table 1 provides a summary of the
objectives and approaches to SM (D’Orazio et al., 2008).

∗This document is partly based on the work carried out in the framework of the ESSnet project on Data
Integration, partly funded by Eurostat (December 2009–December 2011). For more information on
the project visit http://www.essnet-portal.eu/di/data-integration
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Table 1: Objectives and approaches to Statistical matching.

Objectives of Approaches to statistical Matching
Statistical matching Parametric Nonparametric Mixed

MAcro yes yes no
MIcro yes yes yes

It is worth noting that in the traditional SM framework when only A and B are
available, all the SM methods (parametric, nonparametric and mixed) that use the set of
common variables X to match A and B, implicitly assume the conditional independence
(CI) of Y and Z given X:

f (x, y, z) = f (y|x)× f (z|x)× f (x)

This assumption is particularly strong and seldom holds in practice. In order to avoid
the CI assumption the SM should incorporate some auxiliary information concerning the
relationship between Y and Z (see Chap. 3 in D’Orazio et al. 2006b). The auxiliary
information can be at micro level (a new data source in which Y and Z or X, Y and
Z are jointly observed) or at macro level (e.g. an estimate of the correlation coefficient
ρXY or an estimate of the contingency table Y ×Z, etc.) or simply consist of some logic
constraints about the relationship between Y and Z (structural zeros, etc.; for further
details see D’Orazio et al., 2006a).

An alternative approach to SM consists in evaluating the uncertainty concerning an
estimate of the parameter of interest. This uncertainty is due to the lack of joint in-
formation concerning Y and Z. For instance, let us consider a SM application whose
target consists in estimating the correlation matrix of the trivariate normal distribution
holding for (X,Y, Z); in the basic SM framework the available data allow to estimate all
the components of the correlation matrix with the exception of ρY Z ; in this case, due to
the properties of the correlation matrix (has to be semidefinite positive), it is possible
to conclude that:

ρXY ρXZ −
√(

1− ρ2Y X

) (
1− ρ2XZ

)
≤ ρY Z ≤ ρXY ρXZ +

√(
1− ρ2Y X

) (
1− ρ2XZ

)
The higher is the correlation between X and Y and between X and Z, the shorter

will be the interval and consequently the lower will be the uncertainty. In practical
applications, by substituting the unknown correlation coefficient with the corresponding
estimates it is possible to derive a “range” of admissible values of the unknown ρY Z .
The topic of the uncertainty will be discussed in the Section 6.

Section 2 will be discuss some practical aspects concerning the preliminary steps, with
emphasis on the choice of the marching variables; moreover some example data will be
introduced. In Section 3 some nonparametric approaches to SM at micro will be shown.
Section 4 is devoted to the mixed approaches to SM. Section 5 will discuss SM approaches
to deal with data arising from complex sample surveys from finite populations.
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2 Practical steps in an application of statistical matching

Before applying SM methods in order to integrate two or more data sources some de-
cisions and preprocessing steps are required (Scanu, 2008). In practice, given two data
sources A and B related to the same target population, the following steps are necessary:

1. Choice of the target variables Y and Z, i.e. of the variables observed distinctly in
two sample surveys.

2. Identification of all the common variables X shared by A and B. In this step some
harmonization procedures may be required because of different definitions and/or
classifications. Obviously, if two similar variables can not be harmonized they
have to be discarded. The common variables should not present missing values
and the observed values should be accurate (low or absent measurement error).
Note that, the common variable in the two data sources are expected to share
the same marginal/joint distribution, if A and B are representative samples of the
same population.

3. Potentially all the X variables can be used as matching variables but actually, not
all them are used in the SM. Section 2.2 will provide more details concerning this
topic.

4. The choice of the matching variables is strictly related to the matching framework
(see Table 1).

5. Once decided the framework, a SM technique is used to match the samples.

6. Finally the results of the matching, whereas possible, should be evaluated.

2.1 Example data

The next Sections will provide simple examples of application of some SM techniques
in the R environment (R Development Core Team, 2012) by using the functions in
StatMatch (D’Orazio, 2012). These examples will refer to artificial data derived from
the data set eusilcS contained in the package simPopulation (Alfons and Kraft, 2012).
This is an artificial data set generated from real Austrian EU-SILC (European Union
Statistics on Income and Living Conditions) data containing 11 725 observations on 18
variables (see eusilcS help pages for details):

> library(simPopulation, warn.conflicts=FALSE) #loads pkg simPopulation

> data(eusilcS)

> str(eusilcS)

'data.frame': 11725 obs. of 18 variables:

$ db030 : int 1 1 2 3 4 4 4 5 5 5 ...

$ hsize : int 2 2 1 1 3 3 3 5 5 5 ...

$ db040 : Factor w/ 9 levels "Burgenland","Carinthia",..: 4 4 7 5 7 7 7 4 4 4 ...
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$ age : int 72 66 56 67 70 46 37 41 35 9 ...

$ rb090 : Factor w/ 2 levels "male","female": 1 2 2 2 2 1 1 1 2 2 ...

$ pl030 : Factor w/ 7 levels "1","2","3","4",..: 5 5 2 5 5 3 1 1 3 NA ...

$ pb220a : Factor w/ 3 levels "AT","EU","Other": 1 1 1 1 1 1 3 1 1 NA ...

$ netIncome: num 22675 16999 19274 13319 14366 ...

$ py010n : num 0 0 19274 0 0 ...

$ py050n : num 0 0 0 0 0 ...

$ py090n : num 0 0 0 0 0 ...

$ py100n : num 22675 0 0 13319 14366 ...

$ py110n : num 0 0 0 0 0 0 0 0 0 NA ...

$ py120n : num 0 0 0 0 0 0 0 0 0 NA ...

$ py130n : num 0 16999 0 0 0 ...

$ py140n : num 0 0 0 0 0 0 0 0 0 NA ...

$ db090 : num 7.82 7.82 8.79 8.11 7.51 ...

$ rb050 : num 7.82 7.82 8.79 8.11 7.51 ...

In order to use these data for our purposes, some manipulations are needed to discard
units not relevant (obs. with age<16, whose income and personal economic status are
missing), to categorize some variables, etc.

> # discard units with age<16

> silc.16 <- subset(eusilcS, age>15) # units

> nrow(silc.16)

[1] 9522

> # categorize age

> silc.16$c.age <- cut(silc.16$age, c(16,24,49,64,100), include.lowest=T)

> #

> # truncate hsize

> aa <- as.numeric(silc.16$hsize)

> aa[aa>6] <- 6

> silc.16$hsize6 <- factor(aa, ordered=T)

> #

> # recode personal economic status

> aa <- as.numeric(silc.16$pl030)

> aa[aa<3] <- 1

> aa[aa>1] <- 2

> silc.16$work <- factor(aa, levels=1:2, labels=c("working","not working"))

> #

> # categorize personal net income

> silc.16$c.netI <- cut(silc.16$net/1000,

+ breaks=c(-6,0,5,10,15,20,25,30,40,50,200))
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In order to reproduce the basic SM framework, the data frame silc.16 is split ran-
domly in two data sets: rec.A consisting of 4 000 observations and don.B with the re-
maining 5 522 units. The two data frames rec.A and don.B share the variables X.vars;
the person’s economic status (y.var) is available only in rec.A while the net income
(z.var) is available in don.B.

> # simulate samples

> set.seed(123456)

> obs.A <- sample(nrow(silc.16), 4000, replace=F)

> X.vars <- c("hsize","hsize6","db040","age","c.age",

+ "rb090","pb220a","rb050")

> y.var <- c("pl030","work")

> z.var <- c("netIncome", "c.netI")

> rec.A <- silc.16[obs.A, c(X.vars, y.var)]

> don.B <- silc.16[-obs.A, c(X.vars, z.var)]

> #

> # determine a rough weighting

> # compute N, the est. size of pop(age>16)

> N <- round(sum(silc.16$rb050))

> N

[1] 67803

> #rescale origin weights

> rec.A$wwA <- rec.A$rb050/sum(rec.A$rb050)*N

> don.B$wwB <- don.B$rb050/sum(don.B$rb050)*N

2.2 The choice of the matching variables

In SM A and B, may share many common variables. In practice, just the most relevant
ones , usually called matching variables, are used in in the matching. The selection of
these variables should be performed through opportune statistical methods (descriptive,
inferential, etc.) and by consulting subject matter experts.

From a statistical point of view, the choice of the marching variables XM (XM ⊆ X)
should be carried out in a “multivariate sense” in order to identify the subset of the
XM variables connected at the same time with Y and Z (Cohen, 1991); unfortunately
this would require the availability of an auxiliary data source in which all the variables
(X,Y, Z) are observed. In the basic SM framework the data in A permit to explore
the relationship between Y and X, while the relationship between Z and X can be
investigated in the file B. Then the results of the two separate analyses have to be
combined in some manner; usually the subset of the matching variables is obtained as
XM = XY ∪XZ , being XY (XY ⊆ X) the subset of the common variables that better
explains Y , while XZ is the subset of the common variables that better explain Z (XZ ⊆
X). The risk in such a procedure is that of obtaining too many matching variables, and
consequently increasing the complexity of the problem and potentially affect negatively
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the results of SM. In particular, in the micro approach this may introduce additional
undesired variability and bias as far as the joint (marginal) distribution of XM and Z is
concerned. For this reason sometimes the set of the matching variables is obtained as a
compromise among XY ∩XZ ⊆ XM ⊆ XY ∪XZ .

The simplest procedure to identify XY consists in pairwise correlation/association
measures among the Y and all the available predictors X. When response and pre-
dictors are all categorical, then Chi-square based association measures (Cramer’s V )
or proportional reduction of the variance measures can be considered. The function
pw.assoc in StatMatch provides some of them.

> # analyses on A

> library(StatMatch) #loads StatMatch

> # response is pl030

> pw.assoc(pl030~db040+hsize6+c.age+rb090+pb220a, data=rec.A)

$V

pl030.db040 pl030.hsize6 pl030.c.age pl030.rb090 pl030.pb220a

0.07369617 0.19172123 0.52701354 0.43451872 0.11761739

$lambda

pl030.db040 pl030.hsize6 pl030.c.age pl030.rb090 pl030.pb220a

0.00000000 0.05476951 0.27339115 0.00000000 0.00000000

$tau

pl030.db040 pl030.hsize6 pl030.c.age pl030.rb090 pl030.pb220a

0.005804228 0.053874437 0.245431041 0.054777396 0.004970513

$U

pl030.db040 pl030.hsize6 pl030.c.age pl030.rb090 pl030.pb220a

0.010376238 0.065400904 0.272715553 0.073490286 0.009215848

> #response is work (aggregated pl030)

> pw.assoc(work~db040+hsize6+c.age+rb090+pb220a, data=rec.A)

$V

work.db040 work.hsize6 work.c.age work.rb090 work.pb220a

0.06329734 0.20670621 0.55617833 0.20081742 0.02615234

$lambda

work.db040 work.hsize6 work.c.age work.rb090 work.pb220a

0.009325288 0.127811300 0.409215579 0.119583105 0.000000000

$tau

work.db040 work.hsize6 work.c.age work.rb090 work.pb220a

0.0040065534 0.0427274592 0.3093343374 0.0405296059 0.0006839447
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$U

work.db040 work.hsize6 work.c.age work.rb090 work.pb220a

0.0029056489 0.0312998272 0.2689070320 0.0296360550 0.0004989826

In practice it comes out the best predictor of person’s economic status (pl030) is
the age conveniently categorized (c.age). If we consider as Y the aggregated person’s
economic status (variable work), then it can be observed that it is slightly associated
also with gender (rb090) and household size (hsize6).

When the response variable is continuous one can look at correlation with the pre-
dictors. In order to identify eventual nonlinear relationship it may be convenient to
consider the ranks (Spearman’s rank correlation coefficient). An interesting suggestion
from Harrell (2012) consists in looking at the adjusted R2 related to the regression model
rank(Y ) vs. rank(X) (unadjusted R2 corresponds to squared Spearman’s rank correla-
tion coefficient). When X is categorical nominal variable it is considered the adjusted
R2 of the regression model rank(Y ) vs. dummies(X). The function spearman2 in the
package Hmisc (Harrell,2012) computes automatically the adjusted R2 for each couple
or response-predictor.

> # analyses on B

> require(Hmisc)

> spearman2(netIncome~db040+hsize+age+rb090+pb220a, data=don.B)

Spearman rho^2 Response variable:netIncome

rho2 F df1 df2 P Adjusted rho2 n

db040 0.003 2.20 8 5513 0.0243 0.002 5522

hsize 0.030 170.97 1 5520 0.0000 0.030 5522

age 0.032 184.98 1 5520 0.0000 0.032 5522

rb090 0.147 952.42 1 5520 0.0000 0.147 5522

pb220a 0.018 50.98 2 5519 0.0000 0.018 5522

By looking at the adjusted R2, it comes out that just the gender (rb090) has a certain
predictive power on netIncome.

To summarize, in our case it come out that the set of the matching variables is com-
posed by age and rb090 (XM = XY ∪XZ).

When too many variables are available before computing pairwise association/correlation
measures, it would be necessary to discard the redundant predictors (functions redun

and varclus in Hmisc can be of help).
Sometimes the important predictors can be identified by fitting models and then run-

ning procedures for selecting the best predictor. The selection of the subset XY can also
be demanded to nonparametric procedures such as Classification And Regression Trees
(Breiman et al., 1984). Instead of fitting a single tree, it would be better to fit a random
forest (Breiman, 2001) by means of the function randomForest available in the package
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randomForest (Liaw and Wiener, 2002) which provides a measure of importance for
the predictors (to be used with caution).

The approach to SM based on the study of uncertainty offers the possibility of choosing
the matching variable by selecting just those common variables with the highest contri-
bution to the reduction of the uncertainty. The function Fbwidths.by.x in StatMatch
permits to explore the reduction of uncertainty when all the variables (X,Y, Z) are cat-
egorical. In particular, assuming that XD correspond to the complete crossing of the
matching variables XM , it is possible to show that in the basic SM framework

P
(low)
j,k ≤ PY=j,Z=k ≤ P

(up)
j,k ,

being

P
(low)
j,k =

∑
i

PXD=i ×max
{

0;PY=j|XD=i + PZ=k|XD=i − 1
}

P
(up)
j,k =

∑
i

PXD=i ×min
{
PY=j|XD=i;PZ=k|XD=i

}
for j = 1, . . . , J and k = 1, . . . ,K, being J and K the categories of Y and Z respectively.

The function Fbwidths.by.x estimates (P
(low)
j,k , P

(up)
j,k ) for each cell in the contingency

table Y × Z in correspondence of all the possible combinations of the X variables; then
the reduction of uncertainty is measured according to the proposal of Conti et al. (2012):

∆̂ =
∑
i,j,k

(
P̂

(up)
j,k − P̂

(low)
j,k

)
× P̂Y=j|XD=i × P̂Z=k|XD=i × P̂XD=i

An alternative naive measure refers to the average widths of the intervals:

d̄ =
1

J ×K
∑
j,k

(P̂
(up)
j,k − P̂

(low)
j,k )

> xx <- xtabs(~db040+hsize6+c.age+rb090+pb220a, data=rec.A)

> xy <- xtabs(~db040+hsize6+c.age+rb090+pb220a+work, data=rec.A)

> xz <- xtabs(~db040+hsize6+c.age+rb090+pb220a+c.netI, data=don.B)

> library(StatMatch) #loads StatMatch

> out.fbw <- Fbwidths.by.x(tab.x=xx, tab.xy=xy, tab.xz=xz)

> # sort according to overall uncertainty

> sort.ov.unc <- out.fbw$sum.unc[order(out.fbw$sum.unc$ov.unc),]

> head(sort.ov.unc) # best 6 models

x.vars x.cells x.freq0

|c.age+rb090 2 8 0

|c.age 1 4 0

|hsize6+c.age 2 24 0

|db040+hsize6+c.age+rb090+pb220a 5 1296 721
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|c.age+rb090+pb220a 3 24 1

|c.age+pb220a 2 12 0

av.width ov.unc

|c.age+rb090 0.07738444 0.1204430

|c.age 0.08439346 0.1213526

|hsize6+c.age 0.08282457 0.1236898

|db040+hsize6+c.age+rb090+pb220a 0.05775534 0.1238597

|c.age+rb090+pb220a 0.07642623 0.1246536

|c.age+pb220a 0.08432518 0.1257270

The results in terms of overall uncertainty confirm the finding of the previous analysis:
the highest reduction of the overall uncertainty is obtained by considering classes of age
(c.age) and gender (rb090). It is worth noting that the age alone helps a lot in reducing
the uncertainty in estimating the joint distribution of aggregated person’s economic
status (work) and classes of net income (c.netI).

3 Nonparametric micro techniques

Nonparametric approach is very popular in SM when the objective is the creation of a
synthetic data set. Most of the nonparametric micro approaches consists in filling in the
data set chosen as the recipient with the values of the variable which is available only
in the other data set, the donor one. In this approach it is important to decide which
data set plays the role of the recipient. Usually this is the data set to be used ad the
basis for further statistical analysis, and a logic choice seems that of using the larger one
because it would provide more accurate results. Unfortunately, such a way of working
may provide inaccurate SM results, especially when the sizes of the two data sources are
very different. The reason is quite simple, the larger is the recipient with respect to the
donor, the more times a unit in the latter could be selected as a donor. In this manner,
there is a high risk that the distribution of the imputed variable does not reflect the
original one (estimated form the donor data set). In the following it will be assumed
that A is the recipient while B is the donor, being nA ≤ nB (nA and nB are the sizes of
A and B respectively). Hence the objective of SM will be that of filling in A with values
of Y (variable available only in B).

In StatMatch the following nonparametric micro techniques are available: random
hot deck, nearest neighbor hot deck and rank hot deck (see Section 2.4 in D’Orazio et al.,
2006b; Singh et al., 1993).

3.1 Nearest neighbor distance hot deck

The nearest neighbor distance hot deck techniques are implemented in the function
NND.hotdeck. This function searches in data.don the nearest neighbor of each unit
in data.rec according to a distance computed on the matching variables XM specified
with the argument match.vars. By default the Manhattan (city block) distance is
considered (dist.fun="Manhattan"). In order to reduce the effort to compute distances
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it is preferable to define some donation classes (argument don.class): for a record in
given donation class it will be selected a donor in the same class (the distances are
computed only between units belonging to the same class). Usually, the donation classes
are defined according to one or more categorical common variables (geographic area,
etc.). In the following, a simple example of usage of NND.hotdeck is reported; donation
classes are formed using gender and region, while distances are computed on age

> group.v <- c("rb090","db040")

> X.mtc <- "age"

> out.nnd <- NND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v)

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

The function NND.hotdeck does not create the synthetic data set; for each unit in A
the corresponding closest donor in B is identified according to the imputation classes
(when defined) and the chosen distance function; the recipient-donor units’ identifiers
are saved in the data.frame mtc.ids stored in the output list returned by NND.hotdeck.
The output list provides also the distance between each couple recipient-donor (saved in
the dist.rd component of the output list) and the number of available donors at the
minimum distance for each recipient (component noad). Note that when there are more
donors at the minimum distance, then one of them is picked up at random.

> summary(out.nnd$dist.rd) # summary distances rec-don

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 0.00 0.04 0.00 7.00

> summary(out.nnd$noad) # summary available donors at min. dist.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 4.00 6.00 6.56 9.00 21.00

> table(out.nnd$noad)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

234 375 389 426 361 370 378 375 220 180 175 198 117 72 90 4

17 18 20 21

5 12 10 9

In order to derive the synthetic data set it is necessary to run the function cre-

ate.fused:

> head(out.nnd$mtc.ids)
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rec.id don.id

[1,] "401" "376"

[2,] "71" "118"

[3,] "92" "106"

[4,] "225" "350"

[5,] "364" "408"

[6,] "370" "350"

> fA.nnd <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=out.nnd$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

> head(fA.nnd) #first 6 obs.

hsize hsize6 db040 age c.age rb090 pb220a rb050

401 5 5 Burgenland 45 (24,49] male AT 4.545916

71 2 2 Burgenland 65 (64,100] male AT 6.151409

92 2 2 Burgenland 81 (64,100] male AT 6.151409

225 3 3 Burgenland 51 (49,64] male AT 5.860364

364 4 4 Burgenland 18 [16,24] male AT 6.316554

370 5 5 Burgenland 50 (49,64] male AT 4.545916

pl030 work wwA netIncome c.netI

401 1 working 10.85782 47159.21 (40,50]

71 5 not working 14.69250 21316.32 (20,25]

92 5 not working 14.69250 21667.53 (20,25]

225 1 working 13.99734 20667.61 (20,25]

364 1 working 15.08694 9461.48 (5,10]

370 1 working 10.85782 20667.61 (20,25]

As far as distances are concerned (argument dist.fun), all the distance functions in
the package proxy (Meyer and Butchta, 2012) are available. Anyway, for some partic-
ular distances it was decided to write specific R functions. In particular, when dealing
with continuous matching variables it is possible to use the maximum distance (L∞

norm) implemented in maximum.dist; this function works on the true observed values
(continuous variables) or on transformed ranked values (argument rank=TRUE) as sug-
gested in Kovar et al. (1988); the transformation (ranks divided by the number of units)
removes the effect of different scales and the new values are uniformly distributed in the
interval [0, 1]. The Mahalanobis distance can be computed by using mahalanobis.dist

which allows an external estimate of the covariance matrix (argument vc). When deal-
ing with mixed type matching variables, the Gowers’s dissimilarity (Gower, 1981) can
be computed (function gower.dist): it is an average of the distances computed on the
single variables according to different rules, depending on the type of the variable. All
the distances are scaled to range from 0 to 1, hence the overall distance cat take a value
in [0, 1]. When dealing with mixed types matching variables it is still possible to use
the distance functions for continuous variables but NND.hotdeck transforms factors into
dummies (by means of the function fact2dummy).
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By default NND.hotdeck does not pose constraints on the “usage” of donors: a record
in the donor data set can be selected many times as a donor. The multiple usage
of a donor can be avoided by resorting to a constrained hot deck (argument con-

strained=TRUE in NND.hotdeck); in such a case, a donor can be used just once and
all the donors are selected in order to minimize the overall matching distance. In prac-
tice, the donors are identified by solving a traveling salesperson problem; two alter-
natives are available: the Hungarian algorithm (argument constr.alg="Hungarian"

implemented in the function solve LSAP in the package clue (Hornik, 2012) and the
algorithm provided by the package lpSolve (Berkelaar et al., 2012) (argument con-

str.alg="lPsolve"). Setting constr.alg="Hungarian" (default) is more efficient and
faster.

> group.v <- c("rb090","db040")

> X.mtc <- "age"

> out.nnd.c <- NND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Manhattan", constrained=TRUE,

+ constr.alg="Hungarian")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

> fA.nnd.c <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=out.nnd.c$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

The constrained matching returns an overall matching distance greater than the one
in the unconstrained case, but it tends to better preserve the marginal distribution of
the variable imputed in the synthetic data set.

> #comparing distances

> sum(out.nnd$dist.rd) # unconstrained

[1] 160

> sum(out.nnd.c$dist.rd) # constrained

[1] 1189

To compare the marginal joint distributions of a set of categorical variables it is pos-
sible to resort to the function comp.prop in StatMatch which provides some similarity
measure among distributions of categorical variables and performs also the Chi-square
test (for details see comp.prop the help pages).
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> # estimating marginal distribution of C.netI

> tt0 <- xtabs(~c.netI, data=don.B) # reference distr.

> tt <- xtabs(~c.netI, data=fA.nnd) # synt unconstr.

> ttc <- xtabs(~c.netI, data=fA.nnd.c) #synt. constr.

> #

> # comparing marginal distributions

> comp.prop(p1=tt, p2=tt0, n1=nrow(fA.nnd), n2=NULL, ref=TRUE)

$meas

tvd overlap Bhatt Hell

0.01993173 0.98006827 0.99971600 0.01685236

$chi.sq

Pearson df q0.05 delta.h0

9.3242717 9.0000000 16.9189776 0.5511132

$p.exp

c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20] (20,25]

0.12893879 0.09253894 0.14034770 0.17348787 0.18598334 0.13274176

(25,30] (30,40] (40,50] (50,200]

0.06609924 0.05106845 0.01321985 0.01557407

> comp.prop(p1=ttc, p2=tt0, n1=nrow(fA.nnd), n2=NULL, ref=TRUE)

$meas

tvd overlap Bhatt Hell

0.006615628 0.993384372 0.999967141 0.005732269

$chi.sq

Pearson df q0.05 delta.h0

1.05225865 9.00000000 16.91897760 0.06219399

$p.exp

c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20] (20,25]

0.12893879 0.09253894 0.14034770 0.17348787 0.18598334 0.13274176

(25,30] (30,40] (40,50] (50,200]

0.06609924 0.05106845 0.01321985 0.01557407

By looking at comp.prop output it comes out that, as expected, the marginal distri-
bution of c.netI in the synthetic file obtained after constrained NND is closer to the
reference distribution (estimated on the donor dataset) than the one estimated from the
synthetic file after the unconstrained NND.
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3.2 Random hot deck

The function RANDwNND.hotdeck carries out the random selection of each donor from a
suitable subset of all the available donors. This subset can be formed in different ways,
e.g. by considering all the donors sharing the same characteristics of the recipient (de-
fined according to some XM variables, such as geographic region, etc.). The traditional
random hot deck (Singh et al., 1993) within imputation classes is performed by simply
specifying the donation classes via the argument don.class (the classes are formed by
crossing the categories of the categorical variables being considered). For each record
in the recipient data set in a given donation class, a donor is picked up completely at
random within the same donation class.

> group.v <- c("db040","rb090")

> rnd.1 <- RANDwNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=NULL, don.class=group.v)

> fA.rnd <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnd.1$mtc.ids,

+ z.vars=c("netIncome", "c.netI"))

As for NND.hotdeck, the function RANDwNND.hotdeck does not create the synthetic
data set; the recipient-donor units’ identifiers are saved in the component mtc.ids of
the list returned in output. The number of donors available in each donation class are
saved in the component noad.
RANDwNND.hotdeck implements various alternative methods to restrict the subset of

the potential donors. These methods are based essentially on a distance measure com-
puted on the matching variables provided via the argument match.vars. In practice,
when cut.don="k.dist" only the donors whose distance from the recipient is less
or equal to threshold k are considered (see Andridge and Little, 2010). By setting
cut.don="exact" the k (0 < k ≤ nD) closest donors are retained (nD is the number of
available donors for a given recipient). With cut.don="span" a proportion k (0 < k ≤ 1)
of the closest available donors it is considered while; setting cut.don="rot" and k=NULL

the subset reduces to the
[√
nD
]

closest donors; finally, when cut.don="min" only the
donors at the minimum distance from the recipient are retained.

> # random choiches of a donor among the closest k=20 wrt age

> group.v <- c("db040","rb090")

> X.mtc <- "age"

> rnd.2 <- RANDwNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Manhattan",

+ cut.don="exact", k=20)

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don data.frames,

if present, are recoded into dummies
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> fA.knnd <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnd.2$mtc.ids,

+ z.vars=c("netIncome", "c.netI"))

When distances are computed on some matching variables, then the output of RAND-
wNND.hotdeck provides some information concerning the distances of the possible avail-
able donors for each recipient observation.

> head(rnd.2$sum.dist)

min max sd cut dist.rd

[1,] 0 47 11.02087 5 2

[2,] 0 49 14.54555 4 1

[3,] 0 65 19.01027 9 4

[4,] 1 41 10.09283 6 3

[5,] 1 74 19.53088 11 7

[6,] 0 42 10.16749 5 2

In particular, "min", "max" and "sd" columns report respectively the minimum, the
maximum and the standard deviation of the distances (all the available donors are
considered), while "cut" refers to the distance of the kth closest donor; "dist.rd" is
distance existing among the recipient and the randomly chosen donor.

When selecting a donor among those available in the subset identified by the arguments
cut.don and k, it is possible to use a weighted selection by specifying a weighting variable
via weight.don argument. This issue will be tackled in Section 5.

3.3 Rank hot deck

The rank hot deck distance method has been introduced by Singh et al. (1993). It
searches for the donor at a minimum distance from the given recipient record but, in
this case, the distance is computed on the percentage points of the empirical cumulative
distribution function of the unique (continuous) common variable XM being considered.
The empirical cumulative distribution function is estimated by:

F̂ (x) =
1

n

n∑
i=1

I (xi ≤ x)

being I() = 1 if xi ≤ x and 0 otherwise. This transformation provides values uniformly
distributed in the interval [0, 1]; moreover, it can be useful when the values of XM can
not be directly compared because of measurement errors which however do not affect
the “position” of a unit in the whole distribution (D’Orazio et al., 2006b). This method
is implemented in the function rankNND.hotdeck. The following simple example shows
how to call it.

> rnk.1 <- rankNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ var.rec="age", var.don="age")
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> #create the synthetic data set

> fA.rnk <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnk.1$mtc.ids,

+ z.vars=c("netIncome", "c.netI"),

+ dup.x=TRUE, match.vars="age")

> head(fA.rnk)

hsize hsize6 db040 age c.age rb090 pb220a

4547 2 2 Carinthia 45 (24,49] male AT

9819 4 4 Salzburg 35 (24,49] female AT

4461 2 2 Carinthia 57 (49,64] male AT

10222 2 2 Tyrol 69 (64,100] female AT

8228 4 4 Upper Austria 25 (24,49] female AT

3361 3 3 Vienna 22 [16,24] male Other

rb050 pl030 work wwA age.don netIncome

4547 6.863162 1 working 16.39250 45 17424.96

9819 6.089967 1 working 14.54575 35 8803.81

4461 6.863162 1 working 16.39250 58 43339.47

10222 6.857877 5 not working 16.37988 70 2820.05

8228 6.945309 4 not working 16.58871 25 0.00

3361 8.374000 1 working 20.00110 22 3016.03

c.netI

4547 (15,20]

9819 (5,10]

4461 (40,50]

10222 (0,5]

8228 (-6,0]

3361 (0,5]

The function rankNND.hotdeck allows for constrained and unconstrained matching in
the same manner as in NND.hotdeck. It is also possible to define some donation classes
(argument don.class), in this case the empirical cumulative distribution is estimated
separately class by class.

> rnk.2 <- rankNND.hotdeck(data.rec=rec.A, data.don=don.B, var.rec="age",

+ var.don="age", don.class="rb090",

+ constrained=TRUE, constr.alg="Hungarian")

> fA.grnk <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnk.2$mtc.ids,

+ z.vars=c("netIncome", "c.netI"),

+ dup.x=TRUE, match.vars="age")

> head(fA.grnk)

hsize hsize6 db040 age c.age rb090 pb220a rb050

4547 2 2 Carinthia 45 (24,49] male AT 6.863162
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4461 2 2 Carinthia 57 (49,64] male AT 6.863162

3361 3 3 Vienna 22 [16,24] male Other 8.374000

827 2 2 Lower Austria 57 (49,64] male AT 6.913897

8061 3 3 Upper Austria 31 (24,49] male AT 7.509383

1925 4 4 Lower Austria 49 (24,49] male AT 7.757150

pl030 work wwA age.don netIncome c.netI

4547 1 working 16.39250 46 23149.70 (20,25]

4461 1 working 16.39250 59 45463.71 (40,50]

3361 1 working 20.00110 22 30458.38 (30,40]

827 1 working 16.51368 59 53567.80 (50,200]

8061 1 working 17.93599 31 15863.65 (15,20]

1925 1 working 18.52777 51 56824.81 (50,200]

In estimating the empirical cumulative distribution it is possible to consider the units’
weights (arguments weight.rec and weight.don). This topic will be tackled in Section
5.

3.4 Using functions in StatMatch to impute missing values in a survey

All the functions in StatMatch that implement the hot deck imputation techniques can
be used to impute missing values in a single data set. In this case it is necessary to:

1. separate the observations in two data sets: the file A plays the role of recipient
and will contain the units with missing values on the target variable, while the file
B is the donor and will contain all the available donors (units with non missing
values for the target variable).

2. Fill in the missing values in the recipient, e.g. by using a nonparametric imputation

3. Join recipient and donor file

In the following a simple example with the iris data.frame is reported. Distance hot
deck is used to fill missing values in the recipient.

> # step 0) introduce missing values in iris

> set.seed(1324)

> miss <- rbinom(150, 1, 0.30) #generates randomly missing

> data(iris, package="datasets")

> iris.miss <- iris

> iris.miss$Petal.Length[miss==1] <- NA

> summary(iris.miss$Petal.L)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

1.1 1.6 4.3 3.8 5.1 6.9 46
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> #

> # step 1) separate units in two data sets

> rec <- subset(iris.miss, is.na(Petal.Length), select=-Petal.Length)

> don <- subset(iris.miss, !is.na(Petal.Length))

> #

> # step 2) search for closest donors

> X.mtc <- c("Sepal.Length", "Sepal.Width", "Petal.Width")

> nnd <- NND.hotdeck(data.rec=rec, data.don=don,

+ match.vars=X.mtc, don.class="Species",

+ dist.fun="Manhattan")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

> # fills rec

> imp.rec <- create.fused(data.rec=rec, data.don=don,

+ mtc.ids=nnd$mtc.ids, z.vars="Petal.Length")

> imp.rec$imp.PL <- 1 # flag for imputed

> #

> # step 3) re-aggregate data sets

> don$imp.PL <- 0

> imp.iris <- rbind(imp.rec, don)

> #summary stat of imputed and non imputed Petal.Length

> tapply(imp.iris$Petal.Length, imp.iris$imp.PL, summary)

$`0`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.1 1.6 4.3 3.8 5.1 6.9

$`1`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.300 1.425 4.200 3.591 5.100 6.700

4 Mixed methods

A SM mixed method consists of two steps: (1) a model is fitted and all its parameters
are estimated, then (2) a nonparametric approach is used to create the synthetic data
set. The model is more parsimonious while the nonparametric approach offers “protec-
tion” against model misspecification. The proposed mixed approaches for SM are based
essentially on predictive mean matching imputation methods (see D’Orazio et al. 2006b,
Section 2.5 and 3.6). The function mixed.mtc in StatMatch implements two similar
mixed methods that deal with variables (XM , Y, Z) following the the multivariate nor-
mal distribution. The main difference is in step (1) when estimating the parameters of
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the two regressions Y vs. XM and Z vs. XM . By default the parameters are estimated
through maximum likelihood (argument method="ML" in mixed.mtc); in alternative a
method proposed by Moriarity and Scheuren (2001, 2003) (argument method="MS") is
available. At the end of the step (1), the data set A is filled in with the “intermediate”
values z̃a = ẑa + ea (a = 1, . . . , nA) obtained by adding a random residual term ea to the
predicted values ẑa. The same happens in B which is filled in with the values ỹb = ŷb+eb
(b = 1, . . . , nB).

In the step (2) each record in A is filled in with the value of Z observed on the donor
found in B according to a constrained distance hot deck; the Mahalanobis distance is
computed by considering the intermediate and live values: couples (ya, z̃a) in A and
(ỹb, zb) in B.

Such a two steps procedure presents various advantages: it offers protection against
model misspecification and at the same time reduces the risk of bias in the marginal
distribution of the imputed variable because the distances are computed on intermediate
and truly observed values of the target value instead of the matching variables XM . In
fact when computing the distances by considering many matching variables, the variables
with low predictive power on the target variable may influence negatively the distances.

D’Orazio et al. (2005) compared the two alternative methods based in an exten-
sive simulation study: in general ML tends to perform better, moreover it permits to
avoid some incoherencies in the estimation of the parameters that can happen with the
Moriarity and Scheuren approach.

In the following example the iris data set is used just to show how mixed.mtc works.

> # uses iris data set

> iris.A <- iris[101:150, 1:3]

> iris.B <- iris[1:100, c(1:2,4)]

> X.mtc <- c("Sepal.Length","Sepal.Width") # matching variables

> # parameters estimated using ML

> mix.1 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="ML", rho.yz=0,

+ micro=TRUE, constr.alg="Hungarian")

> mix.1$mu #estimated means

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.843333 3.057333 4.996706 1.037109

> mix.1$cor #estimated cor. matrix

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.9131794 0.8490516

Sepal.Width -0.1175698 1.0000000 -0.0992586 -0.4415012

Petal.Length 0.9131794 -0.0992586 1.0000000 0.7725288

Petal.Width 0.8490516 -0.4415012 0.7725288 1.0000000
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> head(mix.1$filled.rec) # A filled in with Z

Sepal.Length Sepal.Width Petal.Length Petal.Width

101 6.3 3.3 6.0 0.2

102 5.8 2.7 5.1 1.3

103 7.1 3.0 5.9 1.7

104 6.3 2.9 5.6 1.4

105 6.5 3.0 5.8 1.5

106 7.6 3.0 6.6 1.8

> cor(mix.1$filled.rec)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 0.45722782 0.8642247 0.47606997

Sepal.Width 0.4572278 1.00000000 0.4010446 -0.01582276

Petal.Length 0.8642247 0.40104458 1.0000000 0.34391854

Petal.Width 0.4760700 -0.01582276 0.3439185 1.00000000

When using mixed.mtc the synthetic data set is provided in output as the compo-
nent filled.rec of the list returned by calling it with the argument micro=TRUE. When
micro=FALSE the function mixed.mtc returns just the estimates of the parameters (para-
metric macro approach).

The function mixed.mtc by default performs mixed SM under the CI assumption
(ρY Z|XM

= 0 argument rho.yz=0). When some additional auxiliary information about
the correlation between Y and Z is available (estimates from previous surveys or form
external sources) then it can be exploited in SM by specifying a value (6= 0) for the
argument rho.yz; it represents a guess for ρY Z|XM

when using the ML estimation, or a
guess for ρY Z when estimating the parameters via the Moriarity and Scheuren approach.

> # parameters estimated using ML and rho_YZ|X=0.85

> mix.2 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="ML", rho.yz=0.85,

+ micro=TRUE, constr.alg="Hungarian")

> mix.2$cor

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.9131794 0.8490516

Sepal.Width -0.1175698 1.0000000 -0.0992586 -0.4415012

Petal.Length 0.9131794 -0.0992586 1.0000000 0.9113867

Petal.Width 0.8490516 -0.4415012 0.9113867 1.0000000

> head(mix.2$filled.rec)
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Sepal.Length Sepal.Width Petal.Length Petal.Width

101 6.3 3.3 6.0 1.5

102 5.8 2.7 5.1 1.2

103 7.1 3.0 5.9 1.6

104 6.3 2.9 5.6 1.4

105 6.5 3.0 5.8 1.5

106 7.6 3.0 6.6 1.5

Special attention is required when specifying a guess for ρY Z under the Moriarity
and Scheuren estimation approach (method="MS"); in particular it may happen that the
specified value for ρY Z is not compatible with the given SM framework (the correlation
matrix must be positive semidefinite). If this is the case, then mixed.mtc substitutes the
input value of rho.yz by its closest admissible value, as shown in the following example.

> mix.3 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="MS", rho.yz=0.75,

+ micro=TRUE, constr.alg="Hungarian")

input value for rho.yz is 0.75

low(rho.yz)= -0.1662

up(rho.yz)= 0.5565

Warning: value for rho.yz is not admissible: a new value is chosen for it

The new value for rho.yz is 0.5465

> mix.3$rho.yz

start low.lim up.lim used

0.7500 -0.1662 0.5565 0.5465

5 Statistical matching of data from complex sample surveys

The SM techniques presented in the previous Sections implicitly or explicitly assume
that the observed values in A and B are i.i.d. Unfortunately, when dealing with samples
selected from a finite population by means of complex sampling designs (with stratifica-
tion, clustering, etc.) it is difficult to maintain the i.i.d. assumption: it would mean that
the sampling design can be ignored. If this is not the case, inferences have to account for
sampling design and the weights assigned to the units (usually design weights corrected
for unit nonresponse, frame errors, etc.) (see Särndal et al., 1992, Section 13.6).

5.1 Naive micro approaches

A naive approach to SM of data from complex sample surveys consists in applying
nonparametric micro methods (NND, random or rank hot deck) without considering the
design nor the units weights. Once obtained the synthetic dataset (recipient filled in with
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the missing variables) the successive statistical analyses are carried out by considering
the sampling design underlying the recipient data set and the corresponding survey
weights. In the following a simple example of nearest neighbor hot deck is reported.

> # summary info on the weights

> sum(rec.A$wwA) # estimated pop size from A

[1] 67803

> sum(don.B$wwB) # estimated pop size from B

[1] 67803

> summary(rec.A$wwA)

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.538 14.470 16.510 16.950 19.370 29.920

> summary(don.B$wwB)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.149 10.580 11.890 12.280 13.950 21.550

> # NND constrained hot deck

> group.v <- c("rb090","db040")

> out.nnd <- NND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars="age", don.class=group.v,

+ dist.fun="Manhattan",

+ constrained=TRUE, constr.alg="Hungarian")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

> fA.nnd.m <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=out.nnd$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

> # estimating average net income

> weighted.mean(fA.nnd.m$netIncome, fA.nnd.m$wwA) # imputed in A

[1] 14940.63

> weighted.mean(don.B$netIncome, don.B$wwB) # ref. estimate in B

[1] 15073.95
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> # comparing marginal distribution of C.netI using weights

> tt.0w <- xtabs(wwB~c.netI, data=don.B)

> tt.fw <- xtabs(wwA~c.netI, data=fA.nnd.m)

> comp.prop(p1=tt.fw, p2=tt.0w, n1=nrow(fA.nnd.m), ref=TRUE)

$meas

tvd overlap Bhatt Hell

0.009945058 0.990054942 0.999926091 0.008597056

$chi.sq

Pearson df q0.05 delta.h0

2.3762837 9.0000000 16.9189776 0.1404508

$p.exp

c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20] (20,25]

0.11953297 0.09037855 0.14101622 0.17515499 0.18965562 0.13543995

(25,30] (30,40] (40,50] (50,200]

0.06746229 0.05171910 0.01334022 0.01630008

As far as imputation of missing values is concerned, a way of taking into account the
sampling design can consist in forming the donation classes by using the design variables
(stratification and/or clustering variables) jointly with the most relevant common vari-
ables (Andridge and Little, 2010). Unfortunately in SM this can increase the complexity
or may be unfeasible because the design variables may not be available or may be partly
available. Moreover, the two sample surveys may have quite different designs and the
design variables used in one survey maybe not available in the other one and vice versa.

When imputing missing values in a survey, another possibility, consists in using sam-
pling weights (design weights) to form the donation classes (Andridge and Little, 2010).
But again, in SM applications the problem can be slightly more complex even because the
sets of weights can be quite different from one survey to the other (usually the available
weights are the design weights corrected to compensate for unit nonresponse, to satisfy
some given constraints etc.). The same Authors (Andridge and Little, 2010) indicate
that when imputing the missing values, the selection of the donors can be carried out
with probability proportional to weights associated to the donors (weighted random hot
deck). This feature is implemented in RANDwNDD.hotdeck which permits to select the
donors with probability proportional to weights specified via the weight.don argument.

> group.v <- c("rb090","db040")

> X.mtc <- "age"

> rnd.2 <- RANDwNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=NULL, don.class=group.v,

+ weight.don="wwB")

> fA.wrnd <- create.fused(data.rec=rec.A, data.don=don.B,
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+ mtc.ids=rnd.2$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

> weighted.mean(fA.wrnd$netIncome, fA.wrnd$wwA) # imputed in A

[1] 14905.48

> weighted.mean(don.B$netIncome, don.B$wwB) # ref. estimate in B

[1] 15073.95

> # comparing marginal distribution of C.netI using weights

> tt.0w <- xtabs(wwB~c.netI, data=don.B)

> tt.fw <- xtabs(wwA~c.netI, data=fA.wrnd)

> comp.prop(p1=tt.fw, p2=tt.0w, n1=nrow(fA.nnd.m), ref=TRUE)

$meas

tvd overlap Bhatt Hell

0.01447498 0.98552502 0.99970755 0.01710121

$chi.sq

Pearson df q0.05 delta.h0

8.6084180 9.0000000 16.9189776 0.5088025

$p.exp

c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20] (20,25]

0.11953297 0.09037855 0.14101622 0.17515499 0.18965562 0.13543995

(25,30] (30,40] (40,50] (50,200]

0.06746229 0.05171910 0.01334022 0.01630008

The function rankNND.hotdeck can use the units’ weights (wi) in estimating the
percentage points of the the empirical cumulative distribution function:

F̂ (x) =

∑n
i=1wiI (xi ≤ x)∑n

i=1wi

In the following it is reported an very simple example with constrained rank hot deck.

> rnk.w <- rankNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ don.class="db040", var.rec="age",

+ var.don="age", weight.rec="wwA",

+ weight.don="wwB", constrained=TRUE,

+ constr.alg="Hungarian")

> #

> #create the synthetic data set

> fA.wrnk <- create.fused(data.rec=rec.A, data.don=don.B,
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+ mtc.ids=rnk.w$mtc.ids,

+ z.vars=c("netIncome", "c.netI"),

+ dup.x=TRUE, match.vars="age")

> #

> weighted.mean(fA.wrnk$netIncome, fA.wrnk$wwA) # imputed in A

[1] 14656.13

> weighted.mean(don.B$netIncome, don.B$wwB) # ref. estimate in B

[1] 15073.95

> # comparing marginal distribution of C.netI using weights

> tt.0w <- xtabs(wwB~c.netI, data=don.B)

> tt.fw <- xtabs(wwA~c.netI, data=fA.wrnk)

> comp.prop(p1=tt.fw, p2=tt.0w, n1=nrow(fA.nnd.m), ref=TRUE)

$meas

tvd overlap Bhatt Hell

0.01360393 0.98639607 0.99978278 0.01473855

$chi.sq

Pearson df q0.05 delta.h0

6.9805051 9.0000000 16.9189776 0.4125843

$p.exp

c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20] (20,25]

0.11953297 0.09037855 0.14101622 0.17515499 0.18965562 0.13543995

(25,30] (30,40] (40,50] (50,200]

0.06746229 0.05171910 0.01334022 0.01630008

D’Orazio et al. (2012) compared several naive procedures. In general, when rank and
random hot deck procedures use the weights, as shown before, they tend to perform
quite well in terms of preservation in the synthetic data set of the marginal distribution
of the imputed variable Z and of the joint distribution X × Z. The nearest neighbour
donor, performs well only when constrained matching is used and a design variable (used
in stratification) is considered in forming donation classes.

5.2 Statistical matching method that account explicitly for the sampling
weights

In literature there are few SM methods that explicitly take into account the sampling
design and the corresponding sampling weights: Renssen’s approach based on weights’
calibrations (Renssen, 1998); Rubin’s file concatenation (Rubin, 1986) and the approach
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based on the empirical likelihood proposed by Wu (2004). A comparison among these
approaches can be found in D’Orazio (2010).

The package StatMatch provides functions to apply the procedures suggested by
Renssen (1998). Renssen’s approach consists in a series of calibration steps of the survey
weights in A and B in order to achieve consistency between estimates (mainly totals)
computed separately from the two data sources. Calibration is a technique very common
in sample surveys for deriving new weights, as close as possible to the starting ones,
which fulfill a series of constraints concerning totals for a set of auxiliary variables (for
further details on calibration see Särndal, 2005). The Renssen’s approach works well
when dealing with categorical variables or in a mixed case in which the number of
continuous variables is very limited. In the following it will be assumed that all the
variables (XD, Y, Z) are categorical, being XD a complete or an incomplete crossing of
the matching variables XM . The procedure and the functions developed in StatMatch
permits to have one or more continuous variables (better just one) in the subset of the
matching variables XM , while Y and Z must be categorical. Obviously, when this is
not the case, in order to apply the following procedure it is necessary to categorize the
variables.

The first step in the Renssen’s procedure consists in calibrating weights in A and in B
such that the new weights when applied to the set of the XD variables allow to reproduce
some known (or estimated) population totals. In StatMatch the harmonization step
can be performed by using harmonize.x. This function performs weights calibration (or
post-stratification) by means of functions available in the R package survey (Lumley,
2012). When the population totals are already known then they have to be passed
to harmonize.x via the argument x.tot; on the contrary, when they are unknown
(x.tot=NULL) they are estimated by a weighted average of the totals estimated on the
two surveys before the harmonization step:

t̃XD
= λt̂

(A)
XD

+ (1− λ) t̂
(B)
XD

being λ = nA/(nA + nB) (nA and nB are the sample sizes of A and B respectively)
(Korn and Graubard, 1999, pp. 281–284).

The following example shows how to harmonize the joint distribution of the gender
and classes of age with the data from the previous example, assuming that the joint
distribution of age and gender is not known.

> tt.A <- xtabs(wwA~rb090+c.age, data=rec.A)

> tt.B <- xtabs(wwB~rb090+c.age, data=don.B)

> (prop.table(tt.A)-prop.table(tt.B))*100

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.3661141 1.0995148 -0.9456418 -0.6383618

female 0.0891681 -0.4970682 1.0772175 -0.5509426

> comp.prop(p1=tt.A, p2=tt.B, n1=nrow(rec.A),

+ n2=nrow(don.B), ref=FALSE)
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$meas

tvd overlap Bhatt Hell

0.02632014 0.97367986 0.99956825 0.02077856

$chi.sq

Pearson df q0.05 delta.h0

8.0082627 7.0000000 14.0671404 0.5692886

$p.exp

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.07010041 0.22316357 0.11129434 0.07671609

female 0.06578194 0.22773205 0.11842264 0.10678897

> library(survey, warn.conflicts=FALSE) # loads survey

> # creates svydesign objects

> svy.rec.A <- svydesign(~1, weights=~wwA, data=rec.A)

> svy.don.B <- svydesign(~1, weights=~wwB, data=don.B)

> #

> # harmonizes wrt to joint distr. of gender vs. c.age

> out.hz <- harmonize.x(svy.A=svy.rec.A, svy.B=svy.don.B,

+ form.x=~c.age:rb090-1)

> #

> summary(out.hz$weights.A) # new calibrated weights for A

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.647 14.390 16.570 16.950 19.030 31.470

> summary(out.hz$weights.B) # new calibrated weights for B

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.279 10.540 11.840 12.280 13.910 22.400

> tt.A <- xtabs(out.hz$weights.A~rb090+c.age, data=rec.A)

> tt.B <- xtabs(out.hz$weights.B~rb090+c.age, data=don.B)

> comp.prop(p1=tt.A, p2=tt.B, n1=nrow(rec.A),

+ n2=nrow(don.B), ref=FALSE)

$meas

tvd overlap Bhatt Hell

4.163336e-17 1.000000e+00 1.000000e+00 0.000000e+00

$chi.sq

Pearson df q0.05 delta.h0

8.940923e-29 7.000000e+00 1.406714e+01 6.355892e-30
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$p.exp

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.07010041 0.22316357 0.11129434 0.07671609

female 0.06578194 0.22773205 0.11842264 0.10678897

The second step in the Renssen’s procedure consists in estimating the two-way con-
tingency table Y × Z. In absence of auxiliary information it is estimated under the CI
assumption by means of:

P̂
(CIA)
(Y=j,Z=k) = P̂

(A)
Y=j|XD=i × P̂

(B)
Z=k|XD=i × P̂XD=i

for i = 1, . . . , I; j = 1, . . . , J ; K = 1, . . . ,K;

In practice, P̂
(A)
Y=j|XD=i is computed from A; P̂

(B)
Z=k|XD=i is computed from data in B

while PXD=i can be estimated indifferently from A or B (the data set are harmonized
with respect to the XD distribution).

In StatMatch an estimate of the table Y × Z under the CIA is provided by the
function comb.samples.

> # estimating c.pl030 vs. c.netI under the CI assumption

> out <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=NULL, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1)

> #

> addmargins(t(out$yz.CIA)) # table estimated under the CIA

working not working Sum

(-6,0] 4203.9273 3929.4698 8133.3971

(0,5] 3212.7539 2941.5722 6154.3261

(5,10] 4436.4472 5108.0075 9544.4547

(10,15] 5648.5383 6199.2373 11847.7756

(15,20] 7129.6193 5716.1572 12845.7765

(20,25] 5391.3879 3802.7509 9194.1388

(25,30] 2877.6585 1696.1470 4573.8055

(30,40] 2249.5066 1256.9719 3506.4786

(40,50] 555.7829 345.2169 900.9998

(50,200] 688.8992 412.9481 1101.8473

Sum 36394.5210 31408.4790 67803.0000

When some auxiliary information is available, e.g. a third data source C, containing
all the variables (XM , Y, Z) or just (Y,Z), the Renssen’s approach permits to exploit it
in estimating Y × Z. Two alternative methods are available: (a) incomplete two-way
stratification; and (b) synthetic two-way stratification. In practice, both the methods es-
timate Y ×Z from C after some further calibration steps (for further details see Renssen,
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1998). The function comb.samples implements both the methods. In practice, the syn-
thetic two-way stratification (argument estimation="synthetic") can be applied only
when C contains all the variables of interest (XM , Y, Z); on the contrary, when the data
source C observes just Y and Z, only the incomplete two-way stratification method can
be applied (argument estimation="incomplete"). In the following a simple example
is reported based on the artificial EU-SILC data introduced in Section 2.1; here a small
sample C (nC = 200) with all the variables of interest (XM , Y, Z) is artificially created.

> # generating artificial sample C

> set.seed(43210)

> obs.C <- sample(nrow(silc.16), 200, replace=F)

> #

> X.vars <- c("hsize","hsize6","db040","age","c.age",

+ "rb090","pb220a", "rb050")

> y.var <- c("pl030","work")

> z.var <- c("netIncome","c.netI")

> #

> aux.C <- silc.16[obs.C, c(X.vars, y.var, z.var)]

> aux.C$wwC <- aux.C$rb050/sum(aux.C$rb050)*round(sum(silc.16$rb050)) # rough w

> svy.aux.C <- svydesign(~1, weights=~wwC, data=aux.C)

> #

> # incomplete two-way estimation

> out.inc <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=svy.aux.C, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1, estimation="incomplete")

> addmargins(t(out.inc$yz.est))

working not working Sum

(-6,0] 318.3646 7815.0325 8133.3971

(0,5] 3155.6684 2998.6577 6154.3261

(5,10] 3960.8064 5583.6483 9544.4547

(10,15] 4736.0014 7111.7742 11847.7756

(15,20] 9302.3226 3543.4539 12845.7765

(20,25] 6318.9931 2875.1457 9194.1388

(25,30] 4011.6435 562.1620 4573.8055

(30,40] 2587.8739 918.6047 3506.4786

(40,50] 900.9998 0.0000 900.9998

(50,200] 1101.8473 0.0000 1101.8473

Sum 36394.5210 31408.4790 67803.0000

The incomplete two-way stratification method estimates the table Y × Z from C by
preserving the marginal distribution of Y and of Z estimated respectively from A and
from B after the initial harmonization step; on the contrary, the joint distribution of the
matching variables (which is the basis of the harmonization step) is not preserved.
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> new.wwC <- weights(out.inc$cal.C) #new cal. weights for C

> #

> # marginal distributions of work

> m.work.cA <- xtabs(out.hz$weights.A~work, data=rec.A)

> m.work.cC <- xtabs(new.wwC~work, data=aux.C)

> m.work.cA-m.work.cC

work

working not working

0 0

> #

> # marginal distributions of c.netI

> m.cnetI.cB <- xtabs(out.hz$weights.B~c.netI, data=don.B)

> m.cnetI.cC <- xtabs(new.wwC~c.netI, data=aux.C)

> m.cnetI.cB-m.cnetI.cC

c.netI

(-6,0] (0,5] (5,10] (10,15]

6.366463e-12 -9.094947e-13 0.000000e+00 0.000000e+00

(15,20] (20,25] (25,30] (30,40]

0.000000e+00 0.000000e+00 9.094947e-13 0.000000e+00

(40,50] (50,200]

2.273737e-13 2.273737e-13

> # joint distribution of the matching variables

> tt.A <- xtabs(out.hz$weights.A~rb090+c.age, data=rec.A)

> tt.B <- xtabs(out.hz$weights.B~rb090+c.age, data=don.B)

> tt.C <- xtabs(new.wwC~rb090+c.age, data=aux.C)

> comp.prop(p1=tt.A, p2=tt.B, n1=nrow(rec.A),

+ n2=nrow(don.B), ref=FALSE)

$meas

tvd overlap Bhatt Hell

4.163336e-17 1.000000e+00 1.000000e+00 0.000000e+00

$chi.sq

Pearson df q0.05 delta.h0

8.940923e-29 7.000000e+00 1.406714e+01 6.355892e-30

$p.exp

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.07010041 0.22316357 0.11129434 0.07671609

female 0.06578194 0.22773205 0.11842264 0.10678897
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> comp.prop(p1=tt.C, p2=tt.A, n1=nrow(aux.C),

+ n2=nrow(rec.A), ref=FALSE)

$meas

tvd overlap Bhatt Hell

0.05326808 0.94673192 0.99727747 0.05217785

$chi.sq

Pearson df q0.05 delta.h0

4.6813708 7.0000000 14.0671404 0.3327877

$p.exp

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.07179371 0.22345791 0.11060518 0.07710921

female 0.06558083 0.22671249 0.11857843 0.10616222

As said before, the synthetic two-way stratification (argument estimation="synthetic")
requires that the auxiliary data source C contains the matching variables XM and the
target variables Y and Z.

> # synthetic two-way estimation

> out.synt <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=svy.aux.C, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1, estimation="synthetic")

> #

> addmargins(t(out.synt$yz.est))

working not working Sum

(-6,0] 351.6488 7781.7483 8133.3971

(0,5] 3610.2537 2544.0724 6154.3261

(5,10] 4052.7261 5491.7286 9544.4547

(10,15] 5384.8795 6462.8961 11847.7756

(15,20] 8542.0337 4303.7428 12845.7765

(20,25] 5971.5562 3222.5826 9194.1388

(25,30] 3781.3214 792.4840 4573.8055

(30,40] 2697.2545 809.2241 3506.4786

(40,50] 900.9998 0.0000 900.9998

(50,200] 1101.8473 0.0000 1101.8473

Sum 36394.5210 31408.4790 67803.0000

As in the case of incomplete two-way stratification, also the synthetic two-way strat-
ification derives the table Y × Z from C by preserving the marginal distribution of Y
and of Z estimated respectively from A and from B after the initial harmonization step;
on the contrary, the joint distribution of the matching variables (which is the basis of
the harmonization step) is still not preserved.
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> new.wwC <- weights(out.synt$cal.C) #new cal. weights for C

> #

> # marginal distributions of work

> m.work.cA <- xtabs(out.hz$weights.A~work, data=rec.A)

> m.work.cC <- xtabs(new.wwC~work, data=aux.C)

> m.work.cA-m.work.cC

work

working not working

2.910383e-11 6.912160e-11

> # marginal distributions of c.netI

> m.cnetI.cB <- xtabs(out.hz$weights.B~c.netI, data=don.B)

> m.cnetI.cC <- xtabs(new.wwC~c.netI, data=aux.C)

> m.cnetI.cB-m.cnetI.cC

c.netI

(-6,0] (0,5] (5,10] (10,15]

2.819434e-11 1.637090e-11 1.637090e-11 2.364686e-11

(15,20] (20,25] (25,30] (30,40]

9.094947e-12 7.275958e-12 4.547474e-12 -3.637979e-12

(40,50] (50,200]

-1.705303e-12 -2.501110e-12

> # joint distribution of the matching variables

> tt.A <- xtabs(out.hz$weights.A~rb090+c.age, data=rec.A)

> tt.B <- xtabs(out.hz$weights.B~rb090+c.age, data=don.B)

> tt.C <- xtabs(new.wwC~rb090+c.age, data=aux.C)

> comp.prop(p1=tt.A, p2=tt.B, n1=nrow(rec.A),

+ n2=nrow(don.B), ref=FALSE)

$meas

tvd overlap Bhatt Hell

4.163336e-17 1.000000e+00 1.000000e+00 0.000000e+00

$chi.sq

Pearson df q0.05 delta.h0

8.940923e-29 7.000000e+00 1.406714e+01 6.355892e-30

$p.exp

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.07010041 0.22316357 0.11129434 0.07671609

female 0.06578194 0.22773205 0.11842264 0.10678897
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> comp.prop(p1=tt.C, p2=tt.A, n1=nrow(aux.C),

+ n2=nrow(rec.A), ref=FALSE)

$meas

tvd overlap Bhatt Hell

0.04533274 0.95466726 0.99721476 0.05277541

$chi.sq

Pearson df q0.05 delta.h0

4.750685 7.000000 14.067140 0.337715

$p.exp

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.07181280 0.22295324 0.11042887 0.07692488

female 0.06555624 0.22773120 0.11866015 0.10593262

It is worth noting that comb.samples can also be used for micro imputation. In
particular, when the argument micro is set to TRUE the function returns also the two
data frames Z.A and Y.B. The first ones has the same rows as svy.A and the number of
columns equals the number of categories of the Z variable (specified via z.lab). Each
row provides the estimated probabilities for a unit of assuming a value in the various
categories. The same happens for Y.B which presents the estimated probabilities of
assuming a category of y.lab for each unit in B. The probabilities are obtained as a
by-product of the whole procedure which is based on the usage of the linear probability
models (for major details see Renssen, 1998). The procedure corresponds to a regres-
sion imputation that when dealing with all categorical variables (XD, Y, Z), provides a
synthetic data set (A filled in with Z) which preserves the marginal distribution of the
Z variable and the joint distribution X × Z. Unfortunately, linear probability models
have some well known drawbacks and may provide estimated probabilities less than 0
or greater than 1. For this reason, such predictions should be used carefully.

D’orazio et al. (2012) suggest using a randomization mechanism to derive the predicted
category starting from the estimated probabilities.

> # predicting prob of c.netI in A under the CI assumption

> out <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=NULL, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1, micro=TRUE)

> head(out$Z.A)

c.netI1 c.netI2 c.netI3 c.netI4 c.netI5

4547 0.02431737 0.03461536 0.07333853 0.1260644 0.2441140

9819 0.18449296 0.11651122 0.17192894 0.1828479 0.1536327

4461 0.01360657 0.02121963 0.08784363 0.1647151 0.2455691

10222 0.12862694 0.08280089 0.24704563 0.2624476 0.1531360
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8228 0.18449296 0.11651122 0.17192894 0.1828479 0.1536327

3361 0.23596552 0.20079618 0.13191092 0.1593456 0.1707472

c.netI6 c.netI7 c.netI8 c.netI9 c.netI10

4547 0.22507260 0.12213224 0.099898952 0.020044253 0.030402300

9819 0.10775094 0.04282870 0.024714585 0.009347124 0.005944963

4461 0.14258653 0.12907572 0.116517140 0.036077503 0.042789098

10222 0.09119902 0.01759877 0.011944017 0.003473668 0.001727448

8228 0.10775094 0.04282870 0.024714585 0.009347124 0.005944963

3361 0.07521334 0.02080676 0.005214446 0.000000000 0.000000000

> # predicting prob of c.netI in A under the CI assumption

> out <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=NULL, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1, micro=TRUE)

> head(out$Z.A)

c.netI1 c.netI2 c.netI3 c.netI4 c.netI5

4547 0.02431737 0.03461536 0.07333853 0.1260644 0.2441140

9819 0.18449296 0.11651122 0.17192894 0.1828479 0.1536327

4461 0.01360657 0.02121963 0.08784363 0.1647151 0.2455691

10222 0.12862694 0.08280089 0.24704563 0.2624476 0.1531360

8228 0.18449296 0.11651122 0.17192894 0.1828479 0.1536327

3361 0.23596552 0.20079618 0.13191092 0.1593456 0.1707472

c.netI6 c.netI7 c.netI8 c.netI9 c.netI10

4547 0.22507260 0.12213224 0.099898952 0.020044253 0.030402300

9819 0.10775094 0.04282870 0.024714585 0.009347124 0.005944963

4461 0.14258653 0.12907572 0.116517140 0.036077503 0.042789098

10222 0.09119902 0.01759877 0.011944017 0.003473668 0.001727448

8228 0.10775094 0.04282870 0.024714585 0.009347124 0.005944963

3361 0.07521334 0.02080676 0.005214446 0.000000000 0.000000000

> sum(out$Z.A<0) # negative est. prob.

[1] 0

> sum(out$Z.A>1) # est. prob. >1

[1] 0

> # compare marginal distributions of Z

> t.zA <- colSums(out$Z.A*out.hz$weights.A)

> t.zB <- xtabs(out.hz$weights.B~don.B$c.netI)

> comp.prop(p1=t.zA, p2=t.zB, n1=nrow(rec.A), ref=TRUE)
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$meas

tvd overlap Bhatt Hell

1.951564e-16 1.000000e+00 1.000000e+00 0.000000e+00

$chi.sq

Pearson df q0.05 delta.h0

7.816082e-28 9.000000e+00 1.691898e+01 4.619713e-29

$p.exp

don.B$c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20] (20,25]

0.11995630 0.09076776 0.14076744 0.17473822 0.18945735 0.13560077

(25,30] (30,40] (40,50] (50,200]

0.06745727 0.05171568 0.01328849 0.01625072

> # predicting class of netIncome in A

> # randomized prediction with prob proportional to estimated prob.

> pred.zA <- apply(out$Z.A,1,sample,x=1:ncol(out$Z.A), size=1,replace=F)

> rec.A$c.netI <- factor(pred.zA, levels=1:nlevels(don.B$c.netI),

+ labels=as.character(levels(don.B$c.netI)), ordered=T)

> # comparing marginal distributions of Z

> t.zA <- xtabs(out.hz$weights.A~rec.A$c.netI)

> comp.prop(p1=t.zA, p2=t.zB, n1=nrow(rec.A), ref=TRUE)

$meas

tvd overlap Bhatt Hell

0.02609102 0.97390898 0.99950055 0.02234844

$chi.sq

Pearson df q0.05 delta.h0

15.7141897 9.0000000 16.9189776 0.9287907

$p.exp

don.B$c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20] (20,25]

0.11995630 0.09076776 0.14076744 0.17473822 0.18945735 0.13560077

(25,30] (30,40] (40,50] (50,200]

0.06745727 0.05171568 0.01328849 0.01625072

> # comparing joint distributions of X vs. Z

> t.xzA <- xtabs(out.hz$weights.A~c.age+rb090+c.netI, data=rec.A)

> t.xzB <- xtabs(out.hz$weights.B~c.age+rb090+c.netI, data=don.B)

> out.comp <- comp.prop(p1=t.xzA, p2=t.xzB, n1=nrow(rec.A), ref=TRUE)

> out.comp$meas
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tvd overlap Bhatt Hell

0.05162525 0.94837475 0.99707673 0.05406729

> out.comp$chi.sq

Pearson df q0.05 delta.h0

74.5161159 75.0000000 96.2166708 0.7744616

6 Exploring uncertainty due to the statistical matching
framework

When the objective of SM consists in estimating a parameter (macro approach) it is
possible to tackle SM in an alternative way consisting in the “exploration” of the un-
certainty on the model chosen for (XM , Y, Z), due to the lack of knowledge typical of
the basic SM framework (no auxiliary information is available). This approach does not
end with a unique estimate of the unknown parameter characterizing the joint p.d.f.
for (XD, Y, Z); on the contrary it identifies an interval of plausible values for it. When
dealing with categorical variables, the estimation of the intervals of plausible values for
the probabilities in the table Y × Z are provided by the Fréchet bounds:

max{0;PY=j + PZ=k − 1} ≤ PY=j,Z=k ≤ min{PY=j ;PZ=k}

for j = 1, . . . , J and k = 1, . . . ,K, being J and K the categories of Y and Z respectively.
Let consider the matching variables XM , for sake of simplicity let assume that XD is

the variable obtained by the crossproduct of the chosen XM variables; by conditioning
on XD, it is possible to derive the following result (D’Orazio et al., 2006a):

P
(low)
j,k ≤ PY=j,Z=k ≤ P

(up)
j,k

with

P
(low)
j,k =

∑
i

PXD=i ×max
{

0;PY=j|XD=i + PZ=k|XD=i − 1
}

P
(up)
j,k =

∑
i

PXD=i ×min
{
PY=j|XD=i;PZ=k|XD=i

}
for j = 1, . . . , J and k = 1, . . . ,K. It is interesting to observe that the CIA estimate of
PY=j,Z=k is always included in the interval identified by such bounds:

P
(low)
j,k ≤ P

(CIA)
Y=j,Z=k ≤ P

(up)
j,k

In the SM basic framework, the probabilities PY=j|XD=i are estimated from A, the
PZ=k|XD=i are estimated fromB, while the marginal distribution PXD=i can be estimated
indifferently on A or on B, assuming that both the samples, being representative samples
of the same population, provide not significantly different estimates of P (XM = i). If
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this is not the case, before computing the bounds it would be preferable to harmonize
the distribution of XD in A and in B by using the function harmonize.x.

In StatMatch the Fréchet bounds for PY=j,Z=k (j = 1, . . . , J and k = 1, . . . ,K),
conditioned or not on XD, are provided by Frechet.bounds.cat.

> #comparing joint distribution of the X_M variables in A and in B

> t.xA <- xtabs(wwA~c.age+rb090, data=rec.A)

> t.xB <- xtabs(wwB~c.age+rb090, data=don.B)

> comp.prop(p1=t.xA, p2=t.xB, n1=nrow(rec.A), n2=nrow(don.B), ref=FALSE)

$meas

tvd overlap Bhatt Hell

0.02632014 0.97367986 0.99956825 0.02077856

$chi.sq

Pearson df q0.05 delta.h0

8.0082627 7.0000000 14.0671404 0.5692886

$p.exp

rb090

c.age male female

[16,24] 0.07010041 0.06578194

(24,49] 0.22316357 0.22773205

(49,64] 0.11129434 0.11842264

(64,100] 0.07671609 0.10678897

> #

> #computing tables needed by Frechet.bounds.cat

> t.xy <- xtabs(wwA~c.age+rb090+work, data=rec.A)

> t.xz <- xtabs(wwB~c.age+rb090+c.netI, data=don.B)

> out.fb <- Frechet.bounds.cat(tab.x=t.xA, tab.xy=t.xy, tab.xz=t.xz,

+ print.f="data.frame")

> out.fb

$bounds

work c.netI low.u low.cx CIA up.cx

1 working (-6,0] 0 0.0000000000 0.062451939 0.10745732

2 not working (-6,0] 0 0.0130833912 0.058088772 0.12054071

3 working (0,5] 0 0.0000000000 0.047854165 0.08127010

4 not working (0,5] 0 0.0100349443 0.043450884 0.09130505

5 working (5,10] 0 0.0000000000 0.065841680 0.10790942

6 not working (5,10] 0 0.0325145796 0.074582323 0.14042400

7 working (10,15] 0 0.0044505872 0.083877816 0.13317699

8 not working (10,15] 0 0.0409858756 0.090285053 0.16971228

9 working (15,20] 0 0.0315476801 0.106111106 0.15614074
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10 not working (15,20] 0 0.0330428837 0.083072522 0.15763595

11 working (20,25] 0 0.0271769197 0.080524320 0.11362462

12 not working (20,25] 0 0.0221981534 0.055298451 0.10864585

13 working (25,30] 0 0.0035480015 0.042818593 0.06158708

14 not working (25,30] 0 0.0058632580 0.024631748 0.06390234

15 working (30,40] 0 0.0000000000 0.033456492 0.04850157

16 not working (30,40] 0 0.0032094037 0.018254479 0.05171097

17 working (40,50] 0 0.0000000000 0.008213067 0.01309882

18 not working (40,50] 0 0.0001182705 0.005004024 0.01321709

19 working (50,200] 0 0.0000000000 0.010221237 0.01592268

20 not working (50,200] 0 0.0002598896 0.005961328 0.01618257

up.u

1 0.11953297

2 0.11953297

3 0.09037855

4 0.09037855

5 0.14101622

6 0.14101622

7 0.17515499

8 0.17515499

9 0.18965562

10 0.18965562

11 0.13543995

12 0.13543995

13 0.06746229

14 0.06746229

15 0.05171910

16 0.05171910

17 0.01334022

18 0.01334022

19 0.01630008

20 0.01630008

$uncertainty

av.u av.cx overall

0.10000000 0.07719662 0.11853164

The final component of the output list provided by Frechet.bounds.cat summarizes
the uncertainty by means of the average width of the unconditioned bounds, the aver-
age width of the bounds obtained by conditioning on XD and the overall uncertainty
measured as suggested by Conti et al. (2012) (see Section 2.2).

When dealing with continuous variables, if it is assumed that their joint distribution
is multivariate normal, the uncertainty bounds for the correlation coefficient ρY Z can be
obtained by using the function mixed.mtc with argument method="MS". The following
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example assumes multivariate normal distribution holding for joint distribution for age,
gender (the matching variables), aggregated personal economic status (binary variable
"work" which plays the role of Y ) and log-transformed personal net income (log of
"netIncome" which plays the role of Z).

> # continuous variables

> don.B$log.netI <- log( ifelse(don.B$netIncome>0, don.B$netIncome, 0)+1 )

> X.mtc <- c("age","rb090")

> mix.3 <- mixed.mtc(data.rec=rec.A, data.don=don.B, match.vars=X.mtc,

+ y.rec="work", z.don="log.netI",

+ method="MS")

input value for rho.yz is 0.03095

low(rho.yz)= -0.8048

up(rho.yz)= 0.8667

The input value for rho.yz is admissible

When a single X variable it is considered the bounds can be obtained explicitly by
using formula in Section 1.
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