
SimJoint: simulate joint distribution given marginals and

correlation matrix

Charlie Wusuo Liu

June 9, 2019

Abstract

This R package simulates joint distribution given nonparametric marginals and their

covariance structure characterized by a Pearson correlation matrix. The simulator engages

the problem from a purely computational perspective. It assumes no statistical models

such as copulas or parametric distributions, and can approximate the target correlations

regardless of theoretical feasibility. The algorithm is an integration and advancement of the

Iman-Conover (1982) approach [1] and the Ruscio-Kaczetow (2008) iteration [2].

Contents

1 Iman-Conover review 1

1.1 Enhancement . 3

2 Ruscio-Kaczetow iteration 3

2.1 Enhancement . 3

3 Implementation 3

1 Iman-Conover review

This section assumes readers are familiar with the Iman-Conover procedure. Let X be an N×K
matrix where each column contains samples from a marginal distribution. Let Σ be a K ×K
Pearson correlation matrix, and let S be an N×K uncorrelated (between columns) noise matrix.

Reordering elements in each columns of X in the following way can let X have a column-wise

correlation matrix close to Σ:

1. Cholesky-decompose Σ = U>U where U is the upper-triangle.

2. Let Y = SU . Y will be a N ×K matrix where column-wise correlations equal Σ.

3. Reorder elements in the kth column of X such that it perfectly rank-correlates the kth

column of Y , k = 0, 1, . . . ,K − 1. Denote the reordered X by X(1).

Since X(1) and Y have identical Spearman rank-correlation correlation matrices, the two should

have similar Pearson correlation matrices — this is merely an assumption due to the close

relationship between Pearson and Spearman correlations.

1

Algorithm 1 Simulate joint distribution given marginals and correlation matrix

Input: (i) an N×K matrix X of samples from K marginal distributions; (ii) a K×K correlation
matrix Σ; (iii) maximal iteration imax; (iv) range of the step size for correcting correlations [l, u]
— self-explanatory in the algorithm, default [0, 1]; (v) convergence tail size h — self-explanatory
in the algorithm.

Optional input: an N × K noise matrix S where columns are uncorrelated (conceptually).
One can populate this matrix with uniform random numbers.

Operator and function definitions:

�: element-wise multiplication for vectors or matrices.

σ(X): export the column-wise Pearson correlation matrix of X .

φ(x): given a vector x of size 1
2 (K − 1)K, export a K × K symmetric matrix where the

diagonal equals 1 and the lower triangle entries equal x .

e(∆): given a matrix ∆, export a scalar such as the sum of all squared elements in ∆.

π(X,Y): given N ×K matrices X and Y , reorder elements in the kth column of X such that
it perfectly rank-correlates the kth column of Y , k = 0, 1, . . . ,K − 1 . Export the
reordered X.

1: If S is not given, copy X to S and permute each column of S at random.

2: εoptimal ←∞; i← 0; Σ
(i)
target ← Σ;

3: Fill an array {ε0, . . . , εh−1} with arbitrary unequal values.
4: Allocate vector r of size 1

2 (K − 1)K for storing stochastic step ratio.
5: while i < imax do
6: Cholesky (primary) or eigen (secondary) decomposition: Σ

(i)
target = A>A .

7: Y ← SA .
8: X(i) ← π(X,Y) .
9: Σ(i) ← σ(X(i)) .

10: ∆← Σ− Σ(i) .
11: ε← e(∆) .
12: {ε0, . . . , εh−1} ← {ε1, . . . , εh−2, ε} .
13: if ε0 = ε1 = . . . = εh−1 then
14: break . Algorithm converged.
15: end if
16: loop
17: if ε < εoptimal then
18: Σoptimal ← Σ(i) .
19: εoptimal ← ε .
20: Σbase

target ← Σ
(i)
target .

21: r← 1 .
22: else
23: Populate a vector x of size 1

2 (K − 1)K with random uniforms in [l, u] .
24: r← r� x
25: end if
26: i← i+ 1 .

27: Σ
(i)
target ← min

(
1, max

(
−1, Σbase

target + φ(r)� (Σ− Σoptimal)
))

.

28: if Σ
(i)
target is positive semi-definite then . merged with Step 6.

29: break .
30: end if
31: end loop
32: end while
33: return X(i) .

2

1.1 Enhancement

An eigen-decomposition can substitute the Cholesky decomposition if Σ is not postive-definite.

Let Σ = (Λ
1
2Q)>(Λ

1
2Q) and set Y = S(Λ

1
2Q). In fact, any decomposition that results in a

matrix left-multiplied by its transpose, i.e. Σ = A>A, guarantees Y = SA has correlation

matrix Σ. Eigen-decomposition is chosen due to its relative cheap computational cost over

symmetric matrices.

2 Ruscio-Kaczetow iteration

There are two error sources that prevent X(1) having a correlation matrix exactly equal to

Σ: (i) columns of the noise matrix are not perfectly uncorrelated (limited by random number

generator), (ii) X(1) and Y being perfectly rank-correlated does not imply they have the same

Pearson correlation matrix.

Let Σ(1) be the Pearson correlation matrix of X(1). Let e(·) be a cost function and calculate

e(Σ−Σ(1)). Feeding a different correlation matrix Σtarget to Steps 1 - 3 in Section 1 may end up

with a lower cost e(Σ − Σ(1)). Ruscio and Kaczetow (2008) created a program that iteratively

adjusts Σtarget according to ∆ = Σ− Σ(1) until e(∆) converges.

2.1 Enhancement

For some reason, Ruscio and Kaczetow embedded a quite expensive factor analysis to obtain the

matrix equivalent to Y in Iman-Conover. They might be concerned by Cholesky decomposition’s

limitation to positive definite matrix, or simply intended to threshold the dimensionality with

principal components — the number of factors for reproducing Σ are less than K. Such a

dimension reduction in the middle however seems no impact on the end result, since we still

need K correlated vectors spanned from those factors to rank-order the marginals.

Another drawback of Ruscio and Kaczetow’s iteration is that the correlation adjustment,

analogous to the step size in gradient descent, is deterministic and identical for every entry

in the correlation matrix. Experiments show stochastic adjustments can largely reduce the

converged e(∆). Currently a uniform kernel is used to generate the stochastic steps. Further

investigation on the choice of kernels might lead to better convergence.

Ruscio and Kaczetow’s code published with their paper was erroneous. The issue is further

addressed in benchmark tests for SJpearson().

The full improved algorithm is depicted in Algorithm 1.

3 Implementation

The package is implemented in C++ and is carefully programmed for high computing speed.

Memory consumption is dominated by three N×K matrices: the input X, the input S or a per-

muted X, and Y . The input X is normalized (column shifted and scaled) such that its Gramian

matrix equals the correlation matrix. The permuted X or S is in row-major for promoting

cache locality while left-multiplying the factorization A. Matrix multiplications are handmade

to exploit matrix symmetries and triangularities . All major operations except for Cholesky and

eigen decompositions, which utilize C++ library Armadillo, are crafted for multithreading.

3

Imposing Spearman correlations is equivalent to imposing the same Pearson correlations on

ranks. If a rank correlation matrix is given, the algorithm populates three N×K single-precision

matrices, X, a permuted X, and Y with normalized ranks, thus the memory usage stays below

three N ×K double-precision matrices. Single-precision floats are sufficiently accurate for ranks

due to their uniformity.

The package imports Rcpp, RcppArmadillo, RcppParallel for bridging C++ and R.

References

[1] R. L. Iman and W. J. Conover, “A distribution-free approach to inducing rank correlation

among input variables,” Communications in Statistics - Simulation and Computation, 1982.

[Online]. Available: https://doi.org/10.1080/03610918208812265

[2] J. Ruscio and W. Kaczetow, “Simulating multivariate nonnormal data using an

iterative algorithm,” Multivariate Behavioral Research, 2008. [Online]. Available:

https://doi.org/10.1080/00273170802285693

4

https://doi.org/10.1080/03610918208812265
https://doi.org/10.1080/00273170802285693

	Iman-Conover review
	Enhancement

	Ruscio-Kaczetow iteration
	Enhancement

	Implementation

