
RcppCNPy: Reading and writing NumPy binary files

Dirk Eddelbuettel

RcppCNPy version 0.2.4 as of January 5, 2015

Abstract

This document introduces the RcppCNPy package for
reading and writing files created by or for the NumPy
module for Python.

RcppCNPy is based on cnpy, a C++ library written
by Carl Rogers.

1 Motivation

Python1 is a widely-used programming language. It is
deployed for use cases ranging from simple scripting
to larger-scale application development. Python is also
popular for quantitative and scientific application due
to the existence of extension modules such as NumPy2

(which is shorthand for Numeric Python).

NumPy can be used for N -dimensional arrays, and
provides an efficient binary storage model for these files.
In practice, N is often equal to two, and matrices pro-
cessed or generated in Python can be stored in this form.

R has no dedicated reading or writing functionality
for these files. However, Carl Rogers has provided a
small C++ library called cnpy3 which is released under
the MIT license. Using the ‘Rcpp modules’ feature in
Rcpp (Eddelbuettel, 2013; Eddelbuettel et al., 2014),
we provide (some) features of this library to R.

2 Examples

2.1 Data creation in Python

The first code example simply creates two files in Python:
a two-dimensional rectangular array as well as a vector.

1http://www.python.org
2http://numpy.scipy.org/
3https://github.com/rogersce/cnpy

>>> import numpy as np
>>>

>>> mat = np.arange(12).reshape(3,4) * 1.1

>>> mat

array([[0. , 1.1, 2.2, 3.3],

[4.4, 5.5, 6.6, 7.7],

[8.8, 9.9, 11. , 12.1]])

>>> np.save("fmat.npy", mat)

>>>

>>> vec = np.arange(5) * 1.1

>>> vec

array([0. , 1.1, 2.2, 3.3, 4.4])

>>> np.save("fvec.npy", vec)

>>>

As illustrated, Python uses the Fortran convention
for storing matrices and higher-dimensional arrays: a
matrix constructed from a single sequence has its first
consecutive elements in its first row—whereas R, fol-
lowing the C convention, has these first few values in
its first column. This shows that to go back and forth
we need to transpose these matrices (which represented
internally as two-dimensional arrays).

2.2 Data reading in R

We can read the same data in R using the npyLoad()

function provided by the RcppCNPy package:
Saving Numeric Vector

> library(RcppCNPy)

> mat <- npyLoad("fmat.npy")

> mat

[,1] [,2] [,3] [,4]

[1,] 0.0 1.1 2.2 3.3

[2,] 4.4 5.5 6.6 7.7

[3,] 8.8 9.9 11.0 12.1

> vec <- npyLoad("fvec.npy")

> vec

[1] 0.0 1.1 2.2 3.3 4.4

The Fortran-order of the matrix is preserved; we ob-
tain the exact same data as we stored.

2.3 Reading compressed data in R

A useful extension to the cnpy is the support of gzip-
compressed data.

1

> mat2 <- npyLoad("fmat.npy.gz")

Support for writing compressed files has been added
in version 0.2.0.

2.4 Data writing in R

Matrices and vectors can be written to files using the
npySave() function.

> set.seed(42)

> m <- matrix(sort(rnorm(6)), 3, 2)

> m

[,1] [,2]

[1,] -0.5646982 0.4042683

[2,] -0.1061245 0.6328626

[3,] 0.3631284 1.3709584

> npySave("randmat.npy", m)

> v <- seq(10, 12)

> v

[1] 10 11 12

> npySave("simplevec.npy", v)

2.5 Data reading in Python

Reading the data back in Python is straightforward too:

>>> m = np.load("randmat.npy")

>>> m

array([[-0.56469817, 0.40426832],

[-0.10612452, 0.6328626],

[0.36312841, 1.37095845]])

>>>

>>> v = np.load("simplevec.npy")

>>> v

array([10., 11., 12.])

>>>

3 Performance

The R script timing in the demo/ directory of package
RcppCNPy provides a simple benchmark. Given two
values n and k, a matrix of size n× k is created with n
rows and k columns. It is written to temporary files in i)
ascii format using write.table(); ii) NumPy format us-
ing npySave(); and iii) NumPy format using npySave()

with compression via the zlib library (used also by
gzip).

Table 1 shows some timing comparisons for a matrix
with five million elements. Reading the npy is clearly
fastest as it required only parsing of the header, followed
by a single large binary read (and the transpose required
to translate the representation used by R). The com-
pressed file requires only one-fourth of the disk space,
but takes approximately 2.5 times as long to read as the
binary stream has be transformed. Lastly, the default
ascii reading mode is clearly by far the slowest.

Access method Time in sec. Relative to best

npyLoad(pyfile) 1.95 1.00
npyLoad(pygzfile) 4.92 2.53
read.table(txtfile) 128.85 66.24

Table 1: Performance comparison of data reads using a
matrix of size 105 × 50. File size are 39.7mb for ascii,
40.0mb for npy and 10.8mb for npy.gz. Ten replications
were performed, and total times are shown.

4 Limitations

4.1 Integer support

Support for integer data types is conditional on use of
either the -std=c++0x or the newer -std=c++11 com-
piler extension switches. Only these newer standard
supports the long long int type needed to represent
int64 data on a 32-bit OS. Following the release of R
3.1.0, it has been enabled by default (whereas it previ-
ously required a manual rebuild).

4.2 Higher-dimensional arrays

Rcpp supports three-dimensional arrays, this could be
support in RcppCNPy as well.

4.3 npz files

The cnpy library supports reading and writing of sets of
arrays; this feature could also be exported.

5 Summary

The RcppCNPy package provides simple reading and
writing of NumPy files, using the cnpy library. Reading
of compressed files is also supported as an extension.
This offers users a balance between more compact stor-
age at the prices of slightly longer read times.

References

Dirk Eddelbuettel. Seamless R and C++ Integration with
Rcpp. Use R! Springer, New York, 2013. ISBN 978-1-
4614-6867-7.

Dirk Eddelbuettel, Romain François, JJ Allaire, John
Chambers, Douglas Bates, and Kevin Ushey. Rcpp:
Seamless R and C++ Integration, 2014. URL http:

//CRAN.R-Project.org/package=Rcpp. R package
version 0.11.0.

2

