
Parallel processing with the RNetLogo Package

Jan C. Thiele
Department of

Ecoinformatics, Biometrics
and Forest Growth

University of Göttingen
Germany

Abstract

RNetLogo is a flexible interface for NetLogo to R. It opens various possiblities to
connect agent-based models with advanced statistics. It opens the possiblity to use R as
the starting point to design systematic experiments with agent-based models and perform
parameter fittings and sensitivity analysis. Therefore, it can be necessary to perform
repeated simulations which could be parallelized. Here, I present how such a parallelization
could be done for the RNetLogo package. The things presented here could be used to run
multiple simulations in parallel on a single computer with multiple processors or to spread
multiple simulation to several processors in computer clusters/grids. Using the parallel
package has an positive side effect: It enables you to start more than one NetLogo instance
with GUI in parallel, which is not possible with parallelization.

Keywords: NetLogo, R, agent based modelling, abm, individual based modelling, ibm, paral-
lelization.

1. Motivation

Since modern computers mostly have more than one processor and agent-based simulations
are often complex and time comsuming it is desireable to spread repeated simulations, for
example for parameter fitting or sensitivity analysis, to multiple processors in parallel. Here,
I will present one way of how it is possible to spread multiple NetLogo simulations controlled
from R via the RNetLogo package to multiple processors.

2. Parallelization in R

R itself is not able to make use of multiple processors of a computer. But there are several
R packages available, which enable the use to spread repeated processes to multiple proces-
sors. There is a CRAN Task View called ”High-Performance and Parallel Computing with
R” at http://cran.r-project.org/web/views/HighPerformanceComputing.html. Since
R version 2.14.0 there is the parallel package included in every standard R installation. In
the following I will present how to use this parallel package in conjunction with RNetLogo.
Therefore, to follow the examples it requires that you have at R version >= 2.14.0 installed.
There is a pdf file coming with the parallel packing giving a short introduction into the usage

http://cran.r-project.org/web/views/HighPerformanceComputing.html


2 Parallel RNetLogo

of the package and the plattform specific differences. You should always start by reading this
document. A last note, before we start: The commands presented in the following have been
tested on Windows and Linux operation systems only. If you have experiences with Mac OS
please let me know.

3. Parallelize a simple process

The basic concept of the parallel package is to parallelize an apply (or lapply, sapply etc.)
operation. This means, that the process you want to parallelize has to be process which is
applied to an array, matrix, list or whatever.

Let us start with a simple example without using RNetLogo. First, we define a simple function
which calculates the square of an input number.

R> testfun1 <- function(x) {

+ return(x*x)

+ }

We could apply this simple function to a vector of values using sapply like this:

R> my.v1 <- 1:10

R> print(my.v1)

[1] 1 2 3 4 5 6 7 8 9 10

R> my.v1.quad <- sapply(my.v1, testfun1)

R> print(my.v1.quad)

[1] 1 4 9 16 25 36 49 64 81 100

The result is a vector with the quadratic values of the input vector, i.e. the function was
applied sequentially to each element of the input vector.

One way to use the parallel package is to use the parallel version of the sapply function which
is called parSapply.

But before we can use this function, we have to make/register a cluster, as you know from
the manual of the parallel package. Therefore, we could, for example, detect the number of
cores of our local computer and start a local cluster with this number of processors, as shown
here:

R> # load the parallel package

R> library(parallel)

R> # detect the number of cores available

R> processors <- detectCores()

R> # create cluster

R> cl <- makeCluster(processors)

Then, we can run our simple function on this cluster. At the end, we should always stop the
cluster.



Jan C. Thiele 3

R> # call parallel sapply

R> my.v1.quad.par <- parSapply(cl, my.v1, testfun1)

R> print(my.v1.quad.par)

[1] 1 4 9 16 25 36 49 64 81 100

R> # stop cluster

R> stopCluster(cl)

4. Parallelize RNetLogo

As you know from the RNetLogo manual, it requires an initialization using the NLStart and
(maybe) NLLoadModel function. To parallelize (R)NetLogo we need this initialization to be
done for every processor, because they are independent from each other (which is a very
important property, because, for example, random processes in parallel simulations should
not beeing influenced by each other).

Therefore, it makes sence to put the initialization, the simulation and the quiting process into
seperate functions. These functions could look like the following (if you want to test these,
don’t forget to adapt the paths appropriate):

R> # the initialization function

R> prepro <- function(dummy, gui, nl.path, model.path) {

+ library(RNetLogo)

+ NLStart(nl.path, nl.version=5, gui=gui)

+ NLLoadModel(model.path)

+ }

R> # the simulation function

R> simfun <- function(x) {

+ NLCommand("print ",x)

+ NLCommand("set density", x)

+ NLCommand("setup")

+ NLCommand("go")

+ NLCommand("print count turtles")

+ ret <- data.frame(x, NLReport("count turtles"))

+ names(ret) <- c("x","turtles")

+ return(ret)

+ }

R> # the quit function

R> postpro <- function(x) {

+ NLQuit()

+ }

4.1. With Graphical User Interface (GUI)

Now, we have to start the cluster, run the initialization function in each processor, which will
open so many NetLogo windows as we have processors.



4 Parallel RNetLogo

Note, that this is also a nice way to run multiple NetLogo GUI instances in parallel, what
is not possible within one R session without this parallelization (see documentation of the
RNetLogo package for detail).

R> # load the parallel package, if not already done

R> require(parallel)

R> # detect the number of cores available

R> processors <- detectCores()

R> # create cluster

R> cl <- makeCluster(processors)

R> # set variables for the start up process

R> # adapt path appropriate

R> gui <- TRUE

R> nl.path <- "C:/Program Files/NetLogo 5.0"

R> model.path <- "models/Sample Models/Earth Science/Fire.nlogo"

R> # load NetLogo in each processor/core

R> invisible(parLapply(cl, 1:processors, prepro, gui=gui,

+ nl.path=nl.path, model.path=model.path))

After the initialization is done in all processors, we can run the simulation. Here, we will use
the Fire model from NetLogo’s Model Library. We will vary the density value from 1 to 20,
i.e. we will run 20 independent simulations each with a different density value.

R> # create a vector with 20 density values

R> density <- 1:20

R> print(density)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R> # run a simulation for each density value

R> # by calling parallel sapply

R> result.par <- parSapply(cl, density, simfun)

R> print(data.frame(t(result.par)))

x turtles

1 1 254

2 2 254

3 3 255

4 4 265

5 5 260

6 6 263

7 7 261

8 8 276

9 9 268

10 10 273

11 11 270

12 12 277

13 13 284



Jan C. Thiele 5

14 14 293

15 15 298

16 16 294

17 17 292

18 18 304

19 19 302

20 20 300

At the end, we should stop all NetLogo instances and the cluster.

R> # Quit NetLogo in each processor/core

R> invisible(parLapply(cl, 1:processors, postpro))

R> # stop cluster

R> stopCluster(cl)

4.2. Headless

The same is possible with the headless mode, i.e. with the GUI. We just have to set the
variable gui to FALSE.

It could look like this:

R> # run in headless mode

R> gui <- FALSE

R> # create cluster

R> cl <- makeCluster(processors)

R> # load NetLogo in each processor/core

R> invisible(parLapply(cl, 1:processors, prepro, gui=gui,

+ nl.path=nl.path, model.path=model.path))

R> # create a vector with 20 density values

R> density <- 1:20

R> print(density)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R> # run a simulation for each density value

R> # by calling parallel sapply

R> result.par <- parSapply(cl, density, simfun)

R> print(data.frame(t(result.par)))

x turtles

1 1 255

2 2 255

3 3 258

4 4 257

5 5 261

6 6 266

7 7 263



6 Parallel RNetLogo

8 8 280

9 9 274

10 10 278

11 11 288

12 12 282

13 13 283

14 14 283

15 15 281

16 16 290

17 17 302

18 18 297

19 19 304

20 20 300

R> # Quit NetLogo in each processor/core

R> invisible(parLapply(cl, 1:processors, postpro))

R> # stop cluster

R> stopCluster(cl)

5. Conclusion

We have seen one way of how it is possible to spread repeated and independent simulations
to multiple processors using the parallel package. Therefore, RNetLogo can be efficiently
used to perform parameter fittings and sensitivity analyses where large number of repeated
simultions are required.

Affiliation:

Jan C. Thiele
Department of Ecoinformatics, Biometrics and Forest Growth
University of Göttingen
Büsgenweg 4
37077 Göttingen, Germany
E-mail: jthiele@gwdg.de
URL: http://www.uni-goettingen.de/en/72779.html

mailto:jthiele@gwdg.de
http://www.uni-goettingen.de/en/72779.html

	Motivation
	Parallelization in R
	Parallelize a simple process
	Parallelize RNetLogo
	With Graphical User Interface (GUI)
	Headless

	Conclusion

