
RBerkeley: Getting Started with DB

and R

Jeffrey A. Ryan

July 23, 2009

Contents

1 Overview 1

2 Design Philosophy 2

3 Getting DB and RBerkeley 2

4 Database Basics 3
4.1 Opening a Database . 3
4.2 Adding Records . 4

4.2.1 db put aka DB->put . 5
4.2.2 Cursors . 6

4.3 Retrieving Records . 6
4.3.1 db get aka DB->get . 6
4.3.2 Cursors . 7

4.4 Removing Records . 10
4.4.1 db del aka DB->del . 10
4.4.2 Cursors . 10

4.5 Closing a Database . 11

5 Conclusion 11

1 Overview

Berkeley DB[2] is an embedded database application distributed by Oracle for
use in open source and commercial applications.

Widely deployed, Berkeley DB is used behind the scenes in many of the most
popular applications and services in the world. It is designed to be fast, memory-
efficient, and fully ACID compliant. Berkeley DB, also known commonly as
DB, is shipped with APIs that allow for programatic access to its features.
These directly supported language interfaces include C, C++, Java and Tcl.

1

Contributed bindings exists in a variety of programming languages, including
Perl, Python, and Ruby.

RBerkeley adds an R [1] language binding to this pool of options.
This document is not to extoll the virtues of DB, but rather to provide a

quick start to using the R interface. The general design philosophy of RBerkeley
will be explained, and some small examples of using it in practice will be worked.

At present a large part of the very large API has been incorporated into
RBerkeley, including support for most database functions, cursors, environments
and mutexes. Not yet supported, though in development, are transactions, locks,
and the rest of the API.

2 Design Philosophy

The RBerkeley interface is designed to be as close to the native C API as
possible. Naming conventions are maintained, with some simple substitutions
to allow for legal R function names. Most of the functionality exposed at the R
level is simply a thin wrapper to an internal call to the C wrapper around the
C API calls.

Some additional functionality and function calls are included to offer a more
seamless user experience, as well as provide a more direct connection to the
syntax of the C API, so as the official Oracle documentation can be used once
a basic syntax conversion is performed.

3 Getting DB and RBerkeley

Berkeley DB is most likely already available on your system if you are running
a unix or linux variant. The location of the library files are system dependant,
and at present the configure script included with RBerkeley tries to identify the
correct locations.

Installing DB

It is relatively simple to install the newest version of DB directly from Oracle by
following the instructions included in the download from Oracle. The remainder
of this section will assume the default location on POSIX systems. You may
need to alter your configuration files to build RBerkeley.

Installing RBerkeley

Installing RBerkeley follows the standard R installation convention of:
R CMD INSTALL RBerkeley_0.7-0.tar.gz

[Additional details coming...]

2

4 Database Basics

The primary purpose of this document is not to show how to use DB, that is
best understood by reading the official Oracle documentation. Our intention
is instead to show basic usage patterns, from the R environment, using the
RBerkeley package interface.

To begin, we will create a new database, add some R objects to it and read
them back. This will give the most simplistic use case.

4.1 Opening a Database

Here we create a new database handle, and open our test database.

> dbh <- db_create()

> dbh

<DB Handle>

db_create can take some additional parameters, but we use the defaults here.
The object returned is of class DB.

Next we open the database:

> ret <- db_open(dbh, txnid = NULL, file = "myDB.db", type = "BTREE",

+ flags = mkFlags(DB_CREATE, DB_EXCL))

> db_strerror(ret)

[1] "Successful return: 0"

The db_open call opens the underlying database. As with db create, differ-
ent parameters may be passed in. Some of these options will be covered in later
documentation, but for now the defaults are sufficient. Users are directed to the
official API[3] for usage details.

The return value from the db_open call is an integer value. This is the behavior
of the underlying API. The utility function db_strerror can take this value
and return a message to R. Additional error and message tools are available in
the API, though currently disabled.

The dbh argument is the database handle (a DB struct in the official API).
This is from the previous db_create call.

The txnid is the transaction handle (a DB TXN struct in the official API).
This may be specified as NULL if no transaction capability is needed, and in
the current version of RBerkeley transaction support is disabled, so this needs
to be passed as txnid=NULL.

The file argument is simply the name of the database we wish to open.

The type can be one of any supported DB access methods. These include
BTREE, HASH, RECNO, QUEUE or UNKNOWN, the latter for opening a

3

database of unknown type. The db_open function will accept a variety of vari-
ations on these names, see that function for details.

The flags argument in this example is used to create the underlying database
file if needed, i.e. if one is not present, [DB CREATE], but if and only if one is
not present [DB EXCL]. Flags are central to many of the advanced features in
DB, and it is crucial to understand what you can and can’t specify. Once again,
the main API documentation should be the considered the definitive guide.

One interesting non-API function found in RBerkeley is mkFlags; this func-
tion provides access to the internal constants defined by DB for use as flag
parameters to be passed to many of the internal functions.

The C API allows for flags to be constructed via bitwise OR operations on
predefined DB constants. In order to not map all constants into R, which would
be tedious, error-prone, and difficult to maintain, the RBerkeley package passes
a list of quoted or unquoted names from mkFlags into C code which in turn
performs this bitwise operation. mkFlags thus allows for syntax very close in
look and feel to the base C API, and at the same time makes for a robust and
safe mechanism to pass arbitrary combinations of flags correctly.

> mkFlags(DB_CREATE)

[1] 1

> mkFlags(DB_EXCL)

[1] 64

> mkFlags(DB_CREATE,DB_EXCL)

[1] 65

> mkFlags(DB_CREATE,DB_EXCL,DB_EXCL) # bitwise OR duplicates: no change

[1] 65

A programming note about this interface: unquoted symbols are converted
to character vectors and in turn concatenated into one vector that is passed
into the C level mkFlags function. If illegal values are passed they will simply
be ignored in the calculation, and will produce a visible warning regarding the
specific invalid flag or flags that failed to be processed. The return value will be
unaffected by improper or duplicate settings.

4.2 Adding Records

A database needs to have content, if it is to be of use. Berkeley DB stores
records in databases as simple key-value pairs. These records can be organized
with a variety of access schemes, all of which are discussed at length in the
official documentation.

4

The central difference between records in DB and records in a typical rela-
tional database is that DB has no notion of type. Records, both key and data
are simply byte-strings. This provides tremendous flexibility to the program-
mer, as it enables data to be stored in the most natural format possible, or in a
manner that is most in accordance with expected usage patterns.

Byte-strings make it quite easy to store native R objects as key or data,
making additional processing unecessary. Of course this also leaves open the
possibility of creating a preprocessing model to match any arbitrary schema
that is needed by the final application.

The primary difference in the RBerkeley implementation of the DB API
is that most R objects are passed to R’s serialize before being sent to the
database. At the DB level, the API simply takes whatever raw data is passed in
without effort to process. The only exception is for the R object type raw which
is passed in as is. This convention allows for simplicity of use from within R,
yet offers the benefit of providing a direct interface to the underlying flexibility
of DB if the application/programmer demands it. All DB data must be be
serialized, so this conversion from R objects (always represented as type RAW
internally by RBerkeley) to bytes is carried out in the package’s C layer.

To add a record, the package and API support two primary functions:
db_put and dbcursor_put. These correspond to the official API functions DB-
>put and DBcursor->put, respectively. We’ll take a look at each individually,
as well as introduce the concept of the DB cursor.

4.2.1 db put aka DB->put

The most basic way to add data into a database is with db_put. This takes a
handful of arguments and adds a new record into the database, and returns as
is usual for most of the API, an integer value of the success or failure.

An example or two is the best way to understand how to use.

> db_put(dbh, key = "Ross", data = "Ihaka")

> db_put(dbh, key = "Robert", data = "Gentleman")

This takes the two R character vectors, and adds them as a key and data
into our database referenced by the dbh handle we created earlier.

Internally it should be noted that it is the actual object being stored, after
being run through serialize, and not the characters themselves. If one wanted
to simply store the raw character values, instead of R objects, he could convert
to a raw vector before passing into db put.

> db_put(dbh, key = charToRaw("Ross"), data = charToRaw("Ihaka"))

> charToRaw("Ihaka")

[1] 49 68 61 6b 61

5

4.2.2 Cursors

A second slightly more abstract way of adding keys is to use a cursor. A cursor
in database terminology is really nothing more than a pointer to a record. A
cursor can traverse a database, and provides a host of retrieval options that
simply using db_put would be impossible for.

Using cursors or even explaining much beyond the above is outside the scope
of this document. The preceeding description should be sufficient to have a
cursory understanding what is happening internally. Yes, cursory.

To add a record with a cursor, we first need a valid cursor handle to our
database. This is accomplished with a call to db_cursor using a valid dbh

handle to an open database.

> dbc <- db_cursor(dbh)

As with most API calls, there are numerous argument that may be passed
into the creation call. The cursor (mapping to the C API struct DBC) is now
ready for use.

To put a record in the database, we now use the appropriate cursor method:

> dbcursor_put(dbc, key = 100L, data = 5L, flags = mkFlags(DB_KEYLAST))

[1] 0

Again, the return value of 0 is an indicator of success.
Some important points regarding the flags allowed need to be understood.

It is imperative to understand the underlying DB functionality before using
cursors.

4.3 Retrieving Records

As with putting records in a database, we can retrieve records through two
different mechanisms as well. The is the standard database retrieval method
for DB that is via the DB->get method, available in RBerkeley via db_get.
The second method works with cursors, as we had seen before. As before these
methods may be used together, or exclusively.

4.3.1 db get aka DB->get

The ‘standard’ way to fetch records from a database would be with the db_get

method. This only requires a open database, and a functioning database handle
(internally a pointer to a struct DB, for those following allong with the official
documentation).

Depending on the flags specified to the db get function it is possible to
perform more advanced operations than the following examples will cover. By
default, flags=0L for all calls not specifying a flag argument.

In the present version of RBerkeley, transaction support is disabled, and
must be set to NULL. If not specified, this is the default.

6

> db_get(dbh, key = 100L)

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 0d 00 00 00 01 00 00 00

[26] 05

As only raw values are stored by DB and RBerkeley, it is up to the calling
code to interpret the resultant output. By default, the original put calls serialize
the R objects. There is no default behavior for get. If the object was serial-
ized with R’s serialize function (the default) simply wrapping db_get with
unserialize will return the original object.

> unserialize(db_get(dbh, key = 100L))

[1] 5

Only the data value associated with the given key is returned. To access
data that is stored under duplicate (identical) keys, or perform more advanced
query operations including partial matching, it is necessary to use cursors.

4.3.2 Cursors

Cursor get functions are similar to the simpler database get functions, in that
a data value is returned for a given key.

Cursors can be far more flexible if need be. For instance, it is possible to
iterate over all key/data pairs in a given database, simply by passing NULL for
the key and data arguments. Flags are once again critical to the behavior of the
queries.

The transaction support (currently disabled in RBerkeley) is set at the in-
stantiation of the cursor, and therefore there is no txnid argument to cursor
get calls. A few example to illustrate some behavior:

> res <- dbcursor_get(dbc, n = 1)

> res

[[1]]

[[1]]$key

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

[26] 09 00 00 00 04 52 6f 73 73

[[1]]$data

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

[26] 09 00 00 00 05 49 68 61 6b 61

This retrieves the current value at the current cursor position. One notable
difference with cursor calls versus standard db_get is that a list of key/data
results are returned. Each element of the list is a list containing an element
named ‘key’ with the value of the key, and an element names ‘data’ with the
value of the data. Multiple elements would produce a list of length n, where n

7

would be the lesser of the ‘n’ value specified, or the number of records returned
by the query.

Another item of note is that the returned values contained as elements of the
list are still in RAW form. Unserializing or otherwise converting into R objects
would be the final step in most applications.

> lapply(res[[1]], unserialize)

$key

[1] "Ross"

$data

[1] "Ihaka"

It is also possible to find a specific record by using the DB SET flag and
specifying a key. This is similar to the traditional db_get results, though with
the key returned as well.

> dbcursor_get(dbc, key = "Ross", flags = mkFlags("DB_SET"))

[[1]]

[[1]]$key

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

[26] 09 00 00 00 04 52 6f 73 73

[[1]]$data

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

[26] 09 00 00 00 05 49 68 61 6b 61

The data argument to the dbcursor_get function may be used to further
specify a query. The main Oracle documentation should be referenced here, but
a few examples will once again be illustrative.

> res <- dbcursor_get(dbc, key = "Ross", data = "Brawn", flags = mkFlags("DB_SET"))

> lapply(res[[1]], unserialize)

$key

[1] "Ross"

$data

[1] "Ihaka"

The above call, as you will note, returns something other than the data we
were requesting. This is a result of the flags argument being set to DB SET.
DB simply returns key/data for the first element to match the key.

To prevent this behavior, set flags=mkFlags("DB_GET_BOTH").

> dbcursor_get(dbc, key = "Ross", data = "Braun", flags = mkFlags("DB_GET_BOTH"))

8

[[1]]

NULL

Cursors can also be useful for iterating over a database’s key/data records.
To iterate over the entire database, it is necessary to have a new (uninitialized)
cursor. Closing and re-opening the original cursor object would be just as good
as creating a new one in most cases.

> dbcursor_close(dbc)

[1] 0

> dbc <- db_cursor(dbh)

> res <- dbcursor_get(dbc, flags = mkFlags("DB_NEXT"), n = 100)

> res

[[1]]

[[1]]$key

[1] 52 6f 73 73

[[1]]$data

[1] 49 68 61 6b 61

[[2]]

[[2]]$key

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 0d 00 00 00 01 00 00 00

[26] 64

[[2]]$data

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 0d 00 00 00 01 00 00 00

[26] 05

[[3]]

[[3]]$key

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

[26] 09 00 00 00 04 52 6f 73 73

[[3]]$data

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

[26] 09 00 00 00 05 49 68 61 6b 61

[[4]]

[[4]]$key

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

9

[26] 09 00 00 00 06 52 6f 62 65 72 74

[[4]]$data

[1] 58 0a 00 00 00 02 00 02 0c 00 00 02 03 00 00 00 00 10 00 00 00 01 00 00 00

[26] 09 00 00 00 09 47 65 6e 74 6c 65 6d 61 6e

Given the output returns, and with knowledge of the data contained, we
can use the R language to easily find the keys in our database. We’ll exclude
the first record, as we didn’t use serialize in that entry. Just like any storage,
knowledge of your data is critical to proper processing.

> sapply(res[-1], function(x) unserialize(x$key))

[1] "100" "Ross" "Robert"

4.4 Removing Records

Sometimes it may be necessary to remove records from the database. As with
put and get functionality, we can delete records using standard DB methods or
use cursors. A few example on how this is done;

4.4.1 db del aka DB->del

The basic DB method removes all records (duplicates included) matching the
key argument. The function is quite straightforward. The flags argument,
currently unused, must be set to zero or remain unspecified. The function
returns the standard DB error values as integers.

As an example, this will check to see if a key exists before we delete it, delete
it, then check again.

> db_strerror(db_exists(dbh, key = charToRaw("Ross")))

[1] "Successful return: 0"

> db_del(dbh, key = charToRaw("Ross"))

[1] 0

> db_strerror(db_exists(dbh, key = charToRaw("Ross")))

[1] "DB_NOTFOUND: No matching key/data pair found"

4.4.2 Cursors

An alternative approach, though a bit less obvious, is to use cursors. Cursor
deletes will simply delete the record at the cursor’s current position. There is
no key argument, and the flags argument must be set to zero, per the DB API.

To delete the first record in the database, position the cursor using dbcur-

sor_get with the flags argument set to“DB FIRST”. Then call the cursor delete
function.

10

> firstrecord <- dbcursor_get(dbc, flags = mkFlags("DB_FIRST"))[[1]]

> db_strerror(dbcursor_del(dbc))

[1] "Successful return: 0"

> dbcursor_get(dbc, key = firstrecord$key, flags = mkFlags("DB_SET"))

[[1]]

NULL

4.5 Closing a Database

To ensure data integrity, in a persistant state, it is required to close a database
and open cursors before exiting a session.

A database needs to have no open cursors in it in order to be closed, so it is
first important to close any outstanding cursors we have created. After that, we
may simply call db_close on the open database handle. A warning about being
unable to use either cursor or database handle will be issued once the method
is called.

> dbcursor_close(dbc)

[1] 0

> db_close(dbh)

[1] 0

5 Conclusion

RBerkeley provides low-level API access to the Berkeley DB embedded database
library. While this document merely touched on basic usage, a full suite of API
functionality is available to the R user via the 80+ functions currently shipped
with the RBerkeley package.

Testing, documentation, and further methods will be added in upcoming
RBerkeley version.

References

[1] R Development Core Team: R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0, URL http://www.R-project.org

[2] Oracle Berkeley DB 4.7.25: http://www.oracle.com/technology/

documentation/berkeley-db/db/index.html

[3] Oracle Berkeley DB C API: http://www.oracle.com/technology/

documentation/berkeley-db/db/api_c/frame.html

11

http://www.R-project.org
http://www.oracle.com/technology/documentation/berkeley-db/db/index.html
http://www.oracle.com/technology/documentation/berkeley-db/db/index.html
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/frame.html
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/frame.html

	Overview
	Design Philosophy
	Getting DB and RBerkeley
	Database Basics
	Opening a Database
	Adding Records
	db_put aka DB->put
	Cursors

	Retrieving Records
	db_get aka DB->get
	Cursors

	Removing Records
	db_del aka DB->del
	Cursors

	Closing a Database

	Conclusion

