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Abstract

Herein is an incomplete collection of facts about the Sharpe ratio, and

the Sharpe ratio of the Markowitz portfolio. Connections between the

Sharpe ratio and the t-test, and between the Markowitz portfolio and

the Hotelling T
2 statistic are explored. Many classical results for testing

means can be easily translated into tests on assets and portfolios.
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1 The Sharpe ratio

In 1966 William Sharpe suggested that the performance of mutual funds be
analyzed by the ratio of returns to standard deviation. [22] His eponymous

ratio1, ζ̂, is defined as 1. Sharpe
guaranteed this
ratio would
be renamed
by giving it
the unweildy
moniker of
’reward-to-
variability,’
yet another
example of my
Law of Implied
Eponymy.

ζ̂ =
µ̂

σ̂
,

where µ̂ is the historical, or sample, mean return of the mutual fund, and
σ̂ is the sample standard deviation. Sharpe admits that one would ideally use
predictions of return and volatility, but that “the predictions cannot be obtained
in any satisfactory manner . . . Instead, ex post values must be used.” [22]

A most remarkable fact about the Sharpe ratio, of which most practicioners
seem entirely unaware, is that it is, up to a scaling, merely the Student t-statistic
for testing whether the mean of a random variable is zero.2 In fact, the Sharpe

2. Sharpe
himself seems
to not make
the connection,
even though
he quotes
t-statistics for
a regression fit
in his original
paper![22]

ratio-test we now use, defined as

t =df
µ̂

σ̂/
√
n
=

√
nζ̂, (1)

is not the form first considered by Gosset (writing as “Student”).[7] Gosset
originally analyzed the distribution of

z =
µ̂

sN
=

µ̂

σ̂
√

(n− 1)/n
= ζ̂

√

n

n− 1
,

where sN is the “standard deviation of the sample,” a biased estimate of the
population standard deviation that uses n in the denominator instead of n− 1.
The connection to the t-distribution appears in Miller and Gehr’s note on the
bias of the Sharpe ratio, but has not been well developed. [15]

1.1 Distribution of the Sharpe ratio

Let x1, x2, . . . , xn be i.i.d. draws from a normal distribution N (µ, σ). Let
µ̂ =df

∑

i xi/n and σ̂2 =df
∑

i(xi − µ̂)2/(n − 1) be the unbiased sample mean
and variance, and let

t0 =df
√
n
µ̂− µ0

σ̂
. (2)

Then t0 follows a non-central t-distribution with n − 1 degrees of freedom and
non-centrality parameter

δ =df
√
n
µ− µ0

σ
.

Note the non-centrality parameter, δ, looks like the sample statistic t0, but
defined with population quantities. If µ = µ0, then δ = 0, and t0 follows a
central t-distribution. [9, 19]

Recalling that the modern t statistic is related to the Sharpe ratio by only a
scaling of

√
n, the distribution of Sharpe ratio assuming normal returns follows a

rescaled non-central t-distribution, where the non-centrality parameter depends
only on the signal-to-noise ratio (hereafter ‘SNR’), ζ =df µ/σ, which is the
population analogue of the Sharpe ratio, and the sample size.

Knowing the distribution of the Sharpe ratio is empowering, as interesting
facts about the t-distribution or the t-test can be translated into interesting
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facts about the Sharpe ratio: one can construct hypothesis tests for the SNR,
find the power and sample size of those tests, compute confidence intervals of
the SNR, correct for deviations from assumptions, etc.

1.2 Tests involving the Sharpe ratio

There are a number of statistical tests involving the Sharpe ratio or variants
thereupon.

1. The classical one-sample test for mean involves a t-statistic which is like a
Sharpe ratio with constant benchmark. Thus to test the null hypothesis:

H0 : µ = µ0 versus H1 : µ > µ0,

we reject if the statistic

t0 =
√
n
µ̂− µ0

σ̂

is greater than t1−α (n− 1), the 1−α quantile of the (central) t-distribution
with n− 1 degrees of freedom.
If µ = µ1 > µ0, then the power of this test is

1− Ft (t1−α (n− 1) ; δ1, n− 1) ,

where δ1 =
√
n (µ1 − µ0) /σ and Ft (x; δ, n− 1) is the cumulative distri-

bution function of the non-central t-distribution with non-centrality pa-
rameter δ and n− 1 degrees of freedom. [19]

2. A one-sample test for signal-to-noise ratio (SNR) involves the t-statistic.
To test:

H0 : ζ = ζ0 versus H1 : ζ > ζ0,

we reject if the statistic t =
√
nζ̂ is greater than t1−α (δ0, n− 1), the 1−α

quantile of the non-central t-distribution with n − 1 degrees of freedom
and non-centrality parameter δ0 =

√
nζ0.

If ζ = ζ1 > ζ0, then the power of this test is

1− Ft (t1−α (δ0, n− 1) ; δ1, n− 1) ,

where δ1 =
√
nζ1 and Ft (x; δ, n− 1) is the cumulative distribution func-

tion of the non-central t-distribution with non-centrality parameter δ and
n− 1 degrees of freedom. [19]

1.3 Moments of the Sharpe Ratio

Based on the moments of the non-central t-distribution, the expected value
of the Sharpe ratio is not the signal-to-noise ratio (SNR), rather there is a
systematic geometric bias. [26, 27] The t-statistic, which follows a non-central
t-distribution with parameter δ and n− 1 degrees of freedom has the following
moments:

E [t] = δ

√

n− 1

2

Γ ((n− 2)/2)

Γ ((n− 1)/2)
= δcn,

Var (t) =
(1 + δ2)(n− 1)

n− 3
− E [t]

2
.

(3)
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Here cn =
√

n−1
2 Γ ((n− 2)/2) /Γ ((n− 1)/2), is the ’bias term’. These can be

trivially translated into equivalent facts regarding the Sharpe ratio:

E
[

ζ̂
]

= ζcn,

Var
(

ζ̂
)

=
(1 + nζ2)(n− 1)

n(n− 3)
− E

[

ζ̂
]2

.
(4)

The geometric bias term cn does not equal one, thus the sample t statistic
is a biased estimator of the non-centrality parameter, δ when δ 6= 0, and the
Sharpe ratio is a biased estimator of the signal-to-noise ratio when it is nonzero.
[15] The bias term is a function of sample size only, and approaches one fairly
quickly. However, there are situations in which it might be unacceptably large.

For example, if one was looking at one year’s worth of data with monthly
marks, one would have a fairly large bias: cn = 1.08, i.e., almost eight percent.
The bias is multiplicative and larger than one, so the Sharpe ratio will over-
estimate the SNR when the latter is positive, and underestimate it when it is
negative. The existence of this bias was first described by Miller and Gehr. [15]

A decent asymptotic approximation [1] to cn is given by

cn+1 = 1 +
3

4n
+

25

32n2
+O

(

n−3
)

.

1.4 Asymptotics and Confidence Intervals

Lo showed that the Sharpe ratio is asymptotically normal in n with standard

deviation

√

(1 + ζ̂2

2 )/n. [14] The equivalent result concerning the non-central

t-distribution (which, again, is the Sharpe ratio up to scaling by
√
n) was pub-

lished 60 years prior by Johnson and Welch. [9] Since the SNR, ζ̂, is unknown,
Lo suggests approximating it with the Sharpe ratio, giving the following ap-
proximate 1− α confidence interval on the SNR:

ζ̂ ± zα/2

√

1 + ζ̂2

2

n
,

where zα/2 is the α/2 quantile of the normal distribution. In practice, the
asymptotically equivalent form

ζ̂ ± zα/2

√

1 + ζ̂2

2

n− 1

has better small sample coverage, at least for normal returns.
According to Walck,

t(1− 1
4(n−1) )− δ

√

1 + t2

2(n−1)

is asymptotically (in n) a standard normal random variable, where t is the
t-statistic, which is the Sharpe ratio up to scaling. [26]
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This suggests the following approximate 1 − α confidence interval on the
SNR:

ζ̂

(

1− 1

4(n− 1)

)

± zα/2

√

1

n
+

ζ̂2

2(n− 1)
.

The normality results generally hold for large n, small ζ, and assume nor-
mality of x. [9] We can find confidence intervals on ζ assuming only normality
of x (or large n and an appeal to the Central Limit Theorem), by inversion of
the cumulative distribution of the non-central t-distribution. A 1−α symmetric
confidence interval on ζ has endpoints defined implicitly by

1− α/2 = Ft

(

ζ̂;
√
nζl, n− 1

)

, α/2 = Ft

(

ζ̂;
√
nζu, n− 1

)

,

where Ft (x; δ, n− 1) is the CDF of the non-central t-distribution with non-
centrality parameter δ and n − 1 degrees of freedom. Computationally, this
method requires one to invert the CDF (e.g., by Brent’s method [4]), which is
slower than approximations based on asymptotic normality.

In practice these three confidence interval approximations give very similar
coverage, with no appreciable difference when n > 30 or so. For small sample
sizes, the corrected form of Lo’s approximation is slightly liberal (Lo’s original
formulation is too conservative).

There are approaches to estimating the standard error of the Sharpe ratio
taking into account the third and higher moments of the returns. See Opdyke
[16] or Baily and Lopez de Prado [2].

2 Sharpe ratio and portfolio optimization

Let x1,x2, . . . ,xn be independent draws from a k-variate normal with popula-
tion mean µ and population covariance Σ. Let µ̂ be the usual sample estimate
of the mean, µ̂ =

∑

i xi/n, and let Σ̂ be the usual sample estimate of the
covariance,

Σ̂ =df
1

n− 1

∑

i

(xi − µ̂) (xi − µ̂)
⊤
.

Consider the unconstrained optimization problem

max
ŵ:ŵ⊤Σ̂ŵ≤R2

ŵ
⊤
µ̂− r0

√

ŵ
⊤
Σ̂ŵ

, (5)

where r0 is the risk-free rate, and R > 0 is a risk ‘budget’.
This problem has solution

ŵ∗ =df c Σ̂
−1

µ̂, (6)

where the constant c is chosen to maximize return under the given risk budget:

c =
R

√

µ̂
⊤
Σ̂−1µ̂

.

The Sharpe ratio of this portfolio is

ζ̂∗ =df
ŵ∗

⊤
µ̂− r0

√

ŵ∗
⊤
Σ̂ŵ∗

=

√

µ̂
⊤
Σ̂−1µ̂− r0

R
. (7)
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The term r0
R is deterministic; we can treat it as an annoying additive constant

that has to be minded. Define the population analogue of this quantity as

ζ∗ =df

√

µ⊤Σ−1µ− r0
R
. (8)

The random term, n
(

µ̂
⊤
Σ̂

−1
µ̂

)2

, is a Hotelling T 2, which follows a non-

central F distribution, up to scaling:

n

n− 1

n− k

k

(

ζ̂∗ +
r0
R

)2

∼ F

(

k, n− k, n
(

ζ∗ +
r0
R

)2
)

,

where F (v1, v2, δ) is the non-central F -distribution with v1, v2 degrees of free-
dom and non-centrality parameter δ. This allows us to make inference about
ζ∗.

By using the ’biased’ covariance estimate, defined as

Σ̃ =df
n− 1

n
Σ̂ =

1

n

∑

i

(xi − µ̂) (xi − µ̂)
⊤
,

the above expression can be simplified slightly as

n− k

k
µ̂

⊤
Σ̃

−1
µ̂ ∼ F

(

k, n− k, n
(

ζ∗ +
r0
R

)2
)

.

2.1 Asymptotics and Confidence Intervals

As noted in Section C, if F is distributed as a non-central F -distribution with
v1 and v2 degrees of freedom and non-centrality parameter δ, then the mean of√
F is approximated by:

E
[√

F
]

≈
√

E [F ]−
v2

2 (δ2+(v1+2) (2 δ+v1))
v1

2 (v2−4) (v2−2) − (E [F ])
2

8 (E [F ])
3

2

, (9)

where E [F ] = v2
v1

v1+δ
v2−2 .

Now let T 2 = nζ̂2∗ be Hotelling’s statistic with n observations of a p-variate
vector returns series, and let ζ∗ be the maximal SNR of a linear combination of
the p populations. We know that

n− p

p(n− 1)
T 2 ∼ F (δ, p, n− p) ,

where the distribution has p and n− p degrees of freedom, and δ = nζ2∗ .
Substituting in the p and n− p for v1 and v2, letting p = cn, and taking the

limit as n → ∞, we have

E
[

ζ̂∗

]

=

√

(n− 1)p

n(n− p)
E
[√

F
]

→
√

ζ2∗ + c

1− c
,

which is approximately, but not exactly, equal to ζ∗. Note that if c becomes arbi-
trarily small (p is fixed while n grows without bound), then ζ̂∗ is asymptotically
unbiased.
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The asymptotic variance appears to be

Var
(

ζ̂∗

)

→ ζ4∗ + 2ζ2∗ + c

2n(1− c)2(ζ2∗ + c)
≈ 1 + 2c

2n

(

1 +
1

1 + c/ζ2∗

)

.

Consider as an example, the case where p = 30, n = 1000 days, and ζ∗ =
1.5 years−0.5. Assuming 253 days per year, the expected value of ζ̂∗ is approx-
imately 3.19 years−0.5, with standard error around 0.41. This is a very serious
bias. The problem is that the ‘aspect ratio,’ c = p/n, is quite a bit larger than
ζ2∗ , and so it dominates the expectation. For real-world portfolios one expects
ζ2∗ to be no bigger than around 0.02 days−1, and thus one should aim to have
n ≫ 150p, as a bare minimum (to achieve ζ2∗ > 3c, say). A more reasonable
rule of thumb would be n ≥ 253p, i.e., at least one year of data per degree of
freedom.

Using the asymptotic first moments of the Sharpe ratio gives only very rough
approximate confidence intervals on ζ∗. The following are passable when ζ2∗ ≫ c:

ζ̂∗
√
1− c− c

2ζ̂∗
± zα

√

2ζ̂2∗ + c

2n(1− c)(ζ̂2∗ + c)
≈ ζ̂∗

√
1− c− c

2ζ̂∗
± zα

√

1

2n(1− c)

A better way to find confidence intervals is implicitly, by solving

1− α/2 = Ff

((

n(n− p)

p(n− 1)

)

ζ̂2∗ ;nζ
2
l , p, n− p

)

,

α/2 = Ff

((

n(n− p)

p(n− 1)

)

ζ̂2∗ ;nζ
2
u, p, n− p

)

,

(10)

where Ff (x; δ, p, n− p) is the CDF of the non-central F -distribution with non-
centrality parameter δ and p and n−p degrees of freedom. This method requires
computational inversion of the CDF function. Also, there may not be ζl or ζu
such that the above hold with equality, so one is forced to use the limiting forms:

ζl = min

{

z

∣

∣

∣

∣

z ≥ 0, 1− α/2 ≥ Ff

((

n(n− p)

p(n− 1)

)

ζ̂2∗ ;nz
2, p, n− p

)}

,

ζu = min

{

z

∣

∣

∣

∣

z ≥ 0, α/2 ≥ Ff

((

n(n− p)

p(n− 1)

)

ζ̂2∗ ;nz
2, p, n− p

)}

.

(11)

Since Ff

(

·;nz2, p, n− p
)

is a decreasing function of z2, and approaches zero in
the limit, the above confidence intervals are well defined.

2.2 Inference on SNR

Spruill gives a sufficient condition for the MLE of the non-centrality parameter
to be zero, given a number of observations of random variables taking a non-
central F distribution. [25] For the case of a single observation, the condition
is particularly simple: if the random variable is no greater than one, the MLE
of the non-centrality parameter is equal to zero. The equivalent fact about the
optimal Sharpe ratio is that if ζ̂2∗ ≤ c

1−c , then the MLE of ζ∗ is zero, where,
again, c = p/n is the ‘aspect ratio.’
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Using the expectation of the non-central F distribution, we can find an
unbiased estimator of ζ2∗ . It is given by (1 − c)ζ̂2∗ − c. While this is unbiased
for ζ2∗ , there is no guarantee that it is positive! Thus in practice, one should
probably use the MLE of ζ2∗ , which is guaranteed to be non-negative, then take
its square root to estimate ζ∗.

Kubokawa, Robert and Saleh give an improved method (‘KRS’ !) for esti-
mating the non-centrality parameter given an observation of a non-central F
statistic. [11]

2.3 Sharpe ratio and simple constrained portfolio opti-

mization

Let G be an kg × k matrix of rank kg ≤ k. Let G
C be the matrix whose rows

span the null space of the rows of G, i.e., GC
G
⊤ = 0. Consider the constrained

optimization problem

max
ŵ:GCŵ=0, ŵ⊤Σ̂ŵ≤R2

ŵ
⊤
µ̂− r0

√

ŵ
⊤
Σ̂ŵ

, (12)

where, as previously, µ̂, Σ̂ are the sample mean vector and covariance matrix,
r0 is the risk-free rate, and R > 0 is a risk ‘budget’.

The gist of this constraint is that feasible portfolios must be some linear
combination of the rows of G, or ŵ = G

⊤
ŵg, for some unknown vector ŵg.

When viewed in this light, the constrained problem reduces to that of optimizing
the portfolio on kg assets with sample mean Gµ̂ and sample covariance GΣ̂G

⊤.
This problem has solution

ŵ∗,G =df cG
⊤
(

GΣ̂G
⊤
)−1

Gµ̂, (13)

where the constant c is chosen to maximize return under the given risk budget,
as in the unconstrained case. The Sharpe ratio of this portfolio is

ζ̂∗,G =df
ŵ∗,G

⊤
µ̂− r0

√

ŵ∗,G
⊤
Σ̂ŵ∗,G

=

√

(Gµ̂)
⊤
(

GΣ̂G⊤

)−1

(Gµ̂)− r0
R
. (14)

Again, for purposes of estimating the population analogue, we can largely ig-
nore, for simplicity of exposition, the deterministic ‘drag’ term r0/R. As in the
unconstrained case, the random term is a T 2 statistic, which can be transformed
to a non-central F as

n

n− 1

n− kg
kg

(

ζ̂∗,G +
r0
R

)2

∼ F

(

kg, n− kg, n
(

ζ∗,G +
r0
R

)2
)

.

This allows us to make inference about ζ∗,G, the population analogue of ζ̂∗,G.

2.4 Spanning and hedging

Consider the constrained portfolio optimization problem on k assets,

max
ŵ:GΣ̂ŵ=g, ŵ⊤Σ̂ŵ≤R2

ŵ
⊤
µ̂− r0

√

ŵ
⊤
Σ̂ŵ

, (15)
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where G is an kg × k matrix of rank kg, and, as previously, µ̂, Σ̂ are sample
mean vector and covariance matrix, r0 is the risk-free rate, and R > 0 is a risk
‘budget’. We can interpret the G constraint as stating that the covariance of
the returns of a feasible portfolio with the returns of a portfolio whose weights
are in a given row of G shall equal the corresponding element of g. In the
garden variety application of this problem, G consists of kg rows of the identity
matrix, and g is the zero vector; in this case, feasible portfolios are ‘hedged’ with
respect to the kg assets selected by G (although they may hold some position in
the hedged assets).

Assuming that the G constraint and risk budget can be simultaneously sat-
isfied, the solution to this problem, via the Lagrange multiplier technique, is

ŵ∗ = c

(

Σ̂
−1

µ̂− G
⊤
(

GΣ̂G
⊤
)−1

Gµ̂

)

+ G
⊤
(

GΣ̂G
⊤
)−1

g,

c2 =
R2 − g

⊤
(

GΣ̂G
⊤
)

g

µ̂
⊤
Σ̂−1µ̂− (Gµ̂)

⊤
(

GΣ̂G⊤

)−1

(Gµ̂)
,

(16)

where the numerator in the last equation need be positive for the problem to
be feasible.

The case where g 6= 0 is ‘pathological’, as it requires a fixed non-zero covari-
ance of the target portfolio with some other portfolio’s returns. Setting g = 0
ensures the problem is feasible, and I will make this assumption hereafter. Under
this assumption, the optimal portfolio is

ŵ∗ = c

(

Σ̂
−1

µ̂− G
⊤
(

GΣ̂G
⊤
)−1

Gµ̂

)

= c1ŵ∗,I − c2ŵ∗,G,

using the notation from Section 2.3. Note that, up to scaling, Σ̂
−1

µ̂ is the
unconstrained optimal portfolio, and thus the imposition of the G constraint
only changes the unconstrained portfolio in assets corresponding to columns of
G containing non-zero elements. In the garden variety application where G is a
single row of the identity matrix, the imposition of the constraint only changes
the holdings in the asset to be hedged (modulo changes in the leading constant
to satisfy the risk budget).

The squared Sharpe ratio of the optimal portfolio is

ζ̂2∗ = µ̂
⊤
Σ̂

−1
µ̂− (Gµ̂)

⊤
(

GΣ̂G
⊤
)−1

(Gµ̂) = ζ̂2∗,I − ζ̂2∗,G, (17)

using the notation from Section 2.3, and setting r0 = 0.
Some natural questions to ask are

1. Does the imposition of the G constraint cause a material decrease in Sharpe
ratio? Can we estimate the size of the drop?

Performing the same computations on the population analogues (i.e., µ,
Σ), we have ζ2∗ = ζ2∗,I − ζ2∗,G, and thus the drop in squared Signal-noise

ratio by imposing the G hedge constraint is equal to ζ2∗,G. We can per-

form inference on this quantity by considering the statistic ζ̂2∗,G, as in the
previous section.
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2. Is the constrained portfolio ‘good’? Formally we can test the hypothesis
H0 : ζ2∗,I − ζ2∗,G = 0, or find point or interval estimates of ζ2∗,I − ζ2∗,G.

This generalizes the known tests of portfolio spanning. [10, 8] A spanning
test considers whether the optimal portfolio on a pre-fixed subset of kg
assets has the same Sharpe ratio as the optimal portfolio on all k assets,
i.e., whether those kg assets ‘span’ the set of all assets.

If you let G be the kg × k matrix consisting of the kg rows of the identity
matrix corresponding to the kg assets to be tested for spanning, then the
term

ζ̂2∗,G = (Gµ̂)
⊤
(

GΣ̂G
⊤
)−1

(Gµ̂)

is the squared Sharpe ratio of the optimal portfolio on only the kg spanning
assets. A spanning test is then a test of the hypothesis

H0 : ζ2∗,I = ζ2∗,G.

The test statistic

FG =
n− k

k − kg

ζ̂2∗,I − ζ̂2∗,G
n−1
n + ζ̂2∗,G

(18)

was shown by Rao to follow an F distribution under the null hypothesis.
[18] Giri showed that, under the alternative, and conditional on observing

ζ̂2∗,G,

FG ∼ F

(

k − kg, n− k,
n

1 + n
n−1 ζ̂

2
∗,G

(

ζ2∗,I − ζ2∗,G
)

)

, (19)

where F (v1, v2, δ) is the non-central F -distribution with v1, v2 degrees of
freedom and non-centrality parameter δ. See Section D. [6]

2.5 Optimal Sharpe ratio under positivity constraint

Consider the following portfolio optimization problem:

max
ŵ:ŵ≥0, ŵ⊤Σ̂ŵ≤R2

ŵ
⊤
µ̂− r0

√

ŵ
⊤
Σ̂ŵ

, (20)

where the constraint ŵ ≥ 0 is to be interpreted element-wise. In general, the
optimal portfolio, call it ŵ∗,+, must be found numerically.3 3. Unless,

by some
miracle, the
unconstrained
optimal port-
folio happens
to satisfy
the positivity
constraint.

The squared Sharpe ratio of the portfolio ŵ∗,+ has value

ζ̂2∗,+ =

(

ŵ∗,+
⊤
µ̂

)2

ŵ∗,+
⊤
Σ̂ŵ∗,+

.

The statistic nζ̂2∗,+, which is a constrained Hotelling T 2, has been studied to
test the hypothesis of zero multivariate mean against an inequality-constrained
alternative hypothesis. [23, 21]

Unfortunately, ζ̂2∗,+ is not a similar statistic. That is, its distribution de-
pends on the population analogue, ζ2∗,+, but also on the uknown nuisance pa-

rameter, Σ. And so using ζ̂2∗,+ to test the hypothesis H0 : ζ2∗,+ = 0 only yields

10



a conservative test, with a maximal type I rate. Intuitively, the Hotelling T 2,
which is invariant with respect to an invertible transform, should not mix well
with the positive-orthant constraint, which is not invariant.

One consequence of non-similarity is that using in-sample Sharpe ratio as
a yardstick of the quality of so constrained portfolio is unwise. For one can
imagine universe A, containing of two zero-mean assets, and universe B with two
assets with positive mean, where the different covariances in the two universes
implies that the sample optimal constrained Sharpe ratio is likely to be larger
in universe A than in universe B.

3 Miscellanea

3.1 Which Returns?

There is often some confusion regarding the form of returns (i.e., log returns or
‘relative’ returns) to be used in computation of the Sharpe ratio. Usually log
returns are recommended because they aggregate over time by summation (e.g.,
the sum of a week’s worth of daily log returns is the weekly log return), and
thus taking the mean of them is considered sensible. For this reason, adjusting
the time frame (e.g., annualizing) of log returns is trivial.

However, relative returns have the property that they are additive ’laterally’:
the relative return of a portfolio on a given day is the dollar-weighted mean of the
relative returns of each position. This property is important when one considers
more general attribution models, or Hotelling’s distribution. To make sense of
the sums of relative returns one can think of a fund manager who always invests
a fixed amount of capital, siphoning off excess returns into cash, or borrowing4 4. at no inter-

est!cash to purchase stock. Under this formulation, the returns aggregate over time
by summation just like log returns.

One reason fund managers might use relative returns when reporting Sharpe
ratio is because it inflates the results! The ‘boost’ from computing Sharpe using
relative returns is approximately:

ζ̂r − ζ̂

ζ̂
≈ 1

2

∑

i x
2

∑

i x
, (21)

where ζ̂r is the Sharpe measured using relative returns and ζ̂ uses log returns.
This approximation is most accurate for daily returns, and for the modest values
of Sharpe ratio one expects to see for real funds.

3.2 Sharpe is nearly leverage invariant

Suppose that you observe the returns of a strategy, but the fund manager is
changing the leverage from period to period. Suppose the fund manager’s deci-
sions are completely uninformed5, and so that changes in leverage are completely 5. I know this

is a stretch...independent from the future performance of the underlying strategy. Can one
compute the Sharpe ratio on the observed returns without adjusting for leverage
(which may be unknown)?

Given some modest conditions, one can indeed. Let li be the leverage on
period i, and let lixi be the observed levered returns6. Suppose that li and xi 6. Here one

must use rela-
tive returns in-
stead of log re-
turns.11



are independent random variables and li > 0. We have

E [lx] = E [l] E [x] ,

Var (lx) = E
[

l2
]

E
[

x2
]

− E [l]
2
E [x]

2
= E

[

x2
]

Var (l) + Var (x) E [l]
2
,

(22)

And thus, with some rearrangement,

ζlx =
ζx

√

1 + E[x2]

Var(x)
Var(l)
E[l]2

.

Thus measuring Sharpe ratio without adjusting for leverage tends to give under-
estimates of the ‘true’ Sharpe ratio of the returns series. However, the deflation
is probably very modest indeed.

Note that when looking at e.g., daily returns, the (non-annualized) Sharpe
ratio on the given mark frequency is usually on the order of 0.1 or less, thus
E [x]

2 ≈ 0.01Var (x), and so E
[

x2
]

≈ 1.01Var (x). Thus it suffices to estimate

the ratio Var (l) /E [l]
2
, the squared coefficient of variation of l, to compute the

correction factor.
Consider, for example, the case where l is the VIX index. Empirically the

VIX has a coefficient of variation around 0.4. Assuming the daily Sharpe ratio
is 0.1, we have

√

1 +
E [x2]

Var (x)

Var (l)

E [l]
2 ≈ 1.08.

In this case the correction factor for leverage is fairly small.

3.3 The ‘haircut’

Care must be taken interpreting the confidence intervals and the estimated
optimal SNR of a portfolio. This is because ζ∗ is the maximal population SNR
achieved by any portfolio; it is at least equal to, and potentially much larger
than, the SNR achieved by the portfolio based on sample statistics, ŵ∗. There
is a gap or ‘haircut’ due to mis-estimation of the optimal portfolio. One would
suspect that this gap is worse when the true effect size (i.e., ζ∗) is smaller, when
there are fewer observations (n), and when there are more assets (p).

Assuming µ is not all zeros, define the haircut as the quantity

h =df 1−
1

ζ∗

ŵ∗
⊤
µ

√

ŵ∗
⊤
Σŵ∗

= 1−
(

ŵ∗
⊤
µ

ν∗
⊤µ

)(
√

ν∗
⊤Σν∗

√

ŵ∗
⊤
Σŵ∗

)

, (23)

where ν∗ is the population optimal portfolio, positively proportional to Σ
−1

µ.
Thus the haircut is one minus the ratio of population SNR achieved by the
sample Markowitz portfolio to the optimal population SNR (which is achieved
by the population Markowitz portfolio). A smaller value means that the sample
portfolio achieves a larger proportion of possible SNR, or, equivalently, a larger
value of the haircut means greater mis-estimation of the optimal portfolio. The
haircut takes values in [0, 2].

Modeling the haircut is not straightforward because it is a random quantity
which is not observed. That is, it mixes the unknown population parameters Σ
and µ with the sample quantity ŵ∗, which is random.
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When n/p is large, the following is a reasonable approximation to the dis-
tribution of h:

√

p− 1 tan (arcsin (1− h)) ≈ t
(√

nζ∗, p− 1
)

, (24)

where t (x, y) is a non-central t-distribution with non-centrality parameter x
and y degrees of freedom. This approximation can be found by ignoring all
variability in the sample estimate of the covariance matrix, that is by assuming
that the sample optimal portfolio was computed with the population covariance:
ŵ∗ ∝ Σ

−1
µ̂. Because mis-estimation of the covariance matrix should contribute

some error, I expect that this approximation is a ‘stochastic lower bound’ on the
true haircut. Numerical simulations, however, suggest it is a fairly tight bound
for large n/p. (I would be willing to guess that the true distribution involves a
non-central F -distribution, but the proof is beyond me at the moment.)

Here I look at the haircut via Monte Carlo simulations:

require(MASS)

# simple markowitz.

simple.marko <- function(rets) {
mu.hat <- as.vector(apply(rets, MARGIN = 2, mean,

na.rm = TRUE))

Sig.hat <- cov(rets)

w.opt <- solve(Sig.hat, mu.hat)

retval <- list(mu = mu.hat, sig = Sig.hat, w = w.opt)

return(retval)

}
# make multivariate pop. & sample w/ given

# zeta.star

gen.pop <- function(n, p, zeta.s = 0) {
true.mu <- matrix(rnorm(p), ncol = p)

# generate an SPD population covariance. a hack.

xser <- matrix(rnorm(p * (p + 100)), ncol = p)

true.Sig <- t(xser) %*% xser

pre.sr <- sqrt(true.mu %*% solve(true.Sig, t(true.mu)))

# scale down the sample mean to match the zeta.s

true.mu <- (zeta.s/pre.sr[1]) * true.mu

X <- mvrnorm(n = n, mu = true.mu, Sigma = true.Sig)

retval = list(X = X, mu = true.mu, sig = true.Sig,

SNR = zeta.s)

return(retval)

}
# a single simulation

sample.haircut <- function(n, p, ...) {
popX <- gen.pop(n, p, ...)

smeas <- simple.marko(popX$X)

# I have got to figure out how to deal with

# vectors...

ssnr <- (t(smeas$w) %*% t(popX$mu))/sqrt(t(smeas$w) %*%

popX$sig %*% smeas$w)

hcut <- 1 - (ssnr/popX$SNR)

# for plugin estimator, estimate zeta.star

asro <- sropt(z.s = sqrt(t(smeas$w) %*% smeas$mu),

df1 = p, df2 = n)

13



zeta.hat.s <- inference(asro, type = "KRS") # or ✬MLE✬, ✬unbiased✬

return(c(hcut, zeta.hat.s))

}
# set everything up

set.seed(as.integer(charToRaw("496509a9-dd90-4347-aee2-1de6d3635724")))

ope <- 253

LONG.FORM <- FALSE

n.sim <- if (LONG.FORM) 2048 else 512

n.stok <- if (LONG.FORM) 8 else 6

n.yr <- 4

n.obs <- ceiling(ope * n.yr)

zeta.s <- 1.2/sqrt(ope) # optimal SNR, in daily units

# run some experiments

system.time(experiments <- replicate(n.sim, sample.haircut(n.obs,

n.stok, zeta.s)))

## user system elapsed

## 0.87 0.00 0.87

hcuts <- experiments[1, ]

print(summary(hcuts))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.01 0.16 0.24 0.29 0.39 1.14

# haircut approximation in the equation above

qhcut <- function(p, df1, df2, zeta.s, lower.tail = TRUE) {
1 - sin(atan((1/sqrt(df1 - 1)) * qt(p, df = df1 -

1, ncp = sqrt(df2) * zeta.s, lower.tail = !lower.tail)))

}
# if you wanted to look at how bad the plug-in

# estimator is, then uncomment the following (you

# are warned): zeta.hat.s <- experiments[2,];

# qqplot(qhcut(ppoints(length(hcuts)),n.stok,n.obs,zeta.hat.s),hcuts,

# xlab = ✬Theoretical Approximate Quantiles✬, ylab

# = ✬Sample Quantiles✬);

# qqline(hcuts,datax=FALSE,distribution =

# function(p) { qhcut(p,n.stok,n.obs,zeta.hat.s) },
# col=2)

# qqplot;

qqplot(qhcut(ppoints(length(hcuts)), n.stok, n.obs,

zeta.s), hcuts, xlab = "Theoretical Approximate Quantiles",

ylab = "Sample Quantiles")

qqline(hcuts, datax = FALSE, distribution = function(p) {
qhcut(p, n.stok, n.obs, zeta.s)

}, col = 2)

I check the quality of the approximation given in Equation 24 by a Q-Q plot
in Figure 1. For the case where n = 1012 (4 years of daily observations), p = 6
and ζ∗ = 1.2yr−1/2, the t-approximation is very good indeed.

The median value of the haircut is on the order of 24%, meaning that the
median population SNR of the sample portfolios is around 0.91yr−1/2. The
maximum value of the haircut over the 512 simulations, however is 1.14, which
is larger than one; this happens if and only if the sample portfolio has negative
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Figure 1: Q-Q plot of 512 simulated haircut values versus the approximation
given by Equation 24 is shown.
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expected return: ŵ∗
⊤
µ < 0. In this case the Markowitz portfolio is actually

destroying value because of modeling error: the mean return of the selected
portfolio is negative, even though positive mean is achievable.

The approximation in Equation 24 involves the unknown population param-
eters µ and Σ, but does not make use of the observed quantities µ̂ and Σ̂. It
seems mostly of theoretical interest, perhaps for producing prediction intervals
on h when planning a trading strategy (i.e., balancing n and p). A more prac-

tical problem is that of estimating confidence intervals on ŵ
⊤
µ/
√

ŵ
⊤
Σ−1ŵ

having observed µ̂ and Σ̂. In this case one cannot simply plug-in some estimate
of ζ∗ computed from ζ̂∗ (via MLE, KRS, etc.) into Equation 24. The reason
is that the error in the approximation of ζ∗ is not independent of the modeling
error that causes the haircut.
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A Asymptotic Efficiency of Sharpe Ratio

Suppose that x1, x2, . . . , xn are drawn i.i.d. from a normal distribution with
unknown SNR and variance. Suppose one has an (vector) estimator of the SNR
and the variance. The Fisher information matrix can easily be shown to be:

I (ζ, σ) = n

(

1 ζ
2σ2

ζ
2σ2

2+ζ2

4σ4

)

(25)

Inverting the Fisher information matrix gives the Cramer-Rao lower bound
for an unbiased vector estimator of SNR and variance:

I−1 (ζ, σ) =
1

n

(

1 + ζ2/2 −ζσ2

−ζσ2 2σ4

)

(26)

Now consider the estimator
[

ζ̃, σ̂2
]⊤

. This is an unbiased estimator for
[

ζ, σ2
]⊤

. One can show that the variance of this estimator is

Var

(

[

ζ̃, σ̂2
]⊤
)

=





(1+nζ2)(n−1)
cn2n(n−3) − ζ2 ζσ2

(

1
cn

− 1
)

ζσ2
(

1
cn

− 1
)

2σ4

n−1



 . (27)
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The variance of ζ̃ follows from Equation 4. The cross terms follow from the
independence of the sample mean and variance, and from the unbiasedness of
the two estimators. The variance of σ̂2 is well known.

Since cn = 1+ 3
4(n−1)+O

(

n−2
)

, the asymptotic variance of ζ̃ is
(n−1)+n

2
ζ2

(n+(3/2))(n−3)+

O
(

n−2
)

, and the covariance of ζ̃ and σ̂2 is −ζσ̂2 3
4n+O

(

n−2
)

. Thus the estima-

tor
[

ζ̃, σ̂2
]⊤

is asymptotically efficient, i.e., it achieves the Cramer-Rao lower

bound asymptotically.

B Some Moments

It is convenient to have the first two moments of some common distributions.
Suppose F is distributed as a non-central F -distribution with v1 and v2

degrees of freedom and non-centrality parameter δ, then the mean and variance
of F are [26]:

E [F ] =
v2
v1

v1 + δ

v2 − 2
,

Var (F ) =

(

v2
v1

)2
2

(v2 − 2)(v2 − 4)

(

(δ + v1)
2

v2 − 2
+ 2δ + v1

)

.

(28)

Suppose T 2 is distributed as a (non-central) Hotelling’s statistic for n ob-
servations on p assets, with non-centrality parameter δ. Then [3]

n− p

p(n− 1)
T 2 = F

takes a non-central F -distribution with v1 = p and v2 = n−p degrees of freedom.
Then we have the following moments:

E
[

T 2
]

=
(n− 1) (p+ δ)

n− p− 2
,

Var
(

T 2
)

=
2 (n− 1)

2

(n− p− 2)(n− p− 4)

(

(δ + p)2

n− p− 2
+ 2δ + p

)

.

(29)

Suppose ζ̂2∗ is the maximal Sharpe ratio on a basket of p assets with n

observations, assuming i.i.d. Gaussian errors. Then nζ̂2∗ is distributed as a
non-central Hotelling statistic, and we have the following moments:

E
[

ζ̂2∗

]

=
n− 1

n

(

p+ nζ2∗
)

n− p− 2
=

(

1− 1

n

)

(

c+ ζ2∗
)

1− c− 2
n

,

Var
(

ζ̂2∗

)

=

(

n− 1

n

)2
2

(n− p− 2)(n− p− 4)

(

(nζ2∗ + p)2

n− p− 2
+ 2nζ2∗ + p

)

,

=

(

1− 1

n

)2
1

n

2

(1− c− 2
n )(1− c− 4

n )

(

(ζ2∗ + c)2

1− c− 2
n

+ 2ζ2∗ + c

)

,

(30)

where c = p/n is the aspect ratio, and ζ2∗ is the maximal SNR achievable on a
basket of the assets: ζ2∗ = µ

⊤
Σ

−1
µ.
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C Square Root F

If F is distributed as a non-central F -distribution with v1 and v2 degrees of
freedom and non-centrality parameter δ, then the mean and variance of F are
[26]:

E [F ] =
v2
v1

v1 + δ

v2 − 2
,

Var (F ) =

(

v2
v1

)2
2

(v2 − 2)(v2 − 4)

(

(δ + v1)
2

v2 − 2
+ 2δ + v1

)

.

(31)

Using the Taylor series expansion of the square root gives the approximate
mean of

√
F :

E
[√

F
]

≈
√

E [F ]−
v2

2 (δ2+(v1+2) (2 δ+v1))
v1

2 (v2−4) (v2−2) − (E [F ])
2

8 (E [F ])
3

2

. (32)

D Untangling Giri

Here I translate Giri’s work on Rao’s LRT into the terminology used in the rest
of this note. [6] In equation (1.9), Giri defines the LRT statistic Z by

Z =df

1−NX̄⊤
[2]

(

S22 +NX̄[2]X̄
⊤
[2]

)−1

X̄[2]

1−NX̄⊤
[1]

(

S11 +NX̄[1]X̄
⊤
[1]

)−1

X̄[1]

. (33)

Simply applying the Woodbury formula, we have

(

S11 +NX̄[1]X̄
⊤
[1]

)−1

= S11
−1 −N

(

S11
−1X̄[1]

)

(

1 +NX̄⊤
[1]S11

−1X̄[1]

)−1
(

S11
−1X̄[1]

)⊤
,

= S11
−1 − N

(

S11
−1X̄[1]

) (

S11
−1X̄[1]

)⊤

1 +NX̄⊤
[1]S11

−1X̄[1]

And thus

NX̄⊤
[1]

(

S11 +NX̄[1]X̄
⊤
[1]

)−1

X̄[1] = NX̄⊤
[1]S11

−1X̄[1] −

(

NX̄⊤
[1]S11

−1X̄[1]

)2

1 +NX̄⊤
[1]S11

−1X̄[1]

,

=
NX̄⊤

[1]S11
−1X̄[1]

1 +NX̄⊤
[1]S11

−1X̄[1]

,

1−NX̄⊤
[1]

(

S11 +NX̄[1]X̄
⊤
[1]

)−1

X̄[1] =
1

1 +NX̄⊤
[1]S11

−1X̄[1]

.

Thus the Z statistic can be more simply defined as

Z =
1 +NX̄⊤

[1]S11
−1X̄[1]

1 +NX̄⊤
[2]S22

−1X̄[2]

. (34)
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In section 3, Giri notes that, conditional on observing R1, Z takes a (non-
central) beta distribution with 1

2 (N − p) and 1
2 (p− q) degrees of freedom and

non-centrality parameter δ2 (1−R1). From inspection, it is a ’type II’ non-
central beta, which can be transformed into a noncentral F :

N − p

p− q

1− Z

Z
=

N − p

p− q

NX̄⊤
[2]S22

−1X̄[2] −NX̄⊤
[1]S11

−1X̄[1]

1 +NX̄⊤
[1]S11

−1X̄[1]

. (35)

Giri defines R1 in equation (2.2). It is equivalent to

1−R1 =
1

1 +NX̄⊤
[1]S11

−1X̄[1]

.

Giri defines δ1, δ2 in equation (2.3). We have

δ2 = Nξ⊤Σ−1ξ −Nξ[1]
⊤Σ11

−1ξ[1].

Taking this all together, we have, conditional on observing X̄⊤
[1]S11

−1X̄[1],

N − p

p− q

NX̄⊤
[2]S22

−1X̄[2] −NX̄⊤
[1]S11

−1X̄[1]

1 +NX̄⊤
[1]S11

−1X̄[1]

∼ F



p− q,N − p,
N
(

ξ⊤Σ−1ξ − ξ[1]
⊤Σ11

−1ξ[1]

)

1 +NX̄⊤
[1]S11

−1X̄[1]



 .

(36)
Now note that S11 refers to the sample Gram matrix, and thus S11/N is the

biased covariance estimate, Σ̃ on the subset of q assets, while X̄[1] is the mean
of the subset of q assets. Giri’s terminology translates into the terminology of
spanning tests used in Section 2.4 as follows:

NX̄⊤
[1]S11

−1X̄[1] =
n

n− 1
ζ̂2∗,G,

NX̄⊤
[2]S22

−1X̄[2] =
n

n− 1
ζ̂2∗,I,

ξ[1]
⊤Σ11

−1ξ[1] = ζ2∗,G,

ξ⊤Σ−1ξ = ζ2∗,I,

N = n,

p− q = k − kg.

Thus, conditional on observing ζ̂2∗,G, we have

n− k

k − kg

ζ̂2∗,I − ζ̂2∗,G

(n− 1)/n+ ζ̂2∗,G
∼ F

(

k − kg, n− k,
n

1 + n
n−1 ζ̂

2
∗,G

(

ζ2∗,I − ζ2∗,G
)

)

. (37)
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