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Abstract

Rchoice is a package for R which enables the estimation of a variety of Binary, Count
and Ordered models with unobserved and observed heterogeneity in the parameters for
cross-sectional and panel data. We implement simulated maximum likelihood methods
for the estimation of the coefficients which can assume a variety of distributions. This
document is a general description of Rchoice and all functionalities are illustrated using
real databases.
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1. Introduction

A growing number of empirical studies seek to measure the impact of covariates on nominal
discrete alternatives. Those models are well known. However, one of the traditional modeling
shortcomings is their inability to control for possible observed or unobserved heterogeneity
that may exist across individuals. For instance, one might assume that some variable does not
affect equally the utility of individuals, therefore there may be a deviation from the mean of
the respective coefficient. This type of modelling has been widely used in Multinomial Logit
Model known also as Mixed Logit Model (see Train 2009; Hensher and Greene 2003) and can
be estimated in R using mlogit (Croissant et al. 2012).

Observed and unobserved heterogeneity can easily be extended to binary, ordered and count
data (see Gourieroux, Monfort, and Trognon 1984; Ng, Carpenter, Goldstein, and Rasbash
2006; Greene 2007, 2012; Greene and Hensher 2010a,b). Allowing parameter values to vary
across the population according to some pre-specified distribution overcomes the problem of
having a fixed-representative coefficient for all individuals. Furthermore, one might assume
that this heterogeneity is not only due to unobserved factors, but also to observed individual
characteristics such as socioeconomic variables.

In this document we present the package Rchoice for R. Rchoice is a package for estimating
ordered, count and binary choice models with observed and unobserved heterogeneity in the
coefficients. The estimation procedure is based on Simulated Maximum Likelihood (SML)
which allow controlling for observed and unobserved heterogeneity in a very flexible way. To
our knowledge, only LIMDEP (Greene 2002) is able to estimate these type of models in a
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concise and flexible manner. Therefore, this package is intended to make these estimation
methods available to the general public and practitioners in a friendly and flexible way.

This new version of Rchoice (version 0.2) allows estimating Panel Data models and makes
the inclusion of hierarchical variables more flexible. It also includes new helper functions to
get the standard errors of the variance-covariance matrix of the random parameters.

This paper is organized as follows. In section 2 we briefly explain the Simulated Maximum
Likelihood Procedure. Section 3 we discuss some technical aspects of Simulated Maximum
Likelihood estimations and the formulas used by Rchoice. In Section 4 we explain how Rchoice
handles creates the random coefficients. Section 5 we show the all functionalities of Rchoice
are illustrated using real databases. Section 6 concludes.

2. Simulated Maximum Likelihood Estimation

In this section we briefly explain some basic ideas of SML procedure. For a more complete
treatment of SML see for example Gourieroux and Monfort (1997); Lee (1992); Hajivassiliou
and Ruud (1986) or Train (2009).

A random parameter model or random coefficient model permits regression parameter to
vary across individuals according to an arbitrarily specified distribution. A fully parametric
random parameter model specifies the dependent variable y; conditional on regressors x; and
given parameters 3; to have conditional density f(yi|x;, i), where B; are iid with density
9(3i]0). Inference is based on the density of y; conditional on x; and given 6:

Fylxi, 0) = / f(ylx. B)9(B.6)d3

This integral will not have a closed-form solution except in some special cases. For example,
we can assume normally distributed random parameters, with 3; ~ N(u, ). Then 8; =
p+ X120, where v; ~ N(0,I), thus:

Flx.) = [ flolx e 3) s exp (502 ) av (1)

Note that (1) has no close-form solution, that is, it is difficult to integrate out the random
parameter and hence it difficult to perform ML estimation. However ML estimation may still

be possible if we instead use a good approximation f(y|x, @) of f(y|x, @) to form a likelihood
function.

~

But, how can we obtain f(y|x,0)? A good approximation can be obtained by Monte Carlo
integration.! This procedure provides and alternative to deterministic numerical integration.
Here we can ‘simulate’ the integration using random draws from the distribution ¢(3|0). For

! Another numerical approximation is Gauss-Hermite quadrature. However, it has been documented that
for models with more than 3 random parameters SML performs better.
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example, the researcher specifies the function form ¢(3|0) and wants to estimate the parameter
0. The Monte Carlo approximation is:

~

R
f(y‘X’L?IBZ?e) = %Zf(y’XuBZTva%
r=1

where 3, is the rth draw of 3 from ¢(3;]0) for individual i. Given independence over i, the
SML is the value 8 that maximizes:

N
Osnr = argmax Y _log f(y[xi, Bir, )
bco0 =

The following preposition gives the asymptotic distribution of SML estimator. For a complete
derivation of the asymptotic properties of the SML and a more comprehensive view see Lee
(1992) or Gourieroux and Monfort (1997).

Preposition 1 (Distribution of SML Estimator). Assume the following:

1. The data are from a simple random sample from a dgp with likelihood function f(y|x, 60)
that satisfies the regularity conditions so that the ML estimator is consistent and asymp-
totically normal with variance matriz A=1(6y), where:

N

1 dlog f(ylxi, 0) p
N2 e0p 1 A(%)
= o

2. The likelihood function f is estimated using the simulator ]? with f unbiased for f.

Then the simulated maximum likelihood estimator is asymptotically equivalent to the ML
estimator if R — co. N — 00 and VN/R — oo, and it has a limit normal distribution with:

VN(Bsuz — 8) - N(0,A"1(6y))

3. Technical Aspects of Simulated Maximum Likelihood

In this section, we show the general technical aspect of the SML. This will allow us to accom-
modate any index-type regression model such as Probit, Logit, Ordered and Poisson model.
This section relies heavily on chapter 15 of Greene (2012) and chapter 10 of Train (2009).

3.1. Simulated Maximum Likelihood

In order to develop a general set of results, it is convenient to write each single density in the
simulated function as:

[ (Wit xit, Bir, 0) = Pitr(0)
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where 0 is the vector that collects all the parameters. The simulated log-likelihood is :

N 1 R T
log Ly = Y _log (R Y11 Pitr(e)) (2)
=1

r=1t=1
If we define:
T;
Pzr(e) - H Pitr(e)a
t=1
and:
1 R
Pi(6) =5 > Pir(0),
r=1

then, the maximum likelihood can be written as:

N
log Ls = Y _log P;(6) (3)

=1

With this notation, we will be able to accommodate richer specifications of the index function
and discrete choice models by simply changing the specification of Py, (6). As is typically the
case, the index model represents a latent process of the form:

5r(0) = 2340 + X Bir + €t (4)

where z;; is a vector of variables with fixed parameters d; x;; is a vector of variables with
random coefficients 3;,; and € is the error term. For simplicity, assume that 3; ~ N (8, X)),
then the random vector of coefficients can be written as:

Bir = /6 + Lw;;

where w;, is a vector of random draws from normal standard distribution. If the random
parameters are correlated normal, then L is a lower triangular which produces the covariance
matrix of the random parameters, LL’ = X; otherwise, the matrix L is a diagonal matrix of
standard deviations. The random effect model is a special case in which only the constant
is random. A hierarchical model is obtained by allowing the parameter heterogeneity to be
partly systematic in terms of observed variables:

Bir = B + IIs; + Lw;,,

where IT is a matrix of parameters and s; is a vector of covariates that do not vary across
time. 2 Then, E(B;) = B+ IIs; + LE(w) = B + ITs; and its covariance is Var(3;) =
E(Lw(wL)) =LE(ww')L=LIL =LL' = X

ZNote that the Mundlak (1978) and Chamberlain (1980) approach to modelling fixed effects is also accom-
modated by letting s; = X;, in the equation for the overall consant term (Greene and Hensher 2010b)
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Example 1 (Representation of Correlated Random Parameters). Suppose two cor-
related random parameters, 81 and Bo, whose means depend upon variables S, B and C. Then:

Brir = P1+m1Si+ m 2B + 71,30 + s11w14r
Boir = P2+ 7218 + m2B; + w2 3C; + S21w1 i + S22W2 ir

or in vector form:
_ S;
Brir\ _ (B1 T, T2 T3 si1 0\ (wiir
=5 |+ B; | +
Bair B2 m2,1 T22 ™23 C S21 S22/ \Wa,ir
(3
In this case, the variance-covariance matriz of the random parameters is:
0 2
_rrr_ [S11 s11 S21\ _ [ S11 511592
Y =LL = = 2 2 |
S21 5922 0 s2 521822 851 + S39
and the conditional mean vector is:
E(Bilsi) = B + ITs;

Finally, depending on the nature of the dependent variable and the distribution of the error
term, the probability of a given outcome can be specified. It is well known that, if the
dependent variable is binary, then the probability for each individual in each draw is:

Pitr(m =F [Qit ) Ui;r(e)] (5)

where q;; = 2y — 1.3 Furthermore, if the model is Probit, then:

Flgi - U, (0)] = @[qi Uy, (0)]
flait Uy, (0)] = ¢lgi - Uy ()]

where ®(-) and ¢(-) are the CDF and the pdf for the standard normal distribution. Likewise,
if the model is logit, then:

o explan Up,(8))
F [ta Uztr(e)] A [qlt Uztr(e)] 1+ eXP(Qit . U:;r(g))
flai - Ui (0)] = Algir - Ui (0)] [1 — Agie - Uiz, (0))]

For the Poisson model, the probability for individual ¢ and the rth draw is:

P (8) = exp(— exp(U;;T(zi)t)!) exp(U7, (6))vit o

3As explained by Greene (2012), if the distribution is symmetric, as the normal and logistic are, then
1- F(x'B) = F(x'B). Then, logL =Y, F(g:x:3)



6 Rchoice Package in R

and for the Ordered model, we have:

Pitr(0) = F'[rj — Ui, (0)] — F[rj—1 — Uy, (6)] (7)

itr

where:

Kj = Kj-1 + exp(a;)

This last reparametrization ensures the ordering of the thresholds.

3.2. Gradient of the Simulated Maximum Likelihood

The SML procesure is very time consuming. If the model is very complex, the algorithm may
take hours to converge. Providing the gradient to the maximization procedure can consider-
able reduce the time to achieve convergence. The Rchoice package provides the gradient for
all random parameter models.

Next, the formulas used by Rchoice to obtain the gradient are given. To obtain the derivatives,
we begin with:

1 —~R [0l Pir(6)
pogr, o [ (o)

o0 LS T1 Par(8)

i=1
For the derivative term,

T; ) &
W =P (60) > gir(0) ©)
t=1

where we use the fact that algegp = %% and g, = 0log Py, (0)/00. Now, inserting (9) into

(8) we get:

% . 27}}:1 Pir(a)gir(a)
on(Berne)

=1

where ZtTél gitr(0) = gir. Define the weight Q;(0) = PiT(O)/Zf:l P;(0) so that 0 <
Qir(0) <1 and 3% | Qir(8) = 1. Then,

Olog L V& N _
00 = Z Z er(e)gzr(e) = ;gz(e) (11)

i=1r=1
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Example 2 (Gradients formulas used by Rchoice). For binary models, taking first
derivatives on the log of equation (5) we get:

0log Py (0)

00 ’ (12)

= itr = Aitr(6) [‘W}

00

where:

Aigy = qit - f [%‘t : U;;,,(Q)]
Y Flaw - U;,(0)]

and f = 81;‘76(’»). If the model is the Poisson regression model model, then g, is given by:

OlogPur(6) _ . _ 1. : 90 (6)
By, = Bitr = [yzt - eXp(Uitr(e))] o0 .

For the ordered model, let @ the vector collecting all the parameters except for the thresholds
parameters. Then, gy s given by:

Olog Pir(0) _ fitr,j(0) — firrj—1(0) (8U{;r(9)>

00 ~ Fitr.;(0) — Fitrj—1(0) 00

and by:

80% 8ak

oy Fir (8) — Figrj—1(0)

with 05, = 1 if j = k and 0 otherwise. Finally, if parameters are uncorrelated, then:

0log Py (0)  dj g fitrj(0) — dj—1.k fitrj—1(0) (8"33' 3Kj—1>

Zit

8U2§7’(0) _ Xt
00 | si®xi
Wir ® Xt

The Rchoice uses this formulas to compute the gradient and uses the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (the default) to iteratively solve the MSL.

4. Drawing from Densities

The SML procedure requires drawing pseudo-random numbers from the specified distribution
for simulation. A good performance of SML requires very large number of draws. As explained
above, the main drawback to this approach is that with large samples and complex models,
the maximization of log Ls can be very time consuming. Researchers have gained speed with
no degradation in simulation performance through the use of small number of Halton draws
(Bhat 2001; Train 2000). The idea is that, instead of taking independent random draws,
simulation can potentially be improved by selecting evaluation points more systematically
and with better coverage (Sandor and Train 2004). In this section, we detail how draws are
computed by Rchoice.

Suppose that there are K random parameters. Then, the K elements of w;. are drawn as
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follows. We begin with a K random vector w;,, that is:

e K independent draws from the standard uniform (0, 1) distribution or

e K independent draws from the mth Halton sequence, where m is the mth prime number
in the sequence of K prime numbers beginning with 2.

An important attribute of the Halton values is that they are also distributed in the (0,1)
interval. Then, the primitive draw (Pseudo or Halton draws) is then transformed to the
distribution specified by the user as follows:

o uy i ~ U(0,1): primitive draw from halton or pseudo-random number generator

® Wi ir = Q_l(uk’ir) ~ N(O, 1)
Using these two primitive draws, Rchoice creates the random parameters as follows:

1. Normal Parameter:

Brir = Br + OpWyr
wk,ir ~ N(O, 1)
where (3, and oy, are estimated. Then, 8 ; ~ N (B, 07)

2. Truncated normal Parameter:

| Betokwggr it Brie >0
Bk,ir - .
0 otherwise
Wgir N(Oa 1)

where ) and oy are estimated. Then, fS;; ~ N(,Bk,az) with the share below zero
massed at zero

3. Log-Normal Distribution:
Brir = exp(Br+ orwir)
wk,ir ~ N(O, 1)

where 3 and oy, are estimated. Then, By; ~ log N(By,02)

4. Uniform:

ﬁk,ir = Bk + Uk(2 X Uk ir — 1)
Ui ~ U(0,1)

where [ and oy are estimated.
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5. Triangular distribution:

Brir = Br + OkVkr

Vkir ~ Lk < 0.5) (v/2uks — 1) + L(ugr > 0.5) (1 —4/2(1 - ukw))

where [ and oy are estimated.

6. Johnson’s Sp:

_exp (B + opwi i)
/Bk,iT =

1+ exp (Br + opwgir)
wk,ir ~ N(O, 1)

where ), and oy, are estimated.

In applied work, one issue that causes concern is the choice of the distribution of the ran-
dom parameters. As explained by Hensher and Greene (2003), distributions are essentially
arbitrary approximations to the real behavioral profile. The researcher choose a specific dis-
tribution because he has a sense that the “empirical truth” is somewhere in their domain. For
example, the log-normal form is often used if the coefficient needs to be specific non-negative
sign. On the contrary, the normal and triangular distributions are useful when there is no
certainty of the sign of the coefficient. The problem with the normal distribution is that its
domain is (—o0, 00) which may results in very extreme coefficients. The triangular distribu-
tion may solve this problem because it possesses shorter tails.

Rchoice allows to the user to specify two type of random draws by the argument haltons:
pseudo-random draws (haltons = NULL) and Halton draws (haltons = NA) as default. If
haltons = NULL, the seed is set to set.seed(123). The user can change this by the seed
argument. For the Halton draws, the default is to use the first Ko primes numbers starting
with 3. Within each series, the first 100 draws are discarded, as the first draws tend to be
highly correlated across different draws. The user can also change the prime number and
the element dropped for each serie. For example, if Ko = 2, and the user wants to use the
primes numbers 5 and 31 along with dropping the first 10 draws, he could specify haltons
= list("prime" = c(5,31), "drop" = c(10,10)).

5. Applications Using Rchoice

5.1. Standard Models

In this section, we show the capabilities of Rchoice to estimate Poisson, Binary and Ordered
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regression model without random parameters.* The main objective of this section is to show
how Rchoice can interact with other packages in R.

Rchoice is loaded by typing:

library("Rchoice")

To show how to estimate Poisson regression models using Rchoice, we will use data on scientific
productivity (Long 1990, 1997). We load the data using

data("Articles")
head(Articles,3)

art fem mar kidb5 phd ment
1 0 0 1 0 2.52 7
2 0 1 0 0 2.05 6
3 0 1 O 0 3.75 6

To see more information about the data, one can use:

help(Articles)

The work by Long (1990) suggests that gender, marital status, number of young children,
prestige of the graduate program, and the number of articles written by a scientist’s mentor
could affect a scientist’s level of publication. To see this, we estimate a Poisson regression
model and use the Rchoice function specifying link = poisson:

poisson <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
data = Articles,
family = poisson)

summary (poisson)

Model: poisson
Model estimated on: Wed Dec 17 10:39:21 2014

Call:
Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, method = "nr")

“In R there exist several package to estimate binary, count and ordered models. glm function allows to
estimate different kind of discrete choice models such as Poisson and binary models. The function probit from
the package micEcon allows to estimate probit model. Moreover, the function polr from the package MASS
allows to estimate ordered models (Venables and Ripley 2002). The advantage of Rchoice is that allows more
flexibility in the optimization routines which improves the convergence speed. Rchoice uses the function maxLik
in order to maximize the log-likelihood function, which permits to estimate models by the Newton-Raphson
(NR), BGFS and Berndt-Hall-Hall-Hausman (BHHH) procedures (see Henningsen and Toomet 2011).
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The estimation took: Oh:0m:0s

Coefficients:
Estimate Std. Error t-value Pr(>ltl|)
constant 0.3046168 0.1029822 2.9580 0.003097 **

fem -0.2245942 0.0546138 -4.1124 3.915e-05 *xx*

mar 0.1552434 0.0613747 2.5294 0.011425 *

kidb -0.1848827 0.0401272 -4.6074 4.077e-06 **x*

phd 0.0128226 0.0263972 0.4858 0.627141

ment 0.0255427 0.0020061 12.7327 < 2.2e-16 *xx*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

Optimization of log-likelihood by Newton-Raphson maximisation
Log Likelihood: -1651.1

Number of observations: 915

Number of iterations: 7

Exit of MLE: gradient close to zero

The output shows that the log-likelihood function is estimated using NR algorithm in 7 itera-
tions. If the user wants to estimate the model using another algorithm he should type method
= "bfgs" for the BGFS method or method = "bhhh" for BHHH method.?

In terms of interpretation, we can say that, being a female scientist decreases the expected
number of articles by a factor of 0.8 (= exp(—.225)), holding all other variables constant
Or equivalently, being a female scientist decreases the expected number of articles by 20%
(=100 [exp(—.225) — 1]), holding all other variables constant. Prestige of PhD department is
not important for productivity.

Another capability of Rchoice is its interaction with other packages in R. For example, we
can compute the robust standard error by using the package sandwich:

library(sandwich)
library(lmtest)
coeftest(poisson, vcov = sandwich)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

SBHHH is generally faster than the other procedures, but it can blow up if the variables have very different
scale. The larger the ratio between the largest standard deviation and the smallest standard deviation, the
more problems the user will have with the estimation procedure. Given this, we encourage the users check the
variables and re-scale or recode them if necessary. Rchoice uses the numerical hessian if method = ’nr’ and
the model is estimated with random parameters, thus it can be very slow compare to the other methods.

11
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constant 0.3046168 0.1465197 2.0790 0.0378958 x*

fem -0.2245942 0.0716622 -3.1341 0.0017793 x*x*

mar 0.1552434 0.0819292 1.8948 0.0584297 .

kidb -0.1848827 0.0559633 -3.3036 0.0009917 x*xx*

phd 0.0128226 0.0419642 0.3056 0.7600096

ment 0.0255427 0.0038178 6.6905 3.884e-11 **x*

Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

To get the same robust standard errors as STATA (StataCorp 2011), we need to make a small
sample correction:

vcov.stata <- vcovHC(poisson, type = "HCO") * nObs(poisson)/(nObs(poisson)-1)
coeftest(poisson, vcov = vcov.stata)
t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
constant 0.3046168 0.1465999 2.0779 0.038001 *

fem -0.2245942 0.0717014 -3.1324 0.001790 **

mar 0.1552434 0.0819740 1.8938 0.058567 .

kidb -0.1848827 0.0559939 -3.3018 0.000998 **x*

phd 0.0128226 0.0419871 0.3054 0.760137

ment 0.0255427 0.0038198 6.6868 3.977e-11 **x*

Signif. codes: O 'xxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 "' ' 1

where the correction is n/(n — 1).

Rchoice also interacts with linearHypothesis and deltaMethod functions from car (Fox,
Bates, Firth, Friendly, Gorjanc, Graves, Heiberger, Monette, Nilsson, Ogle et al. 2009) and
the 1rtest and waldtest functions from lmtest package (Zeileis and Hothorn 2002). For
example, we can test Hy : phd/ment = 0 by:

library(car)
deltaMethod(poisson, "phd/ment")

Estimate SE
phd/ment 0.5020048 1.043031

The main argument to estimate other models is family. For probit models, the user should
specify family = binomial("probit"), and for Logit family = binomial("logit"). In
the following example, we use the Workmroz data base to estimate a binary Probit model,
where the dependent variable 1fp equals 1 if wife is in the paid labor force, and 0 otherwise.
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data("Workmroz")

probit <- Rchoice(lfp ~ k5 + k618 + age + wc + hc + lwg + linc,
data = Workmroz,
family = binomial('probit'))

summary (probit)

Model: binomial
Model estimated on: Wed Dec 17 10:39:21 2014

Call:
Rchoice(formula = 1fp ~ k6 + k618 + age + wc + hc + lwg + linc,
data = Workmroz, family = binomial("probit"), method = "nr"

Frequencies of categories:
y
0 1
0.43218 0.56732
The estimation took: Oh:0m:O0Os

Coefficients:
Estimate Std. Error t-value Pr(>|tl|)

constant 2.7819830 0.4418758 6.2958 3.057e-10 ***

k5 -0.8806883 0.1134365 -7.7637 8.216e-15 *x*x

k618 -0.0386560 0.0404545 -0.9555 0.3393037

age -0.0377010 0.0076118 -4.9529 7.310e-07 *x*x*

we 0.4811500 0.1352711 3.5569 0.0003752 ***

hc 0.0774402 0.1247331 0.6208 0.5347000

lug 0.3716453 0.0876052 4.2423 2.213e-05 **x*

linc -0.4514938 0.1007483 -4.4814 7.415e-06 **x*

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by Newton-Raphson maximisation
Log Likelihood: -451.91

Number of observations: 752

Number of iterations: 4

Exit of MLE: gradient close to zero

Ordered Probit and Logit models are estimated in the same way. In this case we use Health
database and create the logarithm of household income. The dependent variable, newhsat, is
a categorical variable that indicates the self reported health assessment of individuals recorded
with values 0,1,...,4.
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data("Health")

Health$linc <- log(Health$hhinc)

ologit <- Rchoice(newhsat ~ age + educ + married + hhkids + linc,
data = Health[1:2000, 1],
family = ordinal('logit'))

summary (ologit)

Model: ordinal
Model estimated on: Wed Dec 17 10:39:21 2014

Call:
Rchoice(formula = newhsat ~ age + educ + married + hhkids + linc,
data = Health[1:2000, ], family = ordinal("logit"), method = "bfgs")

Frequencies of categories:
y

0 1 2 3 4
0.0600 0.2675 0.4545 0.1010 0.1170
The estimation took: Oh:0m:0s

Coefficients:

Estimate Std. Error t-value Pr(>|t])
kappa.1 2.0942090 0.0904874 23.1436 < 2.2e-16 *x*x
kappa.2 4.1980669 0.1059515 39.6225 < 2.2e-16 *x*x
kappa.3 4.9612273 0.1157057 42.8780 < 2.2e-16 **x
constant 2.1701941 0.7784738 2.7878 0.0053075 *x*
age -0.0306368 0.0045175 -6.7819 1.186e-11 **x*
educ 0.0658477 0.0184559 3.5678 0.0003599 *x*x
married -0.3363123 0.1102781 -3.0497 0.0022909 x*x*
hhkids 0.2204229 0.0994854 2.2156 0.0267168 *
linc 0.1764959 0.0987995 1.7864 0.0740337 .
Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -2662.6

Number of observations: 2000

Number of iterations: 67

Exit of MLE: successful convergence

5.2. Random Parameters Models with Cross Sectional Data

The main advantage of Rchoice over other packages is that it allows estimating models with
random parameters. In this section, we show how to estimate those kinds of models for Bi-
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nary, Ordered and Poisson models using cross-sectional data.

First, we estimate a Poisson regression model with random parameters. In this case, we
will assume that the effect of kid5, phd and ment are not fixed, but rather heterogeneous
across the population. Specifically, we will assume that the coefficients for those variables are
independent normally distributed, that is, we will not allow correlation among them:

Brigsi = Brids + OkidsWkids,ir
Bphdi = Bphd + TphdWphd,ir
ﬁment,i = [nent + OmentWnent,ir

where wy, i ~ N(0,1). Then, in order to estimate this model, we can write:

poisson.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
data = Articles,
family = poisson,
ranp = c(kid5 = "n", phd = "n", ment = "n"))

It is important to discuss the arguments for the Rchoice function. First, the argument ranp
indicates which variables are random in the formula and their distributions. In this case, we
have specified that all of them are normal distributed using "n". The rest of the distributions
are:

e Normal = "n",

Log-Normal = "1n",

e Truncated Normal = "cn",
e Uniform = "u",
e Triangular = "t",

Johnson’s S, = "sb"

The number of draws are not specified. Therefore, Rchoice will set R = 40 as default. The
user can change this by changing the R argument. The type of draws are Halton draws
default, but if the user wants pseudo-random draws he can specify haltons = NULL. Finally,
it is always important checking the exit of the estimation. As explained before, the default
maximization algorithm for SML is BGFS.5

summary (poisson.ran)

5For more information about arguments for the optimization type help(maxLik).
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Model: poisson
Model estimated on: Wed Dec 17 10:39:48 2014

Call:

Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, ranp = c(kid5 = "n", phd = "n", ment = "n"),
method = "bfgs", iterlim = 2000)

The estimation took: Oh:0m:27s

Coefficients:
Estimate Std. Error t-value Pr(>|t])
constant 0.2255825 0.1324995 1.7025 0.088659 .

fem -0.2184985 0.0705576 -3.0967 0.001957 *x*
mar 0.1564309 0.0791214 1.9771 0.048030 *
mean.kidb -0.1977748 0.0634716 -3.1160 0.001833 **
mean.phd -0.0299420 0.0372167 -0.8045 0.421091
mean.ment 0.0311104 0.0038136 8.1578 4.441e-16 *x*x*
sd.kidb 0.2853104 0.0891038 3.2020 0.001365 *x*
sd.phd 0.1654054 0.0165846 9.9734 < 2.2e-16 **x*
sd.ment 0.0158755 0.0035353 4.4905 7.105e-06 **x*

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -1574.2

Number of observations: 915

Number of iterations: 81

Exit of MLE: successful convergence

Simulation based on 40 Halton draws

It is important checking the exist of the estimation. In our example, the output informs
us that the convergence was achieved successfully. The results also show that the standard
deviations of the coefficients are highly significant, indicating that parameters do indeed vary
in the population. Since the parameters are normally distributed, we can also say that :

pnorm(coef (poisson.ran) ["mean.kid5"]/coef (poisson.ran) ["sd.kid5"])

mean.kidb
0.2440946

a 24% of the individuals have a positive coefficient for kid5. In other words, for about 76% of
PhD students, having children less than 6 years old reduces their productivity. Note also that
the mean coefficient for phd is 0 (not significant). This is due to the fact that the unobserved
heterogeneity among scientists in the sample cancel out positive and negative effects. These
observations are not possible with a Poisson regression with fixed parameters.
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Suppose that now we want to test if Hy = 0xigs = Opha = Oment = 0. This can be done by
using the function waldtest or lrtest from package Imtest:

waldtest (poisson.ran, poisson)

Wald test

Model 1: art © fem + mar + kid5 + phd + ment

Model 2: art ~ fem + mar + kid5 + phd + ment
Res.Df Df Chisq Pr(>Chisq)

1 906

2 909 -3 280.14 < 2.2e-16 **x*

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
lrtest(poisson.ran, poisson)

Likelihood ratio test

Model 1: art ~ fem + mar + kid5 + phd + ment

Model 2: art © fem + mar + kid5 + phd + ment
#Df LogLik Df Chisq Pr(>Chisq)

1 9 -1574.2

2 6 -1651.1 -3 153.78 < 2.2e-16 *x*x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

Both tests reject the null hypothesis. We can also specify different distribution of the param-
eters by using the S3 method update:

poisson.ran2 <- update(poisson.ran,
ranp = c(kid5 = "u", phd = "t" , ment = "cn"),
R = 10)

Both models poisson.ran and poisson.ran2 can be compared using mtable from memisc:

library(memisc)

mtable("model 1"= poisson.ran, "model 2" = poisson.ran2,
summary.stats = c("N", "Log-likelihood", "BIC", "AIC"))

The previous model specifies the coefficients to be independently distributed while one would
expect correlation. For example, the effect of the prestige of PhD department could be
positive correlated with the number of publications by mentor. Now, we estimate the model
poisson.ran, but assuming that the random parameters are correlated. That is, we specified
Bi ~ N(B,X) for general X
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poissonc.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
data Articles,
ranp = c(kid5 = "n", phd = "n", ment = "n"),
family = poisson,
correlation = TRUE,
R = 10)

summary (poissonc.ran)

Model: poisson
Model estimated on: Wed Dec 17 10:40:35 2014

Call:

Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, ranp = c(kid5 = "n", phd = "n", ment = "n"),
R = 10, correlation = TRUE, method = "bfgs", iterlim = 2000)

The estimation took: Oh:0Om:46s
Coefficients:

Estimate Std. Error t-value Pr(>|tl)
constant 0.2490701 0.1272589 1.9572 0.050325 .

fem -0.2207883 0.0691399 -3.1934 0.001406 x*x*
mar 0.1410103 0.0793115 1.7779 0.075415 .
mean.kidb -0.1996965 0.0566969 -3.5222 0.000428 ***
mean . phd -0.0356327 0.0358630 -0.9936 0.320429
mean.ment 0.0346114 0.0036420 9.5034 < 2.2e-16 *x*x
sd.kidb.kidb -0.1815531 0.0722360 -2.5133 0.011960 *
sd.kid5.phd -0.1803741 0.0235439 -7.6612 1.843e-14 **x*
sd.kidb.ment 0.0297596 0.0045700 6.5119 7.421e-11 **x*
sd.phd.phd -0.0638155 0.0287141 -2.2224 0.026253 *
sd.phd.ment -0.0163012 0.0055910 -2.9156 0.003550 **
sd.ment.ment 0.0028148 0.0064630 0.4355 0.663179

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -1579.4

Number of observations: 915

Number of iterations: 189

Exit of MLE: successful convergence

Simulation based on 10 Halton draws

The output prints the mean of the random parameters along with the lower-triangular Choleski
factor L. We can extract the X = LL’ matrix of variance-covariance matrix and the correla-
tion matrix of the random parameters using cov.Rchoice and cor.Rchoice:
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cov.Rchoice(poissonc.ran)

kidb phd ment
kids 0.032961545 0.032747485 -0.005402947
phd  0.032747485 0.036607232 -0.004327588
ment -0.005402947 -0.004327588 0.001159286

cor.Rchoice(poissonc.ran)

kidb phd ment
kidd 1.0000000 0.9427374 -0.8740405
phd  0.9427374 1.0000000 -0.6643044
ment -0.8740405 -0.6643044 1.0000000

Among other things, the output shows that the three parameters are positively correlated.
Specifically, we can see that the correlation between phd and ment is around -0.4. We can
also test if the variances of the random parameters are significant using Delta Method. For
this, we can use the se.cov.Rchoice function, which is a wrapper of deltamethod function
from msm package. For example:

se.cov.Rchoice(poissonc.ran)

Elements of the variance-covariance matrix

Estimate Std. Error t-value Pr(>|t])
.kid5.kidb5 0.03296155 .02622936 1.2567 0.208875
.kid5.phd 0.03274749 .01248677 2.6226 0.008727 *x*
.kid5.ment -0.00540295 .00242844 -2.2249 0.026091 x*
.phd.phd 0.03660723 .00817813 4.4762 7.597e-06 **x*
.phd.ment -0.00432759 .00141756 -3.0528 0.002267 *x*
.ment.ment 0.00115929 .00028675 4.0429 5.281e-05 **x*

Signif. codes: O 'xxx' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 " ' 1

< < © € € <
O O O O O O

To get the standar errors of the standard deviations for the random parameters, we might
use:

se.cov.Rchoice(poissonc.ran, sd = TRUE)

Standard deviations of the random parameters

Estimate Std. Error t-value Pr(>|t|)
kidb 0.1815531 0.0722360 2.5133 0.01196 x*



20 Rchoice Package in R

phd 0.1913302 0.0213718 8.9525 < 2.2e-16 **x*
ment 0.0340483 0.0042109 8.0857 6.661e-16 **x*

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

5.3. Random Parameters Models with Panel Data

This new version of this package also handles panel data by estimating Random Effect Models
(RE). The RE model specifies:

€it = Vit + Uy

where v;; and u; are independent variables with

E(vit| X) = 0; Cov(vit, vis|X) = Var(vy| X) =1, it i =7 and t = s;0 otherwise,
E(u;|X) = 0, Cov(u;, u;|X) = Var(y;|X) = o2, if i =j; 0 otherwise,
Cov(vit, u;) =0 for all i4,t, 7,

and X indicates all the exogenous data in the sample, x;; for all ¢ and ¢. This model can be
estimated using the package pglm (Croissant 2013), which uses quadrature to approximate
the integration in the probability.

Rchoice also allows estimating RE effect models along with random parameters. Note that
assuming that the constant is random is equivalent to a RE model. Therefore, the user might
estimate a simple RE model by typing ranp = (constant = ’n’).

In this example we estimate a Probit Model with RE and random parameters using Unions
database from the pglm package.

data('Unions', package = 'pglm')
Unions$lwage <- log(Unions$wage)

The model is estimated using the following syntax:

union.ran <- Rchoice(union ~ age + exper + rural + lwage,
data = Unions[1:2000, 1,
family = binomial ('probit'),

ranp = c(constant = "n", lwage = "t"),
R = 10,

panel = TRUE,

index = "id",

print.init = TRUE)



Starting Values:

age exper
-0.009678358 -0.017142802
sd.constant sd.lwage

0.100000000  0.100000000
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ruralyes mean.constant
0.292871899 -1.380275299

mean.lwage
0.420245667

In this case, we assume that lwage is distributed as triangular, while the constant is assumed
to be normal distributed. This is the same as assuming that u; ~ N(0, 02).

There are two main arguments for the panel estimation. The argument panel = TRUE indi-
cates that the data is a panel. This implies that the user should indicate the variable that
corresponds to the ID of the individuals in the index argument.

Finally, the argument print.init = TRUE indicates that the initial values used by Rchoice

will be displayed.

summary (union.ran)

Model: binomial
Model estimated on: Wed Dec

Call:

17 10:41:19 2014

Rchoice(formula = union ~ age + exper + rural + lwage, data = Unions[1:2000,
], family = binomial("probit"), ranp = c(constant = "n",
nel = TRUE, index = "id", print.init = TRUE,

lwage = "t"), R = 10, pa
method = "bfgs", iterlim

Frequencies of categories:
y

0 1
0.7605 0.2395
The estimation took: Oh:0m:4
Coefficients:
Estimate Std.
age 0.054069 O
exper -0.091741 0
ruralyes 0.227349 O
mean.constant -1.300731 0
mean.lwage 0.010886 0
sd.constant 1.199181 0
sd.lwage 1.042017 O

= 2000)

3s

Error t-value Pr(>|t])

.328016 0.1648 0.8691
.020984 -4.3720 1.231e-05 **x*
.175374 1.2964 0.1948
.244972 -5.3097 1.098e-07 ***
.154192 0.0706 0.9437
.161099 7.4438 9.792e-14 ***
.107448 9.6978 < 2.2e-16 **x*
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Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -738.64

Number of observations: 2000

Number of iterations: 77

Exit of MLE: successful convergence

Simulation based on 10 Halton draws

The results indicate that o, =1.1991808 and is significant. On the other hand, the finding of
a significant standard deviation yet insignificant mean for lwage attests to the existence of
substantial heterogeneity; positive and negative coefficient in the sample compensate for each
other, such that the coefficient on the mean is not significant.

As in the previous cases, an Ordered Probit Model with RE and random parameters can be
estimated in the same way, but changing the distribution with the family argument.

oprobit.ran <- Rchoice(newhsat ~ age + educ + married + hhkids + linc,
data = Health[1:2000, ],
family = ordinal('probit'),

ranp = c(constant = "n", hhkids = "n", linc = "n"),
panel = TRUE,

index = "id",

R = 100,

print.init = TRUE)
summary (oprobit.ran)

5.4. Hierarchical Poisson Random Parameter Model

In this section we show how to estimate a Hierarchical Poisson Random Parameter Model. In
this case, we assume that there exist not only unobserved heterogeneity in the coefficients for
phd and ment, but also observed heterogeneity in the mean of the coefficients. Specifically,
we assume that:

ﬁkidS,ir = BkidS + Okid5Wkid5,ir
/Bphd,ir = Bphd + 7Tphd,femf em + OphdWphd,ir
/Bment,ir = Bment + 7Tment,femfem + 7Tment7phdphd + Umentwment,ir

The formulation above implies that, for example, ment’s coefficient (or marginal effect on
latent productivity) varies by gender and phd.

poissonH.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment | fem + phd,
data Articles,
ranp c(kid5 = "n", phd = "n", ment = "n"),
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mvar = list(phd = c("fem"), ment = c("fem", "phd")),
family = poisson,
R = 10)

Rchoice manages the variables in the hierarchical model by the formula object. Note that
the second part of the formula is reserved for all the variables that enter in the mean of the
random parameters. The argument mvar is a list that indicates how all this variables enter
in each random parameter. For example phd = c("fem") indicates that the mean of phd
coeflicient varies according to fem.

summary (poissonH.ran)

We can test if the interaction variables are jointly significant by using lrtest:

lrtest(poissonH.ran, poisson.ran)

5.5. Plotting Conditional Means

It is important to note that the estimates of the model parameters provide the unconditional
estimates of the parameter vector, but we can form a person specific conditional estimator
(see Train 2009; Greene 2012). The estimator of the conditional mean of the distribution of
the random parameters, conditioned on the person specific data, is:

R
Bi ﬁz’dataz :Z zrﬁir
where:

B\ir :B+ﬁsi+f‘wir

Note that these are not actual estimates of 3;, but are estimates of the conditional mean of
the distribution of the random parameters (Greene, Harris, and Spencer 2014). We can also
estimate the standard deviation of this distribution by estimating:

Bz ’datal = ZTBiQrv

||M:u

and then computing the square root of the estimated variance,

\/E(Bfldatai) — E(B;|data, )2

With the estimates of the conditional mean and conditional variance, we can then compute
the limits of an interval that resembles a confidence interval as the mean plus and minus two
estimated standard deviation. This will construct an interval that contains at least 95 percent
of the conditional distribution of 3; (Greene 2012).

23
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Rchoice allows to plot the histogram and kernel density of conditional means of random
parameters using the function plot. For instance, the kernel of the conditional mean of
B1uage,i for union.ran model can be obtained by typing:

plot(union.ran, par = "lwage", type = "density")

Figure 1: Kernel Density of the Individual’s Conditional Mean
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As Greene (2012) points out, even if the analysis departs from normal marginal distributions
3;, the sample distribution of the n estimated conditional means is not necessarily normal.
Therefore, the kernel estimator based on the n estimators can have a variety of shapes.

We may also plot the individual confident interval for the conditional means for the first 20
individuals:

plot(union.ran, par = "lwage", ind = TRUE, id = 1:20, col = "blue")
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Figure 2: Individual Confident Interval for the Conditional Means
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The method plot for Rchoice class is a wrapper of effect.Rchoice function. This function
is a helper function to obtain the conditional estimate of the individual random parameters
or the compensating variations.

bi.wage <- effect.Rchoice(union.ran, par = "lwage", effect = "ce")

The argument effect is a string indicating what type of effect should be computed. In this
example, we are requiring the the conditional expectation of the individual coefficients "ce".
effect.Rchoice returns two list. The first one with the estimated conditional means for
all the individuals, and the second one with the estimated standard errors of the conditional
means.

summary (bi.wage$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.4116 -0.1460 0.0718 0.2824 0.8643 1.0530

summary (bi.wage$sd.est)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000017 0.3440000 0.5372000 0.4526000 0.6290000 0.8440000
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One might also get the individuals’ compensating variations using both plot and effect.Rchoice.
Compensating variation is the variation in two regressors such that the latent variables does

not change. Let x;; denote the Ith elment in x; and f; the corresponding parameter, and let

m index the mth elements in both vectors x; and 3, respectively. Now consider a change in

x; and x;, at the same time, such that U; = 0. This requires

Az .
0 = BAZi + BimATim = i Pim
Az, By
where (;, is a random coefficient. This ratio (without the minus sign) is computed or plotted if
the argument effect = "cv" in any of the two functions. The argument par is the variable

whose coefficient goes in the numerator (8;,), and the argument wrt is a string indicated
which coefficient goes in the denominator (/3;). Note that since f;,, is random, the ratio
of the coefficient is random and its distribution follows from the joint distribution of the
coeflicients.

6. Conclusions and future development

The Rchoice package contains most of the newly developed models in binary, count and or-
dered models with random parameters. Rchoice handles cross-section data with observed and
unobserved heterogeneity. Allowing parameter values to vary across the population accord-
ing to some pre-specified distribution overcomes the problem of having a fixed-representative
coefficient for all individuals. The distribution supported by Rchoice are normal, log-normal,
uniform, truncated normal and triangular distribution. It also allows to the user choose be-
tween Halton draws and pseudo-random numbers and correlated parameters.

The Rchoice package intends to make available those estimation methods to the general public
and practitioners in a friendly and flexible way. In future versions, we expect to add functions
that allows estimating latent class models. We also hope to include functions to compute
marginal effects.
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