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Abstract

We provide a detailed hands-on tutorial for the R Development Core Team [2014] add-on package
Sim.DiffProc [Guidoum and Boukhetala, 2014], for symbolic and floating point computations in stochas-
tic calculus and stochastic differential equations (SDEs). The package implement is introduced and it is
explains how to use the snssde1d, snssde2d and snssde3d main functions in this package, for simulate
uni- and multidimensional SDEs, notice that, in this version of the package, multidimensional SDEs need
to have diagonal noise.

1 Background and motivation

Differential equations are used to describe the evolution of a system. SDEs arise when a random noise is
introduced into ordinary differential equations (ODEs). Let us consider first an example to illustrate the need
for simulated and to analyze the properties of solution of SDEs. Many (or even most) processes in nature
and technology are driven by (temperature, energy, velocity, concentration,. . . ) changes. Such processes are
called diffusion (or dispersion) processes because the quantity considered (e.g., temperature) is distributed
to an equilibrium state is established (i.e., until the differences that drive the process are minimized). There
are many examples of diffusion processes. Diffusion is responsible for the distribution of sugar throughout a
cup of coffee. Diffusion is the mechanism by which oxygen moves into our cells. Diffusion is of fundamental
importance in many disciplines of physics, economics, mathematical finance, chemistry, and biology: diffusion
is relevant to the sintering process (powder metallurgy, production of ceramics), the chemical reactor design,
catalyst design in the chemical industry, doping during the production of semiconductors, and the transport of
necessary materials such as amino acids within biological cells. The diffusion processes {Xt, t ≥ 0} solutions
to SDEs, with slight notational variations, are standard in many books with applications in different fields,
see, e.g., Soong [1973], Rolski et all [1998], Øksendal [2000], Klebaner [2005], Henderson and Plaschko [2006],
Racicot and Théoret [2006], Allen [2007], Jedrzejewski [2009], Platen and Bruti-Liberati [2010], Stefano
[2011], Heinz [2011],. . . .

If Xt is a differentiable function defined for t ≥ 0, f(x, t) is a function of x and t, and the following
relation is satisfied for all t, 0 ≤ t ≤ T ,

dXt

dt
= X ′t = f(Xt, t), and X0 = x0, (1)

then Xt is a solution of the ODE with the initial condition x0. The above equation can be written in other
forms (by continuity of X ′t):

Xt = X0 +

∫ t

0

f(Xs, s)ds,

Before we give a rigorous definition of SDEs, we show how they arise as a randomly perturbed ODEs and
give a physical interpretation.

The White noise process ξt is formally defined as the derivative of the Wiener process,

ξt ≡
dWt

dt
≡W ′(t). (2)
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It does not exist as a function of t in the usual sense, since a Wiener process is nowhere differentiable. If g(x, t)

is the intensity of the noise at point x at time t, then it is agreed that
∫ T

0
g(Xt, t)ξtdt =

∫ T

0
g(Xt, t)W

′(t)dt =∫ T

0
g(Xt, t)dWt, is Itô integral [Itô, 1944]. SDEs arise, for example, when the coefficients of ordinary equation

(1) are perturbed by White noise. If Xt denotes the population density, then the population growth can
be described by the ODE: dXt/dt = aXt(1 −Xt). The growth is exponential with birth rate a, when this
density is small, and slows down when the density increases. Random perturbation of the birth rate results
in the equation: dXt/dt = (a+ σξt)Xt(1−Xt), or the SDE:

dXt = aXt(1−Xt)dt+ σXt(1−Xt)dWt, X0 = x0.

There are thus two widely used types of stochastic calculus, Stratonovich and Itô (see Kloeden and
Platen [1991a,b]), differing in respect of the stochastic integral used. Modelling issues typically dictate
which version in appropriate, but once one has been chosen a corresponding equation of the other type with
the same solutions can be determined. Thus it is possible to switch between the two stochastic calculus.
Specifically, the processes {Xt, t ≥ 0} solution to the Itô SDE:

dXt = f(t,Xt)dt+ g(t,Xt)dWt (3)

where {Wt, t ≥ 0} is the standard Wiener process or standard Brownian motion, the drift f(t,Xt) and
diffusion g(t,Xt) are known functions that are assumed to be sufficiently regular (Lipschitz, bounded growth)
for existence and uniqueness of solution see Øksendal [2000]; has the same solutions as the Stratonovich1

SDE:
dXt = f(t,Xt)dt+ g(t,Xt) ◦ dWt (4)

with the modified drift coefficient which is defined by:

f(t,Xt) = f(t,Xt)−
1

2
g(t,Xt)

∂g

∂x
(t,Xt)

Many theoretical problems on the SDEs have become the object of practical research, enabled many
searchers in different domains to use these equations to modeling and to analyse practical problems. We
seek to motivate further interest in this specific field by introducing the Sim.DiffProc package [Guidoum and
Boukhetala, 2014] to simulate the solution of a user defined Itô or Stratonovich uni- and multidimensional
SDEs, estimate parameters from data and visualize statistics, and other features that will be explained in
another vignettes (see vignette(package="Sim.DiffProc")), for example the determination of the first
passage time in SDEs. . . ; freely available on the Comprehensive R Archive Network (CRAN) at http://

CRAN.R-project.org/package=Sim.DiffProc. There already exist a number of packages that can perform
for stochastic calculus in R; see sde [Stefano, 2014] and yuima project package for SDEs [Stefano et all, 2014]
a freely available on CRAN, this packages provides functions for simulation and inference for stochastic
differential equations. It is the accompanying package to the book of Stefano [2008].

To install Sim.DiffProc package on your version of R(≥ 2.15.1), type the following line in the R console.

> install.packages("Sim.DiffProc")

If you don’t have enough privileges to install software on your machine or account, you will need the help
of your system administrator. Once the package has been installed, you can actually use it by loading the
code with:

> library(Sim.DiffProc)

A short list of help topics, corresponding to most of the commands in this package, is available by typing:

> library(help = "Sim.DiffProc")

This vignette contains only a brief introduction to using Sim.DiffProc package to simulate the solution of
a user defined Itô or Stratonovich stochastic differential equations.

2 Itô vs Stratonovich SDE’s

We can write an d-dimensional SDE in Itô form as:

dXt = F (t,Xt)dt+ G(t,Xt)dWt (5)

1To distinguish Stratonovich SDE from the Itô SDE we insert a ◦ before the differential dWt in equation (4).
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or in Stratonovich form as:
dXt = F (t,Xt)dt+ G(t,Xt) ◦ dWt (6)

where F (.) : Rd → Rd is called the drift of the SED’s, G(.) : Rd → Rd×m is called the diffusion of the
SDE’s, and Wt is an m-dimensional process having independent2 scalar Wiener process components. It is
possible to convert from one interpretation to the other in order to take advantage of one of the approaches
as appropriate: in the scalar case (d = 1), if the Itô SDE is as given in (3) then the Stratonovich SDE
is given by (4). In other words (5) and (6), under different rules of calculus, have the same solution,
for example: dXt = µXtdt + σXtdWt, has solution: Xt = X0 exp

((
µ− 0.5σ2

)
t+ σWt

)
, as dose dXt =(

µ− 0.5σ2
)
Xtdt+σXt◦dWt. Obviously, in the case of additive noise (g(.) independent of x⇒ ∂g/∂x = 0) the

Itô and Stratonovich representations are equivalent ((5) ≡ (6)). For multidimensional SDE’s the relationship
between the two representations is given by:

F i(t,Xt) = F i(t,Xt)−
1

2

d∑
j=1

m∑
k=1

Gjk(t,Xt)
∂Gik

∂Xj
(t,Xt), i = 1, . . . , d.

More in detail, the user can specify:

◦ The Itô or the Stratonovich SDE’s to be simulated.

◦ The SDE’s structural parameter value. i.e., the drift and diffusion coefficient of SDE’s.

◦ The number of the SDE’s solution trajectories to be simulated.

◦ The numerical integration method: Euler-Maruyama, Predictor-corrector, Milstein, Second Milstein,
Itô Taylor order 1.5, Heun order 2; Runge-Kutta 1,2 and 3-stage. There a rich literature on simulation
of solutions of the SDE’s, e.g., Kloeden and Platen [1989, 1995], Kloeden et all [1994], Saito and Mitsui
[1993], Kasdin [1995], Andreas [2003a,b, 2004, 2007, 2010].

◦ The time interval [t0, T ] to be considered.

◦ The integration stepsize (discretization).

To obtain:

◦ Numerical solution of SDE’s.

◦ Plot(s) of the solution trajectories.

◦ Plot(s) of the trajectories empirical mean, together with their α% confidence bands.

◦ Monte-Carlo statistics of the solution process at the end time T , i.e. mean, median, quantiles, moments,
skewness, kurtosis, α% confidence bands,. . . .

2.1 The snssde1d() function

Assume that we want to describe the following SDE in Itô3 form:

dXt =
1

2
µ2Xtdt+ µXtdWt, X0 = x0 (7)

in Stratonovich form:

dXt =
1

2
µ2Xtdt+ µXt ◦ dWt, X0 = x0 (8)

In the above F (t, x) = 1
2µ

2x and G(t, x) = µx, according to the notation of the (5) in the case d = 1 and Wt

is a standard Wiener process (m = 1). This can be described in Sim.DiffProc by specifying the drift and
diffusion coefficients as plain R expressions passed as strings which depends on the state variable x and time
variable t, by specifying only one trajectorie (M=1) in [t0, T ] = [0, 1], with integration stepsize ∆t = 0.001
(by default: Dt=(T-t0)/N), µ = 0.5 and X0 = 10. specifying the type of SED by type="ito" or type="str"
(by default type="ito"), and the numerical method used (by default method="euler").

> f <- expression( (0.5*0.5^2*x) )

> g <- expression( 0.5*x )

> mod1 <- snssde1d(drift=f,diffusion=g,x0=10,M=1,N=1000)

> mod2 <- snssde1d(drift=f,diffusion=g,x0=10,M=1,N=1000,type="str")

> mod1

2In this version of the package, multidimensional SDE’s need to have diagonal noise.
3The equivalently of (7) the following Stratonovich SDE: dXt = µXt ◦ dWt.
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Ito Sde 1D:

| dX(t) = (0.5 * 0.5^2 * X(t)) * dt + 0.5 * X(t) * dW(t)

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 1000.

| Number of simulation | M = 1.

| Initial value | x0 = 10.

| Time of process | t in [0,1].

| Discretization | Dt = 0.001.

> mod2

Stratonovich Sde 1D:

| dX(t) = (0.5 * 0.5^2 * X(t)) * dt + 0.5 * X(t) o dW(t)

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 1000.

| Number of simulation | M = 1.

| Initial value | x0 = 10.

| Time of process | t in [0,1].

| Discretization | Dt = 0.001.

which can be plotted using the command plot, and the result is shown in Figure 1.

> plot(mod1)

> plot(mod2)
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Figure 1: The plot function is used to draw a trajectory of a simulated ‘snssde1d’ object.

If we simulate 50 trajectories and let the settings above unchanged (except for the number of simulations, of
course); Using Monte-Carlo simulations, the following statistical measures (S3 method for class ’snssde1d’)
can be approximated for the Xt process at the end time T , i.e. XT :

1. the expected (mean) value E(XT ); using the command mean.

2. the variance var(XT ).

3. the median Med(XT ); using the command median.

4. the quartile of XT ; using the command quantile.

5. the skewness and the kurtosis of XT ; using the command skewness and kurtosis.
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6. the moments of XT ; using the command moment.

7. the α% confidence bands of XT ; using the command bconfint.

Can be use the summary function to produce result summaries of the results of class ’snssde1d’,

> mod1 <- snssde1d(drift=f,diffusion=g,x0=10,M=50,N=1000)

> mod2 <- snssde1d(drift=f,diffusion=g,x0=10,M=50,N=1000,type="str")

> summary(mod1)

Monte-Carlo Statistics for X(t) at final time T = 1

X

Mean 12.155176

Variance 25.821668

Median 11.019853

First quartile 8.473991

Third quartile 15.059542

Skewness 0.750526

Kurtosis 2.810960

Moment of order 2 25.305235

Moment of order 3 98.478635

Moment of order 4 1874.231273

Moment of order 5 15398.110084

Bound conf Inf (95%) 5.328406

Bound conf Sup (95%) 23.116779

> summary(mod2)

Monte-Carlo Statistics for X(t) at final time T = 1

X

Mean 9.336365

Variance 23.003131

Median 8.718121

First quartile 6.411597

Third quartile 10.280165

Skewness 1.737797

Kurtosis 7.162433

Moment of order 2 22.543069

Moment of order 3 191.725270

Moment of order 4 3789.958540

Moment of order 5 65590.226020

Bound conf Inf (95%) 3.565010

Bound conf Sup (95%) 19.095316

The flow of trajectories can be seen in Figure 2, reports the sample mean (red lines) of the solutions of the
Itô SDE (7) and Stratonovich SDE (8), their empirical 95% confidence bands (from the 2.5th to the 97.5th
percentile; blue lines), we can proceed as follows:

> plot(mod1,plot.type="single")

> lines(time(mod1),mean(mod1),col=2,lwd=2)

> lines(time(mod1),bconfint(mod1,level=0.95)[,1],col=4,lwd=2)

> lines(time(mod1),bconfint(mod1,level=0.95)[,2],col=4,lwd=2)

> legend("topleft",c("mean path",paste("bound of", 95,"% confidence")),

+ inset = .01,col=c(2,4),lwd=2,cex=0.8)

> dev.new()

> plot(mod2,plot.type="single")

> lines(time(mod2),mean(mod2),col=2,lwd=2)

> lines(time(mod2),bconfint(mod2,level=0.95)[,1],col=4,lwd=2)

> lines(time(mod2),bconfint(mod2,level=0.95)[,2],col=4,lwd=2)

> legend("topleft",c("mean path",paste("bound of", 95,"% confidence")),

+ inset = .01,col=c(2,4),lwd=2,cex=0.8)
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Figure 2: 50 trajectories of Itô SDE ’mod1’ (Left), and Stratonovich SDE ’mod2’ (Right).

2.1.1 Attractive model for one-diffusion processes

The problem of dispersion is a very complex phenomenon is many problems dealing with environment,
biology, physics, chemistry, etc . . . , the dynamical behavior of such phenomenon is a random process, often
hard to modeling mathematically. This problem, have been proposed by many authors Hadeler et all [1980],
Helland [1983], Heemink [1990], Boukhetala [1996]. For many dispersal problems, the diffusion processes
are used to modeling the behavior of the dispersal phenomenon. Consider a shallow water area with depth
L(x, y, z, t), horizontal Uw(x, y, z, t) and Vw(x, y, z, t), Sw(x, y, z, t) the velocities of the water in respectively
the x−, y− and z− directions, and Ua(x, y, z), Va(x, y, z), Sa(x, y, z) the velocities of a particle caused by
an attractive mechanism. Let (Xt, Yt, Zt) be the position of a particle injected in the water at time t = t0 at
the point (x0, y0, z0). For a single particle, we propose the following dispersion models family [Boukhetala,
1996]: 

dXt =
(
−Ua + Uw +

∂L
∂x

L D + ∂D
∂x

)
dt+

√
2DdW1,t

dYt =

(
−Va + Vw +

∂L
∂y

L D + ∂D
∂y

)
dt+

√
2DdW2,t , t ∈ [0, T ]

dZt =
(
−Sa + Sw +

∂L
∂z

L D + ∂D
∂z

)
dt+

√
2DdW3,t

(9)

with:

Ua =
Kx(√

x2 + y2 + z2
)s+1 , Va =

Ky(√
x2 + y2 + z2

)s+1 , Sa =
Kz(√

x2 + y2 + z2
)s+1 .

where s ≥ 1 and K > 0, (W1,t,W2,t,W3,t) three independent Brownian motions. Uw(x, y, z, t), Vw(x, y, z, t)
and Sw(x, y, z, t) are neglected and the dispersion coefficient D(x, y, z) is supposed constant and equal to
1
2σ

2 (σ > 0).
Using Itô’s transform for system (9), it is shown that the radial process Rt = ‖(Xt, Yt, Zt)‖ is a Markovian

diffusion, solution of the stochastic differential equation, given by:

dRt =

(
0.5σ2Rs−1

t −K
Rs

t

)
dt+ σdW̃t, (10)

where: 2K > σ2 condition to ensure attractiveness; ‖.‖ is the Euclidean norm and W̃t is a Brownian motion.
We simulate 50 trajectories to radial process (10) by snssde1d function, and the graphical representation
can be seen in Figure 3,

> K = 4; s = 1; sigma = 0.2

> fx <- expression( ((0.5*sigma^2 *x^(s-1) - K)/ x^s) )

> gx <- expression( sigma )

> mod <- snssde1d(drift=fx,diffusion=gx, x0=3, M=50, N=1000)

> mod
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Ito Sde 1D:

| dX(t) = ((0.5 * sigma^2 * X(t)^(s - 1) - K)/X(t)^s) * dt + sigma * dW(t)

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 1000.

| Number of simulation | M = 50.

| Initial value | x0 = 3.

| Time of process | t in [0,1].

| Discretization | Dt = 0.001.

> summary(mod)

Monte-Carlo Statistics for X(t) at final time T = 1

X

Mean 1.051489

Variance 0.296256

Median 1.086686

First quartile 0.809420

Third quartile 1.337744

Skewness 0.119612

Kurtosis 6.305873

Moment of order 2 0.290331

Moment of order 3 0.019288

Moment of order 4 0.553453

Moment of order 5 0.305881

Bound conf Inf (95%) 0.100276

Bound conf Sup (95%) 1.778940

> plot(mod,plot.type="single")
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Figure 3: Flow paths for an attractive model of one-diffusion processes.

2.2 The snssde2d() function

A system of two SDE’s for the couple (Xt,Yt) driven by two independent Brownian motions (W1,t,W2,t). Re-
member that this version of the package handles SDE’s with diagonal noise only. The following 2-dimensional
SDE’s into matrix form with a vector of drift expressions and a diffusion matrix in Itô form:(

dXt

dYt

)
=

(
fx(t,Xt, Yt)
fy(t,Xt, Yt)

)
dt+

(
gx(t,Xt, Yt) 0

0 gy(t,Xt, Yt)

)(
dW1,t

dW2,t

)
(11)
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in Stratonovich form:(
dXt

dYt

)
=

(
fx(t,Xt, Yt)
fy(t,Xt, Yt)

)
dt+

(
gx(t,Xt, Yt) 0

0 gy(t,Xt, Yt)

)
◦
(
dW1,t

dW2,t

)
(12)

We illustrate the usage of the snssde2d function to simulate the solution of a Itô (11) or Stratonovich (12)
SDE’s two dimensional, by a simple example and two applications.

2.2.1 Basic example

Assume that we want to describe the following SDE (2d) in Itô form:{
dXt = 4(−1−Xt)Ytdt+ 0.2dW1,t

dYt = 4(1− Yt)Xtdt+ 0.2dW2,t

(13)

for (13), we simulate a flow of 50 trajectories, with integration stepsize t = 0.001, and using stochastic
Runge-Kutta methods 3-stage,

> fx <- expression(4*(-1-x)*y)

> gx <- expression(0.2)

> fy <- expression(4*(1-y)*x)

> gy <- expression(0.2)

> mod2d <- snssde2d(driftx=fx,diffx=gx,drifty=fy,diffy=gy,x0=1,y0=-1,M=50,

+ Dt=0.001,method="rk3")

> mod2d

Ito Sde 2D:

| dX(t) = 4 * (-1 - X(t)) * Y(t) * dt + 0.2 * dW1(t)

| dY(t) = 4 * (1 - Y(t)) * X(t) * dt + 0.2 * dW2(t)

Method:

| Runge-Kutta method of order 3

Summary:

| Size of process | N = 1000.

| Number of simulation | M = 50.

| Initial values | (x0,y0) = (1,-1).

| Time of process | t in [0,1].

| Discretization | Dt = 0.001.

for plotted (with time) using the command plot, and in the plane (O,X, Y ) using the command plot2d.
The result is shown in Figure 4,

> plot(mod2d,pos=2)

> plot2d(mod2d)

Differential equations are used to describe the evolution of a system. SDEs arise when a random noise is
introduced into ordinary differential equations (ODEs). Let us consider first an example to illustrate the need
for simulated and to analyze the properties of solution of SDEs. Many (or even most) processes in nature
and technology are driven by (temperature, energy, velocity, concentration,. . . ) changes. Such processes are
called diffusion (or dispersion) processes because the quantity considered (e.g., temperature) is distributed
to an equilibrium state is established (i.e., until the differences that drive the process are minimized). There
are many examples of diffusion processes. Diffusion is responsible for the distribution of sugar throughout a
cup of coffee. Diffusion is the mechanism by which oxygen moves into our cells. Diffusion is of fundamental
importance in many disciplines of physics, economics, mathematical finance, chemistry, and biology: diffusion
is relevant to the sintering process (powder metallurgy, production of ceramics), the chemical reactor design,
catalyst design in the chemical industry, doping during are minimized). There are many examples of diffusion
processes. Diffusion is responsible for the distribution of sugar throughout a cup of coffee. Diffusion is the
mechanism by which oxygen moves into our cells. Diffusion is of fundamental importance in many disciplines
of physics, economics, mathematical finance, chemistry, and biology: diffusion is relevant to the sintering
process (powder metallurgy, production of ceramics), the chemical reactor design, catalyst design in the
chemical industry, doping during
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Figure 4: Simulation 50 trajectories of (13) (Left), representation of (13) in a plane (O,X, Y ) (Right).

2.2.2 Kalman-Bucy Filter

Assume that the signal and the observation processes satisfy linear Itô SDE’s [Klebaner, 2005, p. 379], with
time time-dependent non-random coefficients, given by:{

dXt = a1(t)Xtdt+ b1(t)dW1,t

dYt = a2(t)Xtdt+ b2(t)dW2,t

(14)

with two independent Brownian motions (W1,t,W2,t), and initial conditions (X0, Y0) = (0, 0), by specifying
the drift and diffusion coefficients of two process Xt and Yt as plain R expressions passed as strings which
depends on the two state variables (x,y) and time variable t, with a1(t) = 2t, a2(t) = 0.5t and b1(t) =
b2(t) = 0.1t, integration stepsizeand ∆t = 0.001 and numerical method used by default "euler". Which can
easily be implemented in R as follows:

> a1 <- function(t) 2*t

> a2 <- function(t) 0.5*t

> b1 = b2 <- function(t) 0.1*t

> fx <- expression(a1(t)*x)

> gx <- expression(b1(t))

> fy <- expression(a2(t)*x)

> gy <- expression(b2(t))

> mod2d <- snssde2d(driftx=fx,diffx=gx,drifty=fy,diffy=gy)

> mod2d

Ito Sde 2D:

| dX(t) = a1(t) * X(t) * dt + b1(t) * dW1(t)

| dY(t) = a2(t) * X(t) * dt + b2(t) * dW2(t)

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 1000.

| Number of simulation | M = 1.

| Initial values | (x0,y0) = (0,0).

| Time of process | t in [0,1].

| Discretization | Dt = 0.001.

for plotted (with time) using the command plot, and the result is shown in Figure 5,

> plot(mod2d,union=TRUE,pos=3)
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Figure 5: Kalman-Bucy Filter with time time-dependent non-random coefficients.

2.2.3 The stochastic Van-der-Pol equation

The Van der Pol equation is an ordinary differential equation that can be derived from the Rayleigh differ-
ential equation by differentiating and setting ẋ = y, see Van der Pol [1922], Naess and Hegstad [1994], Leung
[1995] and for more complex dynamics in Van der Pol equation see Zhujun et all [2006]. It is an equation
describing self-sustaining oscillations in which energy is fed into small oscillations and removed from large
oscillations. This equation arises in the study of circuits containing vacuum tubes and is given by:

Ẍ − µ(1−X2)Ẋ +X = 0, (15)

where x is the position coordinate (which is a function of the time t), and µ is a scalar parameter indicating
the nonlinearity and the strength of the damping. Consider additive stochastic perturbations of the Van der
Pol equation, and random excitation force of such systems by White noise ξt, with delta-type correlation
functions E(ξtξt+h) = 2σδ(h)

Ẍ − µ(1−X2)Ẋ +X = ξt, (16)

where µ > 0 . Its solution cannot be obtained in terms of elementary functions, even in the phase plane. The
White noise ξt is formally derivative of Wiener process Wt (2). The representation as a system of two first
order equations follows the same idea as in the deterministic case by letting ẋ = y, from physical equation
(16) we get the above system: {

Ẋ = Y

Ẏ = µ
(
1−X2

)
Y −X + ξt

(17)

the system (17) can be mathematically translated by a system of Stratonovitch equations,{
dXt = Ytdt

dYt =
(
µ(1−X2

t )Yt −Xt

)
dt+ 2σ ◦ dW2,t

(18)

implemented in R as follows:

> mu = 4; sigma=0.1

> fx <- expression( y )

> gx <- expression( 0 )

> fy <- expression( (mu*( 1-x^2 )* y - x) )

> gy <- expression( 2*sigma)

> mod2d <- snssde2d(driftx=fx,diffx=gx,drifty=fy,diffy=gy,type="str",T=100,N=10000)

> mod2d

Stratonovich Sde 2D:

| dX(t) = Y(t) * dt + 0 o dW1(t)

| dY(t) = (mu * (1 - X(t)^2) * Y(t) - X(t)) * dt + 2 * sigma o dW2(t)
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Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 10000.

| Number of simulation | M = 1.

| Initial values | (x0,y0) = (0,0).

| Time of process | t in [0,100].

| Discretization | Dt = 0.01.

which can be plotted in the plane (O,X, Y ) using the command plot2d, and the result is shown in Figure
6 and 7:

> plot2d(mod2d)

> plot(mod2d,pos=3)
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Figure 6: 2D stochastic Van-der-Pol equation (Left). Relaxation oscillation in the Van der Pol oscillator
(Right) (µ = 4 and σ = 0.1).
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Figure 7: 2D stochastic Van-der-Pol equation (Left). Relaxation oscillation in the Van der Pol oscillator
(Right) (µ = 0.2 and σ = 0.1).
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2.3 The snssde3d() function

A system of three SDE’s for the triple (Xt, Yt, Zt) driven by three independent standard Brownian motions
(W1,t,W2,t,W3,t). The following 3-dimensional SDE’s into matrix form with a vector of drift expressions and
a diffusion matrix in Itô form: dXt

dYt
dZt

 =

 fx(t,Xt, Yt, Zt)
fy(t,Xt, Yt, Zt)
fz(t,Xt, Yt, Zt)

 dt+

 gx(t,Xt, Yt, Zt) 0 0
0 gy(t,Xt, Yt, Zt) 0
0 0 gz(t,Xt, Yt, Zt)

 dW1,t

dW2,t

dW3,t


(19)

in Stratonovich form: dXt

dYt
dZt

 =

 fx(t,Xt, Yt, Zt)
fy(t,Xt, Yt, Zt)
fz(t,Xt, Yt, Zt)

 dt+

 gx(t,Xt, Yt, Zt) 0 0
0 gy(t,Xt, Yt, Zt) 0
0 0 gz(t,Xt, Yt, Zt)

◦
 dW1,t

dW2,t

dW3,t


(20)

We illustrate the usage of the snssde3d function to simulate the solution of a Itô (19) or Stratonovich (20)
SDE’s three dimensional, by three applications.

2.3.1 Attractive model for multidimensional diffusion processes

If we assume that Uw(x, y, z, t), Vw(x, y, z, t) and Sw(x, y, z, t) are neglected and the dispersion coefficient
D(x, y, z)

(
= 0.5σ2

)
is constant. A system (9) becomes (see Boukhetala [1996]):

dXt =

(
−KXt

X2
t + Y 2

t + Z2
t

)
dt+ σdW1,t

dYt =

(
−KYt

X2
t + Y 2

t + Z2
t

)
dt+ σdW2,t (21)

dZt =

(
−KZt

X2
t + Y 2

t + Z2
t

)
dt+ σdW3,t

with initial conditions (X0, Y0, Z0) = (1, 1, 1), by specifying the drift and diffusion coefficients of three process
Xt, Yt and Zt as plain R expressions passed as strings which depends on the three state variables (x,y,z) and
time variable t, with integration stepsizeand ∆t = 0.0001 and numerical method used by default "euler".
Which can easily be implemented (21) in R as follows:

> K = 4; s = 1; sigma = 0.2

> fx <- expression( (-K*x/sqrt(x^2+y^2+z^2)) )

> gx <- expression(sigma)

> fy <- expression( (-K*y/sqrt(x^2+y^2+z^2)) )

> gy <- expression(sigma)

> fz <- expression( (-K*z/sqrt(x^2+y^2+z^2)) )

> gz <- expression(sigma)

> mod3d <- snssde3d(driftx=fx,diffx=gx,drifty=fy,diffy=gy,driftz=fz,diffz=gz,

+ N=10000,x0=1,y0=1,z0=1)

> mod3d

Ito Sde 3D:

| dX(t) = (-K * X(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW1(t)

| dY(t) = (-K * Y(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW2(t)

| dZ(t) = (-K * Z(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW3(t)

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 10000.

| Number of simulation | M = 1.

| Initial values | (x0,y0,z0) = (1,1,1).

| Time of process | t in [0,1].

| Discretization | Dt = 1e-04.

for plotted (with time) using the command plot, and in the space (O,X, Y, Z) using plot3D with two display
types ("rgl","persp"), the first with rgl package [Daniel and Duncan, 2014] and the second display with
scatterplot3d package [Uwe et all, 2014]. The result is shown in Figure 8,
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> plot3D(mod3d,display="persp",col="blue") ## in space

> plot(mod3d,union=TRUE,pos=2) ## with time
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Figure 8: 3-dimensional attractive model M(K = 4, s = 1, σ = 0.2).

2.3.2 Stochastic Lotka-Volterra three-species

In the 1920s, the Italian mathematician Vito Volterra [Volterra, 1926] proposed a differential equation model
to describe the population dynamics of two interacting species, a predator and its prey. Independently, in
the United States, the very equations studied by Volterra were derived by Alfred Lotka [Lotka, 1925] to
describe a hypothetical chemical reaction in which the chemical concentrations oscillate. The Lotka-Volterra
model consists of the following system of (2D) differential equations:{

Ẋ = aX − bXY
Ẏ = −cY + dXY

(22)

where Yt and Xt represent, respectively, the predator population and the prey population as functions of
time (for more details see, e.g., [Hofbauer and So, 1994],[Klebaner, 2005, p. 366]). The following model is
proposed by Erica et all [2002] as: 

Ẋ = aX − bXY
Ẏ = −cY + dXY − eY Z
Ż = −fZ + gY Z

(23)

The parameters a, b, c, d, e, f > 0, for the description of this model see Erica et all [2002]. We express
mathematically the system (23) by Stratonovitch equations,

dXt = (aXt − bXtYt)dt+ σ ◦ dW1,t

dYt = (−cYt + dXtYt − eYtZt)dt+ σ ◦ dW2,t

dZt = (−fZt + gYtZt)dt+ σ ◦ dW3,t

(24)

simulate this system in space (O,X, Y, Z) using the function snssde3d, with parameters a = b = c = d =
e = f = 1, σ = 0.03, (X0, Y0, Z0) = (0.5, 1, 2) and final time T = 50.

> fx <- expression(( x - x*y))

> gx <- expression(0.03)

> fy <- expression(( -y + x*y-y*z ))

> gy <- expression(0.03)

> fz <- expression(( -z+ y*z ))

> gz <- expression(0.03)

> mod3d <- snssde3d(driftx=fx,diffx=gx,drifty=fy,diffy=gy,driftz=fz,diffz=gz,

+ N=10000,T=20,x0=0.5,y0=1,z0=2,type="str")

> mod3d
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Stratonovich Sde 3D:

| dX(t) = (X(t) - X(t) * Y(t)) * dt + 0.03 o dW1(t)

| dY(t) = (-Y(t) + X(t) * Y(t) - Y(t) * Z(t)) * dt + 0.03 o dW2(t)

| dZ(t) = (-Z(t) + Y(t) * Z(t)) * dt + 0.03 o dW3(t)

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 10000.

| Number of simulation | M = 1.

| Initial values | (x0,y0,z0) = (0.5,1,2).

| Time of process | t in [0,20].

| Discretization | Dt = 0.002.

The result is shown in Figure 9,

> plot3D(mod3d,"persp",col="blue") ## in space

> plot(mod3d,union=TRUE) ## with time
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Figure 9: A trajectory in xyz-space (Left). A solution (Xt, Yt, Zt) with initial conditions (0.5,1,2) (Right).
(The case: a = b = c = d = e = f = 1 and σ = 0.03)

2.3.3 Transformation of a SDE one dimensional

Next is an example of one dimensional SDE driven by three independent Brownian motions (W1,t,W2,t,W3,t),
as follows:

dXt = µW1,tdt+ σW2,tdW3,t (25)

To simulate the solution of the equation (25) we make a transformation to a system of three equations as
follows:

dXt = µYtdt+ σZtdW3,t

dYt = dW1,t (26)

dZt = dW2,t

run by calling the function "snssde3d" to produce a simulation of the solution of (25), with µ = 2 and
σ = 0.2:

> fx <- expression(2*y)

> gx <- expression(0.2*z)

> fy <- expression(0)

> gy <- expression(1)
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> fz <- expression(0)

> gz <- expression(1)

> modtra <- snssde3d(driftx=fx,diffx=gx,drifty=fy,diffy=gy,driftz=fz,diffz=gz)

> modtra

Ito Sde 3D:

| dX(t) = 2 * Y(t) * dt + 0.2 * Z(t) * dW1(t)

| dY(t) = 0 * dt + 1 * dW2(t)

| dZ(t) = 0 * dt + 1 * dW3(t)

Method:

| Euler scheme of order 0.5

Summary:

| Size of process | N = 1000.

| Number of simulation | M = 1.

| Initial values | (x0,y0,z0) = (0,0,0).

| Time of process | t in [0,1].

| Discretization | Dt = 0.001.

the following code produces the result in the Figure 10,

> plot(modtra$X,plot.type="single",ylab="X")
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Figure 10: Simulate path of: dXt = 2W1,tdt+ 0.2W2,tdW3,t used snssde3d function.

3 Itô vs Stratonovich: How to choose?

◦ White noise is an idealisation; real fluctuating forcing has finite amplitude and timescale.

◦ If white noise is approximation to continuously fluctuating noise with finite memory (much shorter
than dynamical timescales), appropriate representation is Stratonovich.

◦ If white noise approximates set of discrete pulses with finite separation to which system responds, or
SDE continuous approximation to discrete system, then Itô representation appropriate.

◦ Because in an atmosphere/ocean/climate context ”driving noise” a representation of ”fast” part of
continuous fluid dynamical system, Stratonovich SDEs usually most natural. For example, consider
2D SDEs:

dXt

dt
= a(t,Xt) + b(t,Xt)η

dXt

dt
= −1

τ
η +

σ

τ
Ẇ

as τ → 0, η → Ẇ and Xt satisfies the Stratonovich SDE.

15



◦ Operationally: Stratonovich SDE’s easier to solve analytically, but Itô SDE’s more natural starting
point for numerical schemes.

◦ Chief usages:

◦ Stratonovich SDEs: Physics and engineering.

◦ Itô SDEs: Mathematical analysis and financial mathematics.

4 Summary

This work is about ready to be used Sim.DiffProc package for simulation of stochastic differential equations
and some related estimation methods based on discrete sampled observations from such models. We hope
that the package presented here and the updated survey on the subject might be of help for practitioners,
postgraduate and PhD students, and researchers in the field who might want to implement new methods
and ideas using R as a statistical environment. The simulation studies implemented in R language seem very
preferment and efficient, because it is a statistical environment, which permits to realize, to visualize and
validate the simulations.

References

Friedman, A. (1975). Stochastic differential equations and applications. Vol.1, Academic Press.

Soong, T.T. (1973). Random differential equations in science and engineering. Academic Press, New York.
Lc Number: QA274.23.S58.

Henderson, D. and Plaschko,P. (2006). Stochastic differential equations in science and engineering. World
Scientific.
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