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Abstract

This package computes relative risks for both prospective and retrospective sam-
ples using GLM and Logit-Log transformations. It will always produce relative risk
estimates, although it may fail sometimes to produce confidence intervals.

1 Introduction

Calculating relative risks with GLM is full of misery. Too often an attractive set of data
will be regurgitated by estimating software, with words that can be understood only by
a high priest of numericity. This package attempts to ease these difficulties, by providing
some automated calculations that will always produce estimates, and usually confidence
intervals. The appropriate model for relative risk is the log model, shown in equation
(2). In this model, the exponentials of the coefficients are relative risks. See section (5),
for details. The workhouse program glm() is used to estimate relative risk for the log
model by using it in a variety of ways. It is used first with the Logit-Log starting values
described in section (5), which closely resemble the correct values. If this fails, glm()

is run without starting values. If this fails, the data is modified, as described in section
(3), and glm() is run both with and without starting values. If this fails, the Logit-Log
estimates are reported together with confidence intervals obtained by a jackknife.

This paper describes the methodologies used in this package, and illustrates its func-
tionality with a few examples.

2 Simple Example

It’s always good to start with a simple example. The data is the Berkeley graduate
admissions data set, available as a standard data set in R.

The R command to analyze this data is as follows.

> library(RelativeRisk)

> data(gradData)
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> aa <- est.rr(Count | Admitted ˜ Dept * Male, gradData, indexed = TRUE)

> aa$table

rr 2.5 % 97.5 % or

(Intercept) 0.070 0.048 0.104 0.076

Dept(1) 11.709 7.884 17.388 61.871

Dept(2) 9.662 6.037 15.462 28.068

Dept(3) 4.840 3.239 7.232 6.824

Dept(4) 4.963 3.295 7.477 7.091

Dept(5) 3.398 2.224 5.194 4.152

Male 0.838 0.479 1.466 0.828

Dept(1):Male 0.899 0.509 1.587 0.422

Dept(2):Male 1.106 0.593 2.065 0.969

Dept(3):Male 1.293 0.718 2.329 1.369

Dept(4):Male 1.130 0.625 2.044 1.113

Dept(5):Male 1.384 0.737 2.599 1.476

This output displays the ratio of two proportions in the rr column. The first five
rows show the proportion of admissions for the various departments with respect to the
admission proportion for Department 6. Such proportion ratios are of course “relative
risks,” which are always less extreme than “odds ratios,” as is illustrated by comparing
the first and last columns1. The seventh row shows that the proportion of admissions for
males is only 84% of that for females. The other rows suggest Simpson’s paradox, since
the admissions of males for most departments is higher than that for females, yet the
overall admission of males is less.

3 convergence

Convergence is not always assured for GLM with the log link: a major problem with
Newton like methods is the presence of zeros in the data. The easiest way to understand
the difficulty is by contrasting the logistic and log models. The logistic model assumes
that a probability p is related to the environmental variable vector x by the model:

logit(p) = log(
p

1− p
) = �0 + �′x, (1)

while the log model assumes

log(p) = �0 + �′x. (2)

If l is the binomial likelihood, then estimates are obtained by setting its derivative
equal to zero:

∂l

∂�r
=

∑
i

∂pi
∂�r

(yi −mipi)

pi(1− pi)
= 0, (3)

1The Dept(4):Male row is a numerical aberration
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where yi is the binomial response with index mi.

For the logistic model, ∂pi
∂�r

= xipi(1− pi), so that equation (3) becomes

∂l

∂�r
=

∑
i

(yi −mipi)xi = 0,

while for the log mode, ∂pi
∂�r

= xipi , equation (3) becomes

∂l

∂�r
=

∑
i

(yi −mipi)

(1− pi)
xi = 0.

If pi is near unity, the ith summand in the likelihood summation becomes large, which
places undue emphasis on it and makes convergence difficult. Estimation for the logistic
model suffers from no such problem.

There have been a number of solutions offered for this problem. They are summarized
in Lumley et al. [2006]. The solution used in this package has the flavor of a continuity
correction, which is achieved by inflating the counts and adding 1 where there are zeros.
In particular, if the mi are all unity, then the Bernoulli response yi is replaced by a two
column matrix with entries [(yiK + (1 − yi)), yi + K(1 − yi)], where the columns denote
“reaction” and “no reaction,” and K is some large number: the default is 1000. If mi is
not unity, the binomial data will require two columns, and the counts in both columns
are multiplied by K and zeros are replaced by unities. This modification does not change
the scale of the estimates, but it inflates the log likelihood and deflates the variances by
K. The estimates converge to the correct values as K increases, but for any finite K, the
estimates are slightly biased.

4 Retrospective Data

There is less difference between the analyses of prospective and retrospective data than
is generally supposed. Prospective data, of course, is data collected on a fixed sets of
subjects, say those treated and untreated, and the response is the proportion reacting.
Retrospective data is collected for subjects who have reacted and the response is the
proportion who fall in the treated or untreated categories. When the reaction is infrequent,
the odds ratio and the relative risk are approximately equal, but when the reaction is not
rare, these statistics differ. The odds ratio is not affected by the retrospective sample
sizes, which is not true for the crude estimate of relative risk that may be calculated
from retrospective samples. This has led many to prefer the odds ratio as a summary
statistic. A better estimate of relative risk may be obtained by taking into account the
marginal frequency of the reaction in the population, and this estimate is not affected by
the retrospective sample sizes.

[Breslow and Day, 1980, p203]have given an argument leading to an estimate of rel-
ative risk conditional on the sampled individuals. A more interesting argument in the
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same pattern may be obtained by considering the marginal frequencies of the reaction in
the population. For retrospective sampling, suppose that the “cases” are a random sample
from the population of reactors and that the marginal probability of reactors is �, and
suppose that the “controls” are also randomly selected from the remainder of the popula-
tion, and that marginal probability is 1− �. If P (X∣C) and P (X∣C̃) are the conditional
probabilities of the environmental vector X, given case and control, respectively, then it
follows via a Bayes argument using P (X∣C)� = pP (X), that

p =
P (X∣C)

P (X∣C) + P (X∣C̃)�
,

where � = (1 − �)/�. If nC and nC̃ are the case and control samples sizes and a and b
counts for X, then P (X∣C) is estimated by a/nC , and P (X∣C̃) by b/nC̃ , and one has the
estimate

p̂ =
a

a+ b�nr
,

where nr = nC/nC̃ . This is clearly unaffected by scaling – increasing nC̃ also increases b.

It follows from the above that retrospective data may be analyzed by multiplying the
control samples by �nr.

An interesting thing about this estimate is the relative unimportance of �. If � is
large, as it is when the reaction is rare, then relative risk and odds ratios are essentially
the same. If � is small, say in the 2 to 10 range, corresponding to �’s from 1/3 to 1/11,
then the relative risk estimates are very close to the crude estimates from the retrospective
data.

5 Logit-Log translations

It is possible to translate the coefficients of the logistic and log models from one to the
other by setting all variables but one to zero and equating the expressions for p. To
distinguish the coefficients in the two models, rewrite equation (2) as

log(p) = �0 + �′x. (4)

The exponential of the coefficients in this model are relative risks when the variables
are coded (0,1), and the exponentials of the coefficients in equation (1) are odds ratios
for the same coding. This may be seen by subtracting the models differing in the levels
of one variable only. When the variables are coded (�l, �u), the odds ratio is exp(��i) and
the relative risk is exp(�u�i), where � = �u − �l.

Setting all variables but one to zero and equating the models gives:
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exp(��i) = exp(��i)
1 + exp(�0 + �l�i)

1 + exp(�0 + �u�i)
, (5)

and the reverse translation:

exp(��i) = exp(��i)
1 + exp(�0 + �l�i)

1 + exp(�0 + �u�i)
. (6)

These are not mathematical inverses. Equation (5) is not the reciprocal of equation (6),
which can lead to small numerical differences when the output of one is input into the
other. For example, to.rr() is the implementation of equation (5) and to.rr() is the
implementation of equation (6), and using these with the default variable limits of (0, 1)
gives

> to.rr(to.or(c(0.3, 1.5, 2, 0.7, 0.3)))

[1] 0.3 1.5 2.0 0.7 0.3

while using them with the limits (1,−1) gives

> round(to.rr(to.or(c(0.3, 1.5, 2, 0.7, 0.3), limit = c(1, -1)),

+ limit = c(1, -1)), 3)

[1] 0.300 1.502 2.016 0.699 0.286

The true relative risks are of course (0.3,1.5,2.0,0.7,0.3).

For retrospective data, one simply replaces the unity in the numerator and denomina-
tor by �nr: see section (4) for the definition of these parameters.

The relative risks estimates are biased, but their biases are much smaller than those
for odds ratios. These estimates will be calculable so long as is the logistic model: they
are most useful for providing starting values for GLM calculations and as a backup when
all else fails. The jackknife Miller [1974] works well for estimating confidence intervals
even for small numbers of strata. It of course fails when removing a stratum results in a
singularity.

6 Data Input

The package attempts to accommodate most types of input that are expressed in matrix
form, with observations as rows and columns as variables. The response may be either a
single column of (0, 1) values, a pair of columns denoting “reaction” and “no reaction,” or a
column of counts with an auxiliary variable to indicate “reaction” and “no reaction.” The
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columns may be external to the function or in the matrix of data input to the function.
For retrospective data, two columns are required, one for “case” and one for “control.”
The tally.data() function will process the data into two columns, according to strata
as defined by the values of the other variables in the data. Needless to say, variables with
a great many levels will produce a great many strata.

7 Examples

The Chocolate dataset gives consumer preferences for chocolate additions. It has a single
response, prefer which assumes two values, 1 for preference and 0 for not. Ten subjects
were presented with eight bars made up of all possible combinations of four ingredients,
and asked their preferences. The analysis is

> data(Chocolates)

> est.rr(prefer ˜ ., Chocolates)$table

rr 2.5 % 97.5 % or

(Intercept) 0.034 0.006 0.212 0.050

Subject 1.853 0.439 7.830 1.000

dark 4.025 1.014 15.975 5.943

soft 0.104 0.014 0.768 0.072

nuts 2.680 0.827 8.690 3.210

which indicates the the subjects preferred hard, dark, nutty chocolates. The subjects

variable is not very informative because it has 10 levels. This variable would be more
informative if one could compare the individual subjects, which can be done by making
it a factor. Factors use contr.treatment() with the last level set as the base; hence, the
output shows relative risks of each level with respect to the last level.

> ac <- as.afactor("Subject", Chocolates)

> est.rr(prefer ˜ ., ac)$table

rr 2.5 % 97.5 % or

(Intercept) 0.054 0.010 0.281 0.050

Subject(1) 0.451 0.071 2.864 1.000

Subject(2) 1.000 0.874 1.144 1.000

Subject(3) 0.416 0.058 2.978 1.000

Subject(4) 0.451 0.071 2.864 1.000

Subject(5) 0.437 0.066 2.907 1.000

Subject(6) 1.000 0.874 1.144 1.000

Subject(7) 0.437 0.066 2.907 1.000

Subject(8) 1.000 0.874 1.144 1.000

Subject(9) 1.000 0.874 1.144 1.000
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dark 5.269 1.346 20.622 5.943

soft 0.087 0.012 0.631 0.072

nuts 3.525 1.154 10.771 3.210

To change the base level, as.afactor() may be used. Thus to make the second
subject the base, redefine the levels:

> ac <- as.afactor("Subject", Chocolates, levOrder = c(1, 3:10,

+ 2))

> est.rr(prefer ˜ ., ac)$table

rr 2.5 % 97.5 % or

(Intercept) 0.054 0.010 0.281 0.050

Subject(1) 0.451 0.071 2.864 1.000

Subject(3) 0.416 0.058 2.978 1.000

Subject(4) 0.451 0.071 2.864 1.000

Subject(5) 0.437 0.066 2.907 1.000

Subject(6) 1.000 0.874 1.144 1.000

Subject(7) 0.437 0.066 2.907 1.000

Subject(8) 1.000 0.874 1.144 1.000

Subject(9) 1.000 0.874 1.144 1.000

Subject(10) 1.000 0.874 1.144 1.000

dark 5.269 1.346 20.622 5.943

soft 0.087 0.012 0.631 0.072

nuts 3.525 1.154 10.771 3.210

One can also reverse the preference variable by using the function as.twolevel.

> ac <- as.twolevel("prefer", ac, 1)

> est.rr(prefer ˜ ., ac)$table

rr 2.5 % 97.5 % or

(Intercept) 0.864 0.739 1.009 20.108

Subject(1) 1.000 1.000 1.000 1.000

Subject(3) 0.999 0.937 1.065 1.000

Subject(4) 1.000 1.000 1.000 1.000

Subject(5) 0.999 0.950 1.051 1.000

Subject(6) 1.000 1.000 1.000 1.000

Subject(7) 0.999 0.950 1.051 1.000

Subject(8) 1.000 1.000 1.000 1.000

Subject(9) 1.000 1.000 1.000 1.000

Subject(10) 1.000 1.000 1.000 1.000

dark 0.891 0.771 1.030 0.168

soft 1.158 0.991 1.353 13.846

nuts 0.981 0.904 1.064 0.312
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which shows the relative risks for not prefer.

More commonly the response will have two columns. The columns may contain counts,
as in the simData dataset, where the columns represent “success” and “failure.” One
analysis of this dataset is

> data(simData)

> est.rr(Success | Failure ˜ ., data = simData)$table

rr 2.5 % 97.5 % or

(Intercept) 0.728 0.666 0.796 2.917

X1 1.094 1.031 1.161 1.721

X2 1.235 1.140 1.337 2.806

X3 0.925 0.874 0.980 0.743

X4 0.645 0.575 0.725 0.193

Another analysis of this dataset might take into account that it is a case-control
sample, with 600 cases and 400 controls. In the general population, 31% fall into the case
category, thus the appropriate parameter for analysis is theta=2.2.

> est.rr(Success | Failure ˜ ., data = simData, theta = 2.2)$table

rr 2.5 % 97.5 % or

(Intercept) 0.298 0.257 0.345 2.917

X1 1.448 1.295 1.619 1.721

X2 2.026 1.780 2.305 2.806

X3 0.718 0.645 0.800 0.743

X4 0.311 0.265 0.366 0.193

which, among other things, suggests that there is less difference that ordinarily supposed
between prospective and retrospective analyses for case-control data – the case-control
sample size ratio is 600/400 or 150% as opposed to 31% for the population, which are
substantially different, and yet the conclusions about significance that would be drawn
from the relative risk estimates are the same in the two analyses. This dataset is the
output of a simulation, in which the true relative risks were (0.3,1.5,2,.7,.3).

Another type of two column response, contains counts in one column and an indicator
variable in the second column. The indicator variable is used to divide the counts into
“success”and“failure”columns. Counts of the survivors of the Titanic shipwreck illustrate
this point. Here the variable survived is used to index the counts in the count column.
The fact that this second column is an index column is signaled by setting the parameter
indexed to TRUE.

> data(TitanicMat)

> aa <- est.rr(count | survived ˜ ., indexed = TRUE, data = TitanicMat)

> aa$log
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[,1]

1 "The data was tallied."

2 "2 rows were removed because response had all zeros."

3 "GLM successful."

> aa$table

rr 2.5 % 97.5 % or

(Intercept) 0.876 0.768 0.999 9.466

class(1st) 1.141 1.001 1.302 2.358

class(2nd) 1.020 0.885 1.176 0.852

class(3rd) 0.782 0.683 0.896 0.398

sex(Male) 0.419 0.377 0.466 0.089

age(Adult) 0.872 0.824 0.923 0.346

The log shows the progress of the calculations. In this case, the GLM calculation was
successful, even thought two rows of the data were eliminated. The results indicate that
the probability of survival for males was about half that of females, and adults about 87%
of children. The probability of survival for first and second class passengers was greater
than that of the crew.

One can reverse the relative risk values by changing the order of the levels for a factor.
The“sex” factor levels in the above analysis are ("Male","Female"). To change the order
use as.afactor() as follows:

> TitanicMatR <- as.afactor("sex", TitanicMat, levOrder = c("Female",

+ "Male"))

> est.rr(count | survived ˜ ., indexed = TRUE, data = TitanicMatR)$table

LL-rr or

(Intercept) 0.457 0.842

class(1st) 1.455 2.358

class(2nd) 0.914 0.852

class(3rd) 0.550 0.398

sex(Female) 1.979 11.247

age(Adult) 0.493 0.346

Because of two missing rows, GLM was unable to solve the equations with the reversed
levels, and the jackknife was unable to calculate confidence intervals, so the Logit-Log
estimates are shown. The “sex” factor was, however, reversed as desired.
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