
Estimation of Stochastic Differential Equations with
Sim.DiffProc Package Version 3.0

by Arsalane Chouaib Guidoum1 and Kamal Boukhetala2

October 29, 2015

Abstract

The Stochastic differential equations, especially diffusion processes, have been widely used in
physical and biological sciences and in financial economics. In mathematical finance the success
of the diffusion process can be attributed to its many attractive properties. However, all models
involve unknown parameters or functions, which need to be estimated from observations of the
process. The estimation of diffusion processes is therefore a crucial step in all applications, in
particular, in applied finance. The main purpose in this vignette is to introduce the pseudo-
maximum likelihood estimators for one-dimensional stochastic differential equations, the package
implement Sim.DiffProc [Guidoum and Boukhetala, 2015] it explains how to use the function
fitsde for these estimation techniques.

1 Introduction

The estimation based on discrete time observations is in general difficult. The main obstacle is
the fact that SDEs do not explicitly specify the conditional dynamics associated with the sampling
process. The general framework is given by the following one-dimensional (Itô) SDE:

dXt = f(t,Xt, θ)dt+ g(t,Xt, θ)dWt, t ≥ 0 , X0 = x0, (1)

where Wt is a standard Wiener process, f : Θ × [0, T ] × R → R, called the drift coefficient,
and g : Ξ × [0, T ] × R → R+, called the diffusion coefficient, are known functions except the
unknown parameters θ, Θ ⊂ R, Ξ ⊂ R and E(X2

0 ) < ∞. Parameters θ in (1) are crucial for the
characterization of dynamic phenomena being considered, naturally, researchers are interested in
obtaining better estimates of the parameters using the observation data. There a rich literature and
many books with applications in different fields and computer vision, e.g., Prakasa [1999], Sørensen
[2000], Kutoyants [2004], Stefano [2008, 2011]. In practical situations the available data are discrete
time series (in R class ’ts’) data sampled over some time interval. Thus, the parameter estimation
for discretely observed SDE is non-trivial and during the past decades it has generated a great deal
of research effort, and has attracted the attention of lot of researchers. The following list is an
attempt to summarise some contributions, despite the great number. However, it is certainly not a
complete reference of the subject of the techniques to estimate in SDE’s (e.g. Dacunha and Florens
[1986], Dohnal [1987], Florens [1989], Genon [1990], Ozaki [1992], Yoshida [1992], Pedersen [1995],
Kloeden et all [1996], Kessler [1997], Gallant and Long [1997], Shoji and Ozaki [1997, 1998], Hurn
and Lindsay [1999], Florens [1999], Aı̈t-Sahalia [1999, 2002], Nicolau [2002, 2004], Sørensen [2000,
2002, 2004], Hurn et all [2003], Alcock and Burrage [2004], Ogihara and Yoshida [2011], Uchida
and Yoshida [2012], Brouste and Stefano [2013],. . . ) to the best of our knowledge.
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There already exist a number of packages that can perform for estimation of SDE’s with dif-
ferent methods in R Development Core Team [2015]; see sde [Stefano, 2015] it is the accompa-
nying package to the book of [Stefano, 2008]. The yuima project package [Stefano et all, 2014]
for simulation and inference for (multidimensional) SDE’s; and PSM package [Stig and Søren, 2013]
for estimation of linear and non-linear mixed-effects models using SDE’s, are freely available on
CRAN. The package Sim.DiffProc [Guidoum and Boukhetala, 2015] contains specific function
fitsde for pseudo-maximum likelihood (also denoted quasi-maximum likelihood) estimators for
one-dimensional SDE’s, we implement four approximation scheme: Euler1 [Florens, 1989, Yoshida,
1992], Ozaki2 [Ozaki, 1992], Shoji-Ozaki2 [Shoji and Ozaki, 1998] and Kessler2 method [Kessler,
1997]. These approximation schemes do not approximate the transition density of (1) directly but
the path of the process Xt in such a way that the discretized version of the process has a likelihood
that is usable.

2 Pseudo-likelihood methods

To simplify equation (1), suppose that the infinitesimal coefficients do not depend on t, i.e. consider:

dXt = f(Xt, θ)dt+ g(Xt, θ)dWt, t ≥ 0 , X0 = x0, (2)

Xt is a time-homogeneous process. In this case the transition density (which we always assume to
exist) depends only on ∆t, x and y. Hence, we can write it in the form p(∆t, x, y) (or p(ti−1, x, ti, y)).
If ∆t is constant and some regularity conditions it is known that p(t− s, x, y) satisfies the equation
of Fokker-Planck backward, it focuses on the variable x starting,

∂p

∂s
= f(x)

∂p

∂x
+

1

2
g2(x)

∂2p

∂x2
, (3)

Only in simple cases can we solve these Partial differential equation (PDEs). Since the transition
densities are generally unknown we cannot in principle obtain the MLE. Nevertheless, we will see
some methods that can estimate these densities. With initial condition X0 and θ the p-dimensional
parameter of interest, by Markov property of diffusion processes, the likelihood has this form:

Ln(θ) =

n∏
i=1

log pθ(∆t,Xi−1, Xi)pθ(X0), (4)

and the log-likelihood is:

ln(θ) = logLn(θ) =

n∑
i=1

log pθ(∆t,Xi−1, Xi) + log(pθ(X0)), (5)

(5) be the log-likelihood function associated with the (2). If some conditional moments of Xt are
known but not the true transition density p, it is possible to estimate θ from a density h that
although not belonging to the family of the true conditional density, is compatible in terms of
moments with p. The h density is denoted as the pseudo true density. The pseudo maximum
likelihood (PMLE) is defined as the solution of the following optimization problem:

θ̂n = argmax
θ∈Θ

hn(θ|X1, X2, . . . , Xn), (6)

with:

hn(θ|X1, X2, . . . , Xn) =

n∑
i=1

log hθ(∆t,Xi−1, Xi) + log(hθ(X0)), (7)

Under some conditions this techniques apply to high frequency data i.e., ∆t→ 0 and n∆t→ +∞.

1The implementation of this method in R is very easy see Stefano [2008, p. 122].
2The functions dcOzaki, dcShoji and dcKessler are available on sde package Stefano [2015], for approximated

conditional law of a diffusion process.
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The Sim.DiffProc package implements PMLE via the fitsde function. The interface and the
output of the fitsde function are made as similar as possible to those of the standard mle function
in the stats4 package of the basic R system. The main arguments to fitsde consist of a data of
type a univariate time series (ts object) and initial values (start) for the optimizer. The drift

and diffusion indicate drift and diffusion coefficient of the model (1), is an expression of two
variables t, x and theta names of the parameters, and must be nominated by a vector of theta =

(theta[1], theta[2],..., theta[p]) for reasons of symbolic derived in approximation meth-
ods. The start argument must be specified as a named list, where the names of the elements of
the list correspond to the names of the parameters as they appear in the drift and diffusion

coefficient. The pmle argument must be a character string specifying the method to use, can be
either: "euler", "ozaki", "shoji" and "kessler". We can select the optimization method by the
argument optim.method ("L-BFGS-B" is used by default), and further arguments to pass to optim

function. The following we explain how to use this function to estimate a model (1) with different
approximation methods, as well as other functions of type ’S3’ are linking to a class ’fitsde’.

2.1 Euler method

Consider a process solution of the general stochastic differential equation (2), the Euler scheme
produces the discretization (∆t→ 0):

Xt+∆t −Xt = f(Xt, θ)∆t+ g(Xt, θ)(Wt+∆t −Wt),

the increments Xt+∆t − Xt are then independent Gaussian random variables with mean: Ex =
f(Xt, θ)∆t, and variance: Vx = g2(Xt, θ)∆t. Therefore the transition density of the process can
be written as:

pθ(t, y|x) =
1√

2πtg2(x, θ)
exp

(
−(y − x− f(x, θ)t)2

2tg2(x, θ)

)
then the log-likelihood is:

hn(θ|X1, X2, . . . , Xn) = −1

2

(
n∑
i=1

(Xi −Xi−1 − f(Xi−1, θ)∆)2

σ2∆t
+ n log(2πσ2∆t)

)
(8)

the equation above is also called the locally Gaussian approximation. Florens [1989] and Yoshida
[1992] showed that a consistent estimator of σ2 is:

σ̂2 =
1

n∆t

n∑
i=1

(Xi −Xi−1)2

As an example, we consider the Chan-Karolyi-Longstaff-Sanders (CKLS) model:

dXt = (θ1 + θ2Xt)dt+ θ3X
θ4
t dWt, X0 = 2 (9)

with θ1 = 1, θ2 = 2, θ3 = 0.5 and θ4 = 0.3. Before calling fitsde, we generate sampled data Xti ,
with ∆t = 10−3, as following:

> f <- expression( (1+2*x) )

> g <- expression( 0.5*x^0.3 )

> sim <- snssde1d(drift=f,diffusion=g,x0=2,M=1,N=1000,Dt=0.001)

> mydata <- sim$X

we set the initial values for the optimizer as θ1 = θ2 = θ3 = θ4 = 1, and we specify the coefficients
drift and diffusion as expressions. you can use the upper and lower limits of the search region
used by the optimizer (here using the default method "L-BFGS-B"), and specifying the method to
use with pmle="euler". We can now use the function fitsde to estimate the parameters of (9) as
follows:
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> fx <- expression( theta[1]+theta[2]*x ) ## drift coefficient of model (9)

> gx <- expression( theta[3]*x^theta[4] ) ## diffusion coefficient of model (9)

> fitmod <- fitsde(data=mydata,drift=fx,diffusion=gx,start = list(theta1=1,

+ theta2=1,theta3=1,theta4=1),pmle="euler")

The estimated coefficients are extracted from the output object fitmod as follows:

> coef(fitmod)

theta1 theta2 theta3 theta4

1.1201172 2.1384034 0.5288006 0.2701521

we can use the summary function to produce result summaries of output object fitmod:

> summary(fitmod)

Pseudo maximum likelihood estimation

Method: Euler

Call:

fitsde(data = mydata, drift = fx, diffusion = gx, start = list(theta1 = 1,

theta2 = 1, theta3 = 1, theta4 = 1), pmle = "euler")

Coefficients:

Estimate Std. Error

theta1 1.1201172 1.57355762

theta2 2.1384034 0.19229249

theta3 0.5288006 0.03752510

theta4 0.2701521 0.03479513

-2 log L: -4298.304

The functions of type S3 method (as similar of the standard mle function in the stats4 package
of the basic R system) for the class ’fitsde’ are the following:

◦ coef: which extracts model coefficients from objects returned by ’fitsde’.

◦ vcov: returns the variance-covariance matrix of the parameters of a fitted model objects.

◦ logLik: extract log-likelihood.

◦ AIC: calculating Akaike’s Information Criterion for fitted model objects.

◦ BIC: calculating Schwarz’s Bayesian Criterion for fitted model objects.

◦ confint: computes confidence intervals for one or more parameters in a fitted model objects.

> vcov(fitmod)

theta1 theta2 theta3 theta4

theta1 2.476083599 -0.2524732417 -0.0038764366 0.0038346123

theta2 -0.252473242 0.0369764031 0.0004688301 -0.0004628819

theta3 -0.003876437 0.0004688301 0.0014081329 -0.0012391759

theta4 0.003834612 -0.0004628819 -0.0012391759 0.0012107014

> AIC(fitmod)

[1] -4290.304
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> confint(fitmod, level=0.95)

2.5 % 97.5 %

theta1 -1.9639990 4.2042335

theta2 1.7615170 2.5152898

theta3 0.4552527 0.6023484

theta4 0.2019549 0.3383494

2.2 Ozaki method

The second approach we present is the Ozaki method (Ozaki [1992], Shoji and Ozaki [1997]), and
it works for homogeneous stochastic differential equations. Consider the stochastic differential
equation:

dXt = f(Xt, θ)dt+ σdWt, t ≥ 0 , X0 = x0, (10)

where σ is supposed to be constant. We just recall that the transition density for the Ozaki method
is Gaussian, we have that: Xt+∆t|Xt = x ∼ N (Ex,Vx), where:

Ex = x+
f(x)

∂xf(x)

(
e∂xf(x)∆t − 1

)
, (11)

Vx = σ2 e
2Kx∆t − 1

2Kx
, (12)

with:

Kx =
1

∆t
log

(
1 +

f(x)

x∂xf(x)

(
e∂xf(x)∆t − 1

))
It is always possible to transform equation (2) with a constant diffusion coefficient using the Lam-
perti transform (see Shoji and Ozaki [1998], Florens [1999], Aı̈t-Sahalia [2002] and Stefano [2008,
p. 40]).

Now we consider the Vasicek model, with f(x, θ) = θ1(θ2−x) and constant volatility g(x, θ) = θ3,

dXt = θ1(θ2 −Xt)dt+ θ3dWt, X0 = 5 (13)

with θ1 = 3, θ2 = 2 and θ3 = 0.5, we generate sampled data Xti , with ∆t = 10−2, as following:

> f <- expression( 3*(2-x) )

> g <- expression( 0.5 )

> sim <- snssde1d(drift=f,diffusion=g,x0=5,Dt=0.01)

> HWV <- sim$X

we set the initial values for the optimizer as θ1 = θ2 = θ3 = 1, and we specify the coefficients drift
and diffusion as expressions. Specifying the method to use with pmle="ozaki", which can easily
be implemented in R as follows:

> fx <- expression( theta[1]*(theta[2]- x) ) ## drift coefficient of model (13)

> gx <- expression( theta[3] ) ## diffusion coefficient of model (13)

> fitmod <- fitsde(data=HWV,drift=fx,diffusion=gx,start = list(theta1=1,theta2=1,

+ theta3=1),pmle="ozaki")

> summary(fitmod)

Pseudo maximum likelihood estimation

Method: Ozaki

Call:

fitsde(data = HWV, drift = fx, diffusion = gx, start = list(theta1 = 1,

theta2 = 1, theta3 = 1), pmle = "ozaki")
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Estimate Std. Error

theta1 3.0844858 0.56115144

theta2 1.9897618 0.22305649

theta3 0.4675424 0.03306254

-2 log L: -329.5772

If you want to have confidence intervals θ1 and θ2 parameters only, using the command confint

as following:

> confint(fitmod,parm=c("theta1","theta2"),level=0.95)

2.5 % 97.5 %

theta1 1.984649 4.184322

theta2 1.552579 2.426944

2.3 Shoji-Ozaki method

An extension of the method to Ozaki the more general case where the drift is allowed to depend on
the time variable t, and also the diffusion coefficient can be varied is the method Shoji and Ozaki
[1998]. Consider the stochastic differential equation:

dXt = f(t,Xt, θ)dt+ g(Xt, θ)dWt, t ≥ 0 , X0 = x0, (14)

the transition density for the Shoji-Ozaki method is Gaussian, we have that: Xt+∆t|Xt = x ∼
N
(

A(t,x)x,B
2
(t,x)

)
, where:

A(t,x) = 1 +
f(t, x)

xLt

(
eLt∆t − 1

)
+

Mt

xL2
t

(
eLt∆t − 1− Lt∆t

)
, (15)

B(t,x) = g(x)

√
e2Lt∆t − 1

2Lt
, (16)

with:

Lt = ∂xf(t, x) and Mt =
g2(x)

2
∂xxf(t, x) + ∂tf(t, x).

for more details, can be found in the original works Shoji and Ozaki [1997, 1998]. As an example,
we consider the following model:

dXt = a(t)Xtdt+ θ2XtdWt, X0 = 10 (17)

with: a(t) = θ1t, and we generate sampled data Xti , with θ1 = −2, θ2 = 0.2 and time step
∆t = 10−3, as following:

> f <- expression(-2*x*t)

> g <- expression(0.2*x)

> sim <- snssde1d(drift=f,diffusion=g,N=1000,Dt=0.001,x0=10)

> mydata <- sim$X

we set the initial values for the optimizer as θ1 = θ2 = 1, and we specify the method to use with
pmle="shoji",

> fx <- expression( theta[1]*x*t ) ## drift coefficient of model (17)

> gx <- expression( theta[2]*x ) ## diffusion coefficient of model (17)

> fitmod <- fitsde(data=mydata,drift=fx,diffusion=gx,start = list(theta1=1,

+ theta2=1),pmle="shoji")

> summary(fitmod)
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Pseudo maximum likelihood estimation

Method: Shoji

Call:

fitsde(data = mydata, drift = fx, diffusion = gx, start = list(theta1 = 1,

theta2 = 1), pmle = "shoji")

Coefficients:

Estimate Std. Error

theta1 -1.9994423 0.347451420

theta2 0.2004914 0.004485035

-2 log L: -3033.682

> vcov(fitmod)

theta1 theta2

theta1 1.207225e-01 -6.058961e-06

theta2 -6.058961e-06 2.011554e-05

> logLik(fitmod)

[1] 1516.841

> confint(fitmod,level=0.9)

5 % 95 %

theta1 -2.5709490 -1.4279356

theta2 0.1931142 0.2078686

2.4 Kessler method

Kessler [1997] proposed to use a higher-order Itô-Taylor expansion to approximate the mean and
variance in a conditional Gaussian density. Consider the stochastic differential equation (1), the
transition density by Kessler method is: Xt+∆t|Xt = x ∼ N (Ex,Vx), where:

Ex = x+ f(t, x)∆t+

(
f(t, x)∂xf(t, x) +

1

2
g2(t, x)∂xxg(t, x)

)
(∆t)2

2
, (18)

Vx = x2 + (2f(t, x)x+ g2(t, x))∆t+

(
2f(t, x) (∂xf(t, x)x+ f(t, x) + g(t, x)∂xg(t, x))

+ g2(t, x)
(
∂xxf(t, x)x+ 2∂xf(t, x) + ∂xg

2(t, x) + g(t, x)∂xxg(t, x)
))(∆t)2

2
− E2

x. (19)

In the framework consider by this approximation, see Kessler [1997] for the result for the maximum
likelihood estimator.

We consider the following Hull-White (extended Vasicek) model:

dXt = a(t)(b(t)−Xt)dt+ σ(t)dWt, X0 = 2 (20)

with: a(t) = θ1t and b(t) = θ2

√
t, the volatility depends on time: σ(t) = θ3t. We generate sampled

data of (20), with θ1 = 3, θ2 = 1 and θ3 = 0.3, time step ∆t = 10−3, as following:

> f <- expression(3*t*(sqrt(t)-x))

> g <- expression(0.3*t)

> sim <- snssde1d(drift=f,diffusion=g,M=1,N=1000,x0=2,Dt=0.001)

> mydata <- sim$X
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we set the initial values for the optimizer as θ1 = θ2 = θ3 = 1, and we specify the method to use
with pmle="kessler",

> ## drift coefficient of model (20)

> fx <- expression( theta[1]*t* ( theta[2]*sqrt(t) - x ) )

> ## diffusion coefficient of model (20)

> gx <- expression( theta[3]*t )

> fitmod <- fitsde(data=mydata,drift=fx,diffusion=gx,start = list(theta1=1,

+ theta2=1,theta3=1),pmle="kessler")

> summary(fitmod)

Pseudo maximum likelihood estimation

Method: Kessler

Call:

fitsde(data = mydata, drift = fx, diffusion = gx, start = list(theta1 = 1,

theta2 = 1, theta3 = 1), pmle = "kessler")

Coefficients:

Estimate Std. Error

theta1 3.1334952 0.333744885

theta2 1.1253709 0.158830540

theta3 0.2957026 0.006615639

-2 log L: -8492.931

3 The fitsde() in practice

3.1 Estimation of attractive model

We propose the following dispersion models family [Boukhetala, 1996]:

dRt =

(
0.5θ2

3R
θ2−1
t − θ1

Rθ2t

)
dt+ θ3dWt, (21)

where: 2θ1 > θ2
3 condition to ensure attractiveness; we generate sampled data of this model, with

θ1 = 5, θ2 = 1 and θ3 = 0.2, ∆t = 10−3, as following:

> theta1 = 5; theta2 = 1; theta3 = 0.2

> f <- expression( ((0.5*theta3^2 *x^(theta2-1) - theta1)/ x^theta2) )

> g <- expression( theta3 )

> sim <- snssde1d(drift=f,diffusion=g,M=1,N=1000,x0=3,Dt=0.001)

> mydata <- sim$X

we use fitsde function to estimate the parameters of model (21) as follows:

> fx <- expression( ((0.5*theta[3]^2 *x^(theta[2]-1) - theta[1])/ x^theta[2]) )

> gx <- expression(theta[3])

> fitmod <- fitsde(mydata,drift=fx,diffusion=gx, start = list(theta1=1,theta2=1,

+ theta3=1),pmle="euler")

> coef(fitmod)

theta1 theta2 theta3

5.0176690 1.0077608 0.2040635

for to calculate the bias and confidence intervals of estimators it is easy, we can proceed as follows:
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> true <- c(theta1,theta2,theta3) ## True parameters

> bias <- true-coef(fitmod)

> bias

theta1 theta2 theta3

-0.017669042 -0.007760805 -0.004063473

> confint(fitmod)

2.5 % 97.5 %

theta1 4.4894051 5.5459330

theta2 0.9594991 1.0560225

theta3 0.1951120 0.2130149

3.2 Model selection via AIC

The aim is to try to identify the underlying continuous model on the basis of discrete observations
using AIC (Akaike Information Criterion) statistics. Uchida and Yoshida [2005] develop the AIC
statistics defined as:

AIC = −2hn

(
θ̂PML
n

)
+ 2dim(Θ), (22)

where θ̂PML
n is the pseudo maximum likelihood estimator and hn the local Gaussian approximation

of the true log-likelihood. When comparing several models for a given data set, the models such
that the AIC is lower is preferred.

Let the following models:

dXt = θ1Xtdt+ θ2X
θ3
t dWt, (true model)

dXt = (θ1 + θ2Xt)dt+ θ3X
θ4
t dWt, (competing model 1)

dXt = (θ1 + θ2Xt)dt+ θ3

√
XtdWt, (competing model 2)

dXt = θ1dt+ θ2X
θ3
t dWt, (competing model 3)

We generate data from true model with parameters θ = (2, 0.3, 0.5), initial value X0 = 2 and
∆t = 10−3, as following:

> f <- expression( 2*x )

> g <- expression( 0.3*x^0.5 )

> sim <- snssde1d(drift=f,diffusion=g,M=1,N=1000,x0=2,Dt=0.001)

> mydata <- sim$X

We test the performance of the AIC statistics for the four competing models, we can proceed as
follows:

> ## True model

> fx <- expression( theta[1]*x )

> gx <- expression( theta[2]*x^theta[3] )

> truemod <- fitsde(data=mydata,drift=fx,diffusion=gx,start = list(theta1=1,

+ theta2=1,theta3=1),pmle="euler")

> ## competing model 1

> fx1 <- expression( theta[1]+theta[2]*x )

> gx1 <- expression( theta[3]*x^theta[4] )

> mod1 <- fitsde(data=mydata,drift=fx1,diffusion=gx1,start = list(theta1=1,

+ theta2=1,theta3=1,theta4=1),pmle="euler")

> ## competing model 2

> fx2 <- expression( theta[1]+theta[2]*x )

> gx2 <- expression( theta[3]*sqrt(x) )
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> mod2 <- fitsde(data=mydata,drift=fx2,diffusion=gx2,start = list(theta1=1,

+ theta2=1,theta3=1),pmle="euler")

> ## competing model 3

> fx3 <- expression( theta[1] )

> gx3 <- expression( theta[2]*x^theta[3] )

> mod3 <- fitsde(data=mydata,drift=fx3,diffusion=gx3,start = list(theta1=1,

+ theta2=1,theta3=1),pmle="euler")

> ## Computes AIC

> AIC <- c(AIC(truemod),AIC(mod1),AIC(mod2),AIC(mod3))

> Test <- data.frame(AIC,row.names = c("True mod","Comp mod1","Comp mod2",

+ "Comp mod3"))

> Test

AIC

True mod -4867.597

Comp mod1 -4865.617

Comp mod2 -4867.587

Comp mod3 -4810.597

> Bestmod <- rownames(Test)[which.min(Test[,1])]

> Bestmod

[1] "True mod"

the estimates under the different models,

> Theta1 <- c(coef(truemod)[[1]],coef(mod1)[[1]],coef(mod2)[[1]],coef(mod3)[[1]])

> Theta2 <- c(coef(truemod)[[2]],coef(mod1)[[2]],coef(mod2)[[2]],coef(mod3)[[2]])

> Theta3 <- c(coef(truemod)[[3]],coef(mod1)[[3]],coef(mod2)[[3]],coef(mod3)[[3]])

> Theta4 <- c("",coef(mod1)[[4]],"","")

> Parms <- data.frame(Theta1,Theta2,Theta3,Theta4,row.names = c("True mod",

+ "Comp mod1","Comp mod2","Comp mod3"))

> Parms

Theta1 Theta2 Theta3 Theta4

True mod 1.8978518 0.3007418 0.4928129

Comp mod1 -0.1776481 1.9283156 0.3007623 0.4927636

Comp mod2 -0.1742726 1.9276524 0.2972557

Comp mod3 8.2200670 0.2914395 0.5297354

3.3 Application to real data

We make use of real data of the U.S. Interest Rates monthly form 06/1964 to 12/1989 (see Figure
1) available in package Ecdat [?], and we estimate the parameters θ = (θ1, θ2, θ3, θ4) of CKLS model
(9). These data have been analyzed by Stefano et all [2014] with yuima package, here we confirm
the results of the estimates by several approximation methods.

> data(Irates)

> rates <- Irates[, "r1"]

> X <- window(rates, start = 1964.471, end = 1989.333)

> plot(X)

we can now use all previous methods by fitsde function to estimate the parameters of model
(9) as follows:
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Figure 1: The U.S. Interest Rates monthly data from 06/1964 to 12/1989.

> fx <- expression( theta[1]+theta[2]*x ) ## drift coefficient of model (9)

> gx <- expression( theta[3]*x^theta[4] ) ## diffusion coefficient of model (9)

> pmle <- eval(formals(fitsde.default)$pmle)

> fitres <- lapply(1:4, function(i) fitsde(X,drift=fx,diffusion=gx,pmle=pmle[i],

+ start = list(theta1=1,theta2=1,theta3=1,theta4=1)))

> Coef <- data.frame(do.call("cbind",lapply(1:4,function(i) coef(fitres[[i]]))))

> Info <- data.frame(do.call("rbind",lapply(1:4,function(i) logLik(fitres[[i]]))),

+ do.call("rbind",lapply(1:4,function(i) AIC(fitres[[i]]))),

+ do.call("rbind",lapply(1:4,function(i) BIC(fitres[[i]]))),

+ row.names=pmle)

> names(Coef) <- c(pmle)

> names(Info) <- c("logLik","AIC","BIC")

> Coef

euler kessler ozaki shoji

theta1 2.0769516 2.1433505 2.1153154 2.1015009

theta2 -0.2631871 -0.2743368 -0.2690547 -0.2664674

theta3 0.1302158 0.1259800 0.1265225 0.1316708

theta4 1.4513173 1.4691660 1.4649140 1.4513080

> Info

logLik AIC BIC

euler -237.8786 483.7572 487.1514

kessler -237.7845 483.5690 486.9632

ozaki -237.8356 483.6712 487.0654

shoji -237.8786 483.7572 487.1514

In Figure 2 we reports the sample mean of the solution of the model (23) with the estimated
parameters and real data, their empirical 95% confidence bands (from the 2.5th to the 97.5th
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percentile), we can proceed as follows:

dXt = (2.076− 0.263Xt)dt+ 0.130X1.451
t dWt, (23)

> f <- expression( (2.076-0.263*x) )

> g <- expression( 0.130*x^1.451 )

> mod <- snssde1d(drift=f,diffusion=g,x0=X[1],M=200, N=length(X),t0=1964.471,

+ T=1989.333)

> mod

Ito Sde 1D:

| dx = (2.076 - 0.263 * x) * dt + 0.13 * x^1.451 * dw

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 298.

| Number of simulation | M = 200.

| Initial value | x0 = 3.317.

| Time of process | t in [1964.471,1989.333].

| Discretization | Dt = 0.08342953.

> plot(mod,plot.type="single",type="n",ylim=c(0,30))

> lines(X,col=4,lwd=2)

> lines(time(mod),mean(mod),col=2,lwd=2)

> lines(time(mod),bconfint(mod,level=0.95)[,1],col=5,lwd=2)

> lines(time(mod),bconfint(mod,level=0.95)[,2],col=5,lwd=2)

> legend("topleft",c("real data","mean path",paste("bound of", 95,"% confidence")),

+ inset = .01,col=c(4,2,5),lwd=2,cex=0.8)

Time

X

1965 1970 1975 1980 1985 1990

0
5

10
15

20
25

30 real data
mean path
bound of 95 % confidence

Figure 2: Real data vs the empirical mean of 200 simulated trajectories of model (23).

4 Summary

The asymptotic approach to statistical estimation is frequently adopted because of its general
applicability and relative simplicity. In this work we explained the use of fitsde function in

12



Sim.DiffProc package, which is based on pseudo-maximum likelihood estimator for one-dimensional
stochastic differential equations, with different approximation methods and some examples of ap-
plications.
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