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Abstract

This papers describes methods implemented in the R package OptimaRegion for the
computation of confidence regions on the location of the optima of response surface models.
Both parametric (quadratic polynomial) and nonparametric (thin plate spline) models are
supported. The confidence regions obtained do not rely on any distributional assumption,
such as Normality of the response.

Keywords: Nonparametric regression, Response Surface Methodology, Optimization, Data-
depth .

Introduction

The goal of many experiments in engineering and science is to find either the maximum, or
“peak”, or the minimum, or “deepest valley”, of some response of interest. How to design and
analyze optimization experiments are problems that pertain to the classical field of Response
Surface Methodology (RSM) (Box and Draper 1987; del Castillo 2007). The classical approach for
optimizing a response in RSM consists in optimizing a fitted model obtained from experimental
data, treating it as if it were the true input/output description of the system under study,
neglecting the inherent uncertainty of the fitted model. From a frequentist point of view, any
property or characteristic of a response surface fitted from experimental data is subject to
sampling variability, and hence it should be possible, in principle, to conduct statistical inference
on them. Solutions to the problem of statistical inference in RSM have been proposed, usually
assuming a polynomial response surface model fitted with ordinary least squares under a normality
assumption (Myers and Montgomery 1995; del Castillo 2007). Even in such case, software to
perform the computations is lacking. One of the most useful inferences in RSM is that of finding
a confidence region (CR) on the location of the maximum or minimum of a response surface.
These CRs have found several applications in engineering and science. For instance, (Carter,
Wampler, Stablein, and Campbell 1982) proposed the idea of using a CR for the optimal dose
combination of an anti-Cancer drug as a way to test for therapeutic synergism. If the CR for the
optimal dose combination excludes all zero-dose treatment combinations, then there is statistically
significant evidence that all of the components are therapeutically synergistic. Otherwise, there
are components that can be eliminated from the formulation.

A CR on the optima can also be useful for finding a “design space” of a drug in pharmaceutical
development (Peterson 2008). Brooks, Hunt, Blows, Smith, Bussiere, and Jennions (2005) use
a CR on experimentally observed fitness responses to test whether an animal has achieved
stabilizing selection as predicted by evolutionary biology. A CR on the optimal settings of
a production process is useful in industrial experiments as their size provides a measure of
robustness. They also provide a set of solutions within which the engineer can “tweak” the
optimal recipe without jeopardizing the expected system response (del Castillo 2007).
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Previous work on CRs for the location of response surface optima assume normal-distributed
errors and a quadratic polynomial form (Peterson, Cahya, and del Castillo 2002; Cahya, del
Castillo, and Peterson 2004). Early work on confidence regions (Box and Hunter 1954) focused on
regions for stationary points of response surfaces, not necessarily on optimum points, and hence
are of limited value (del Castillo and Cahya 2001). This paper shows methods implemented in the
R package OptimaRegion, which allows users to find a CR on the location of the optima of both
quadratic and thin plate spline models without recourse to normality. The CRs are data-depth
based, and follow recent results on the computation of confidence regions of parametric functions.

Description of the problem

We wish to find a confidence region (CR) for the (global) optima of a function in k variables
fitted from observed experimental data without relying in multivariate normality or any other
distributional assumption of the data. We assume in this paper a maximization goal without
loss of generality. In this paper, bootstrapping methods and their software implementation are
presented that provide valid and unbiased confidence regions for the optima of a function fitted
either using a linear regression (quadratic polynomial model) or a thin plate spline model. A
valid 1− α CR for a parameter θ, CRθ

1−α, is a set such that P (θ ∈ CRθ
1−α) ≥ 1− α. Interest

is of course in CR’s that are smallest in size and still have confidence level of at least 1 − α,
and hence we will consider not only the coverage but the area of the CR’s. Also, a 1− α CR is
unbiased if P (θ′ ∈ CRθ

1−α) ≤ 1− α for all θ′ 6= θ (Casella and Berger 2002) (p. 446). That is,
the probability of covering any wrong parameter should always be less than the probability of
covering the true parameter.

More specifically, we wish to find a CR for the function:

x∗ = h(x; β̂) = argmax f(x, β̂)

where f(x, β̂) is either a quadratic polynomial regression model in x or a Thin Plate Spline
model in x. In both cases, we assume maximization without loss of generality. In the quadratic
polynomial model, x∗ ∈ R

k is a random vector with a sampling distribution that depends on
the sampling distribution of the p× 1 least squares estimator β̂ in Y = Xβ + ε where X is a
n× p design matrix with columns corresponding to the terms in the quadratic polynomial model
f(x, β̂), and the random errors εi in ε are to be i.i.d. with zero mean, constant variance and
with an unknown and unspecified distribution. (Woutersen and Ham 2013) have recently studied
the asymptotic coverage properties of bootstrap regions for any parametric function h(x; β̂). We
use and operationalize their results for the case h(x; β̂) = argmax f(x, β̂), where the output is
in R

k.

Naive bootstrapping approach

A direct application of the idea of bootstrapping, referred as the “AD” bootstrap method in
(Woutersen and Ham 2013) consists in fitting many response surface models, optimizing each
and trimming the outmost α percent x∗ = h(β) vectors using some method that orders interior
and exterior multivariate data. Unfortunately (see table 1 below), this method does not provide
valid confidence regions, i.e., their coverage is smaller than the advertised coverage. The reason
is that by trimming the h(β) values we are eliminating extreme observations of h that occurred
because either a) β was very extreme or b) because β is not very extreme but h(β) is extreme.
A CR on h(β) should exclude instances where h, and not β, are extreme. This is achieved with
the method implemented in the OptimaRegion package, but not with this naive approach.
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Figure 1: A naive bootstrapping approach to compute the CR of the optima of a response surface.

Implementation of the bootstrapping methods in OptimaRegion

Woutersen and Ham (Woutersen and Ham 2013) propose the “CS” (confidence set) bootstrap
method for finding confidence regions of functions of parameters. The method is based on the
following steps:

1 obtain a 100(1− α)% CR for β from the asymptotic distribution of β̂.

2 For each β ∈ CRβ
1−α

, evaluate h(β).

3 Let CR
h(β)
1−α

= {τ ∈ R
k|τ = h(β) for all β ∈ CRβ

1−α
}

To estimate this confidence region, these authors propose bootstrapping in steps 1 and 3:

1B Obtain an estimate of the 100(1− α)% CR for β by bootstrapping B instances of β̂. These

instances make ĈR
β

1−α;

2B For each β ∈ ĈR
β

1−α, evaluate h(β).

3B Let ĈR
h(β)

1−α = {τ ∈ R
k|τ = h(β) for all β ∈ ĈR

β

1−α}

Note that in order to implement this method for h(x; β̂) = argmax f(x, β̂), we need a means

to define the “innermost” β parameters in step 1B, and an optimization method that finds the

global maximums of each h(β) in step 2B. OptimaRegion uses the notion of data depth (as
implemented in the DepthProc package) in step 1B and nonlinear programming methods with
multiple restarts as implemented in the nloptr package in step 2B. See the appendix for a brief
description of data depth methods. In OptimaRegion we use Tukey’s data depth (see Appendix)
to order the B instances β̂ and trim the α % outermost (the α % with lowest DT value; for

instance, points such that DT (x) = 0 define the convex hull of F ). This yields ĈR
β

1−α in step 1B.

Furthermore, since we are computing ĈR
β

1−α pointwise for a finite number of B vectors β, our
final confidence region for h(β) will also be a pointwise region. This means that to end up with a
region we need some additional rule that defines the boundary of the region. In (Woutersen and
Ham 2013) the authors propose to use an arbitrary quantity η > 0 and define the CR for h(β)
to be the set of all β that are no farther than the euclidean distance η from each of the B h(β)
values (in R

2 the CR will then be composed of the union of B circles around each x∗). While
this step was specified in order to be able to proof the validity of the resulting CR, in practice it
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Figure 2: Overview of the bootstrapping approach implemented in OptimaRegion, following the
”CS” method in (Woutersen and Ham 2013)

is not clear how to select the radius η to make the resulting CR as small as possible and avoid
grossly conservative CR’s. The PDF files created by the functions in OptimaRegion display the
CRs by plotting the convex hull of all the points generated. The coordinates of all the generated
points inside the CR are also returned.

In what follows we concentrate in computational methods for obtaining CR’s for h(x; β̂) =
argmax f(x, β̂) for the particular case k = 2. The underlying global optimization process of a
non-convex function makes finding the desired confidence regions a very difficult problem for
k > 2. Therefore, OptimaRegion is currently limited to problems with 2 controllable factors.

Functions in package OptimaRegion

There are 3 main functions in the OptimaRegion package:

Function Objective

OptRegionQuad Computes distribution-free bootstrapped confidence regions
for the location of the optima of a quadratic polynomial model in 2 regressors

OptRegionTps Computes distribution-free bootstrapped confidence regions
for the location of the optima of a Thin Plate Spline model in 2 regressors

CRcompare Computes bootstrapped confidence intervals for the distance
between the optima of two different response surface models, either quadratic
polynomials or thin plate spline models

Examples

Example 1. CR on the maximum of a fitted quadratic polynomial using OptRegionQuad.-

Consider a mixture-amount experiment in two components (Drug dataset) where the effectiveness
of the drug (a percentage) is the response, which in many cases has value zero. Hence, the data
cannot be considered normal and classic approaches to find a CR cannot be used. Thus, we try
using OptRegionQuad as it does not rely on any normality assumption. Given the shape of the
experimental region, the triangularRegion switch is set to on, with upper and right vertices
as specified for vertex1 and vertex2 (the other vertex is the origin). This indicates the limits
of the experimental region, and therefore, the region where the maxima should be seek. The R

command is:
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Figure 3: Example 1: a 95% CR on the maximum of a 2-drug mixture amount experiment,
Drugs datafile. PDF file generated with the OptRegionQuad function.

out <- OptRegionQuad(X = Drug[,1:2], y = Drug[3], nosim = 500, LB = c(0,0),

UB = c(0.08,11), xlab = "Component 1 (mg.)", ylab = "Component 2 (mg.)",

triangularRegion = TRUE, vertex1 = c(0.02,11), vertex2 = c(0.08,1.8),

outputPDFFile = "Mixture_plot.pdf")

The resulting 95% confidence region generated in the PDF file is shown in Figure 3, which also
shows smoothed contours of the response. Note this are not the quadratic polynomial contours.
Also, note how the CR is “pushed” against the constraint and results in a ”thin line”. The red
dot is the centroid of all the generated maxima, it constitutes a “bagging” point estimate of x∗.

Example 2. CR on the global maximum of a fitted Thin Plate Spline model for a

mixture-amount experiment using OptRegionTps.- Consider next the same mixture-amount
experiments as before (drugs dataset) but suppose we think the quadratic polynomial model
provides is not flexible enough to represent the true surface. Instead, we can try fitting and
optimizing a Thin Plate Spline (TPS) model using function OptRegionTps.

out <- OptRegionTps(X = Drug[,1:2], y = Drug[,3], nosim = 500, lambda = 0.05,

LB = c(0,0), UB = c(0.08,11), xlab = "Component 1 (mg.)", ylab = "Component 2 (mg.)",

triangularRegion = TRUE, vertex1 = c(0.02,11), vertex2 = c(0.08,1.8),

outputPDFFile = "Mixture_plot.pdf")

In contrast with example 1, OptRegionTps will take a few minutes to complete the computations
in a fast PC. Note the parameter lambda=0.05; this is the penalization parameter when fitting a
TPS model. Larger values of lambda make the fitted model less “wiggly”. The confidence levels
obtained are conditional on the pre-selected value of lambda. The PDF output file showing the
CR is shown in Figure 4.

The CR contains area in the interior of the triangular experimental region. The linear boundaries
of the shaded CR are the result of using the convex hull of the optima generated by the boot-
strapping algorithm. Increasing the number of bootstraps may smooth the boundaries somewhat
(i.e., shorter linear segments) but the computation time will increase accordingly. Despite being a
better model for this dataset, the more flexible character of the TPS model contains a good deal
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Figure 4: Example 2: a 95% CR on the maximum of a 2-drug mixture amount experiment,
Drugs datafile. PDF file generated with the OptRegionTps function.

of uncertainty about the location of the maximum drug components that maximizes the efficacy.

Example 3. CR on the global maximum of a fitted Thin Plate Spline model for a

factorial experiment using OptRegionTps.- We now illustrate the use of the OptRegionTps
function for and experiment where the factors are centered around zero and the experimental
region is a square. Suppose we generate some dummy ’X’ and ’y’ data randomly:

X <- cbind(runif(100,-2,2), runif(100,-2,2))

y <- as.matrix(72 - 11.78*X[,1] + 0.74*X[,2] - 7.25*X[,1]^2 - 7.55*X[,2]^2 -

4.85*X[,1]*X[,2] + rnorm(100,0,8))

Next we compute a 95% CR on the maxima of a fitted TPS model:

out <- OptRegionTps(X = X, y = y, nosim = 200, LB = c(-2,-2), UB = c(2,2),

xlab = "X1", ylab = "X2")

Note we did not specify a triangular region. The PDF file created on completion is shown in
Figure 5 and displays the corresponding region, together with the contours of the fitted TPS model.

Example 4. Computing confidence intervals on the distance between two response

surfaces.- Suppose we have experimental data from which we can fit a quadratic polynomial
model to each of two different responses. We now wish to investigate if the “peaks” of each
response are significantly close. A confidence interval on the distance between the two maxima
can be computing with the CRcompare function. To use this function, we need to provide the
’X’ and ’y’ experimental data for each response. Let’s create some dummy (random) data for
illustration purposes:

X1 <- cbind(runif(100,-2,2), runif(100,-2,2))

y1 <- as.matrix(72 - 11.78*X1[,1] + 0.74*X1[,2] - 7.25*X1[,1]^2 - 7.55*X1[,2]^2 -

4.85*X1[,1]*X1[,2] + rnorm(100,0,8))
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Figure 5: Example 2: a 95% CR on the maximum of a 2 factor randomly generated factorial
experiment over a squared region. PDF file generated with the OptRegionTps function.

X2 <- cbind(runif(100,-2,2), runif(100,-2,2))

y2 <- as.matrix(72 - 11.78*X2[,1] + 0.74*X2[,2] - 7.25*X2[,1]^2 - 7.55*X2[,2]^2 -

4.85*X2[,1]*X2[,2] + rnorm(100,0,8))

We next run the CRcompare routine with this input-output data:

out <- CRcompare(X1 = X1, y1 = y1, X2 = X2, y2 = y2, responseType = 'Quad',

nosim1and2 = 200, alpha = 0.05, LB1 = c(-2,-2), UB1 = c(2,2), LB2 = c(-2,-2),

UB2 = c(2,2) )

Note we specified a quadratic (’Quad’) response model for both responses and 200 bootstrap iter-
ations. Also note that the lower and upper bounds within which each response may have its max-
imum can differ (’maximization’ is TRUE by default). CRcompare will run either OptRegionQuad
or OptRegionTps for each response and compute all the pairwise distances from the two CR’s. It
will then bootstrap the distances and will output the corresponding bootstrap confidence interval
on the mean and median distance:

> out$mean

[1] 0.3643884

> out$median

[1] 0.305715

> out$ciMean

conf

[1,] 0.95 36.43 984.66 0.3324372 0.406087

> out$ciMedian

conf

[1,] 0.95 18 966.76 0.2833316 0.3490922
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Hence, a 95% confidence interval on the mean distance is (0.3324,0.4060) and a 95% confidence
interval on the median distance is (0.2833,0.3490).

Numerical evaluation of coverage probability

For a given point x (equal to x∗ or any other point), the coverage is defined as the proportion of

times x ∈ ĈR
β

1−α in Ns trials from simulated data.

Wei and Lee (Wei and Lee 2012) show how a data-depth confidence region is second order
accurate, that is, its coverage error (the difference between the actual coverage and the nominal
confidence level) is of order n−1 where n denotes the sample size. They showed this result
holds for different depth measures, including Tukey’s data depth measure. Here we evaluate the
performance of the functions OptRegionQuad and OptRegionTps in OptimaRegion via Monte
Carlo simulation.

Quadratic polynomial model.

A CR for the optima of a quadratic polynomial model using the method described above is
obtained using the OptRegionQuad function. Table 1 shows some coverage levels for the true
maximum of the simulated response surface f(x) compared with the naive bootstrapping approach
referred earlier. Here

f(x) = 90.79− 1.095x1 − 1.045x2 − 0.775x1x2 − 2.781x21 − 2.524x22

to which i.i.d. N(0, σ2) noise was added. This function has a single maximum at x∗ =
(−0.1716,−0.1806)′. The points x at which the function was simulated were the 11 runs in a
rotatable Central Composite Design with a domain of radius

√
2 around the origin (Box and

Draper 1987; del Castillo 2007) with 11 runs, in addition to sets of 11 runs randomly generated
according to a uniform distribution on the square that goes from (−

√
2,−

√
2) in its lower left

corner to (
√
2,
√
2) in the upper right corner, giving a total of n observations.

The results on Table 1 show how, compared with the naive bootstrapping approach, only
the approach implemented in the OptRegionQuad function generates valid confidence regions,
although always achieving higher than advertised coverages1. A reason for this behavior is that
the final CR contour is obtained from the convex hull of the optima x∗ which will tend to provide
conservative coverage regardless of n and σ (see Table 2). The naive bootstrap method, in
contrast, does not achieve the nominal coverage and cannot be recommended.

However, the areas of the CRs computed by OptRegionQuad are quite small, rapidly decreasing
in size as n increases (Table 2), a very desirable property. Finally, Table 3 shows that the CRs
obtained by OptRegionQuad are unbiased, since the coverage of non-optimal points is always
lower than 1− α, with lower coverages the farther is the non-optimal point from x∗.

Thin Plate Spline model.

For the Thin-Plate Spline coverage analysis, the true simulated function was:

f(x1, x2) =
(
(x1 − 2)2 + (x2 − 2)2 − (x1 − 2) + 2(x1 − 2)(x2 − 2)

)
exp(−(x1 − 2)2 − (x2 − 2)2)

defined in the region R = {0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5}, which has a global maximum in this
region2 at (x∗1, x

∗
2) = (1.2542, 1.4634). Figure 6 shows how this surface looks like. In each Monte

1Recall that the estimated standard error of the estimated coverage p̂ is given by
√

p̂(1− p̂)/n, so all the
estimated coverages presented in this paper are very precise.

2Note it has another local maxima and a deep minimum as well within the region of interest.
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Table 1: Estimated coverages of bootstrapped (1− α)100% CRs for the maximum of a quadratic
polynomial regression model. Ns is the number of simulations, B is the number of bootstrapped
samples, n is the sample size. Simulated noise has σ = 2.

CR type Ns B α n (reps.) coverage

Naive 1000 1000 0.10 55 (5) 0.843
Naive 1000 1000 0.10 1100 (100) 0.868

OptRegionQuad 1000 1000 0.05 1100 (100) 0.981
OptRegionQuad 1000 1000 0.10 1100 (100) 0.979
OptRegionQuad 1000 1000 0.20 1100 (100) 0.930

Table 2: Estimated coverages of the optimal point of a 95% bootstrapped CR as obtained by
OptRegionQuad for the maximum of a quadratic polynomial regression model. In all cases, Ns =
1000, and B = 1000 were used. Maximum area in the search region is 8 = (−

√
2,
√
2)×(−

√
2,
√
2).

n(reps.) coverage σ area sd.(area) area
max area

sd(area)
max area

1100(100) 0.981 2 0.007 0.00087 0.00088 0.0001
2200(200) 0.978 2 0.0036 0.00036 0.00045 0.000045
5500(500) 0.987 2 0.0014 0.00013 0.00018 0.000016
1100(100) 0.988 5 0.052 0.012 0.0065 0.0015
2200(200) 0.984 5 0.023 0.0037 0.0029 0.00046
5500(500) 0.985 5 0.009 0.0011 0.0012 0.00014
1100(100) 0.983 10 0.475 0.4004 0.059 0.0501
2200(200) 0.981 10 0.137 0.068 0.0172 0.0085
5500(500) 0.987 10 0.041 0.0083 0.0052 0.00104

Carlo simulation we generate n uniformly distributed random x values over R with observations
f(x) + ǫ where ǫ ∼ N(0, σ2) are i.i.d.

Computing a CS-Bootstrap confidence region for a Thin Plate Spline (TPS) model provides
higher than advertised coverages of the optimum point, almost always close to 100 %, but with
sizes (areas) that decrease rapidly as more experiments are performed (Table 4). These results
were obtained with the OptRegionTps.R code.

As it can be seen in Table 5, the coverage percentage of non-optimal points is less than the
confidence level 1 − α, with coverage that decays as we consider non-optimum points farther
than the optimum (x∗1, x

∗
2). This indicates the CS-bootstrapped confidence regions obtained by

OptRegionTps are also unbiased.

Appendix. Data depth measures

A data depth is a measure of the centrality of a point with respect to the rest of the data, a
notion particularly useful in a multivariate setting since it helps to order the data. Given a set of
points F = {x1,x2, ...xn}, xi ∈ R

k, a data depth measure associated with an additional point
x is a real-valued function d(x|F ). In what follows we omit the dependency on the rest of the
dataset. Different data depth measures have been proposed based on some commonly accepted
properties (e.g., (Liu 1990)):

• Affine invariance: d(x) = d(Ax+ b) holds for any non-singular matrix A and any vector
b, i.e., the depth measure is invariant to rigid transformations
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Table 3: Estimated coverages of non-optimal points (a · x∗1, b · x∗2) using 95% bootstrapped CRs
as obtained by OptRegionQuad for the maximum of a quadratic polynomial regression model. In
all cases, n(reps.) = 5500(500), Ns = 1000, and B = 1000. The last case (a = b = 1) corresponds
to the coverage of the true optimum point.

coverage σ a b

0.760 5 1.20 1.00
0.047 5 1.50 1.00
0.008 5 0.50 1.00
0.000 5 0.20 1.00
0.000 5 2.00 1.00
0.795 5 1.00 1.20
0.083 5 1.00 1.50
0.001 5 1.00 0.50
0.000 5 1.00 0.20
0.000 5 1.00 2.00

0.985 5 1.00 1.00

Figure 6: True response surface used in the OptRegionTps coverage simulation experiments.

• Maximality at the center: d(x) achieves its maximum at the center xc of the dataset. Here
the notion of “center” needs to be defined.

• Monotonicity: the depth of a point deceases monotonically as it moves away from xc

• Vanishing at infinity: d(x− xc) → 0 as ||x− xc|| → ∞.

Among the many data depth notions, a particularly intuitive definition which meets the conditions
above, and perhaps the most used in practice, is Tukey’s data depth measure (Tukey 1975),
sometimes called the half space depth. It is defined as:

DT (x, F ) = min
||u||=1

card{u′xi ≤ u′x}

where the minimization is over all k-dimensional vectors u of unit norm. The depth of point x is
therefore equal to the smallest number of points in the dataset that can be found in any closed
half space with a boundary that passes through point x. This involves a computational problem
in practice. Practically all of the Tukey depth functions available today in statistical software use
an algorithm due to (Struyf and Rousseeuw 34) which has a time complexity O(sk3 + skn) where
s random directions are generated through point x, n is the number of points in the dataset and
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Table 4: Estimated coverages of the optimal point of 95% bootstrapped CRs as obtained by
OptRegionTPS for the global maximum of a Thin Plate Spline model. In all cases, Ns = 500, B =
200, λ = 0.04, and σ = 0.5 were used. Maximum area in the search region is 25 = (0, 5)× (0, 5).

n coverage area sd.(area) area
max area

sd(area)
max area

100 0.988 12.92 6.00 51.68 24.01
150 0.998 11.76 4.75 47.04 19.00
200 1.000 7.14 2.89 28.56 11.56
250 1.000 6.35 2.42 25.40 9.68
300 0.992 5.25 2.26 21.02 9.05
500 0.998 3.90 1.59 15.61 6.36

Table 5: Estimated coverages of non-optimal points (a · x∗1, b · x∗2) using 95% bootstrapped
CRs as obtained by OptRegionTps for the maximum of a Thin Plate Spline model. In all cases,
n = 300, Ns = 500, B = 200, λ = 0.04, and σ = 0.5. The last case (a = b = 1) corresponds to
the coverage of the true optimum point.

coverage a b

0.860 1.20 1.00
0.950 0.20 1.00
0.780 1.40 1.00
0.518 0.00 1.00
0.922 1.00 1.37
0.914 1.00 0.68
0.690 1.00 0.34
0.554 1.00 1.71

0.992 1.00 1.00

k is the dimensionality of the data. Future versions of OptimaRegion will include choices for
other depth measures.
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