This report documents the results of a simulation based calibration (SBC) run for OncoBayes2
. TODO
The calibration data presented here has been generated at and with the OncoBayes
git version as:
## Created: 2019-12-11 16:27:14 UTC
## git hash: 7feda1da194006ab2eed1e533685f94ea6278e7f
## MD5: 879cb1025ef56fc5cb4dbe9944bbe84e
The MD5 hash of the calibration data file presented here must match the above listed MD5:
## calibration.rds
## "879cb1025ef56fc5cb4dbe9944bbe84e"
Simulation based calibration (SBC) is a necessary condition which must be met for any Bayesian analysis with proper priors. The details are presented in Talts, et. al (see https://arxiv.org/abs/1804.06788).
Self-consistency of any Bayesian analysis with a proper prior:
\[ p(\theta) = \iint \mbox{d}\tilde{y} \, \mbox{d}\tilde{\theta} \, p(\theta|\tilde{y}) \, p(\tilde{y}|\tilde{\theta}) \, p(\tilde{\theta}) \] \[ \Leftrightarrow p(\theta) = \iint \mbox{d}\tilde{y} \, \mbox{d}\tilde{\theta} \, p(\theta,\tilde{y},\tilde{\theta}) \]
SBC procedure:
Repeat \(s=1, ..., S\) times:
Sample from the prior \[\tilde{\theta} \sim p(\theta)\]
Sample fake data \[\tilde{y} \sim p(y|\tilde{\theta})\]
Obtain \(L\) posterior samples \[\{\theta_1, ..., \theta_L\} \sim p(\tilde{\theta}|\tilde{y})\]
Calculate the rank \(r_s\) of the prior draw \(\tilde{\theta}\) wrt to the posterior sample \(\{\theta_1, ..., \theta_L\} \sim p(\tilde{\theta}|\tilde{y})\) which falls into the range \([0,L]\) out of the possible \(L+1\) ranks. The rank is calculated as \[r_s = \sum_{l=1}^L \mathbb{I}[ \theta_l < \tilde{\theta}]\]
The \(S\) ranks then form a uniform \(0-1\) density and the count in each bin has a binomial distribution with probability of \[p(r \in \mbox{Any Bin}) =\frac{(L+1)}{S}.\]
The fake data simulation function returns … TODO. Please refer to the sbc_tools.R
and make_reference_rankhist.R
R programs for the implementation details.
The reference runs are created with \(L=1023\) posterior draws for each replication and a total of \(S=10^4\) replications are run per case. For the evaluation here the results are reduced to \(B=L'+1=64\) bins to ensure a sufficiently large sample size per bin.
param | statistic | df | p.value |
---|---|---|---|
mu_log_beta[I(log(DosesAdm1/dref[1])),intercept] | 43.091 | 31 | 0.073 |
mu_log_beta[I(log(DosesAdm1/dref[1])),log_slope] | 29.005 | 31 | 0.569 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),intercept] | 35.974 | 31 | 0.247 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),log_slope] | 51.072 | 31 | 0.013 |
param | statistic | df | p.value |
---|---|---|---|
mu_eta[I(DosesAdm1/dref[1] * DosesAdm2/dref[2])] | 27.610 | 31 | 0.641 |
mu_log_beta[I(log(DosesAdm1/dref[1])),intercept] | 29.754 | 31 | 0.530 |
mu_log_beta[I(log(DosesAdm1/dref[1])),log_slope] | 27.904 | 31 | 0.626 |
mu_log_beta[I(log(DosesAdm2/dref[2])),intercept] | 23.987 | 31 | 0.811 |
mu_log_beta[I(log(DosesAdm2/dref[2])),log_slope] | 45.146 | 31 | 0.048 |
tau_eta[1,I(DosesAdm1/dref[1] * DosesAdm2/dref[2])] | 21.338 | 31 | 0.903 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),intercept] | 27.802 | 31 | 0.631 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),log_slope] | 24.531 | 31 | 0.788 |
tau_log_beta[1,I(log(DosesAdm2/dref[2])),intercept] | 27.629 | 31 | 0.640 |
tau_log_beta[1,I(log(DosesAdm2/dref[2])),log_slope] | 19.629 | 31 | 0.943 |
param | statistic | df | p.value |
---|---|---|---|
mu_eta[I(DosesAdm1/dref[1] * DosesAdm2/dref[2])] | 35.059 | 31 | 0.281 |
mu_log_beta[I(log(DosesAdm1/dref[1])),intercept] | 34.035 | 31 | 0.324 |
mu_log_beta[I(log(DosesAdm1/dref[1])),log_slope] | 26.451 | 31 | 0.699 |
mu_log_beta[I(log(DosesAdm2/dref[2])),intercept] | 21.459 | 31 | 0.899 |
mu_log_beta[I(log(DosesAdm2/dref[2])),log_slope] | 35.059 | 31 | 0.281 |
tau_eta[1,I(DosesAdm1/dref[1] * DosesAdm2/dref[2])] | 26.995 | 31 | 0.672 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),intercept] | 31.328 | 31 | 0.450 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),log_slope] | 25.107 | 31 | 0.763 |
tau_log_beta[1,I(log(DosesAdm2/dref[2])),intercept] | 19.322 | 31 | 0.949 |
tau_log_beta[1,I(log(DosesAdm2/dref[2])),log_slope] | 23.296 | 31 | 0.838 |
param | statistic | df | p.value |
---|---|---|---|
mu_eta[I(DosesAdm1/dref[1] * DosesAdm2/dref[2] * DosesAdm3/dref[3])] | 37.229 | 31 | 0.204 |
mu_eta[I(DosesAdm1/dref[1] * DosesAdm2/dref[2])] | 48.006 | 31 | 0.026 |
mu_eta[I(DosesAdm1/dref[1] * DosesAdm3/dref[3])] | 20.211 | 31 | 0.931 |
mu_eta[I(DosesAdm2/dref[2] * DosesAdm3/dref[3])] | 29.146 | 31 | 0.562 |
mu_log_beta[I(log(DosesAdm1/dref[1])),intercept] | 24.954 | 31 | 0.770 |
mu_log_beta[I(log(DosesAdm1/dref[1])),log_slope] | 26.515 | 31 | 0.696 |
mu_log_beta[I(log(DosesAdm2/dref[2])),intercept] | 31.443 | 31 | 0.444 |
mu_log_beta[I(log(DosesAdm2/dref[2])),log_slope] | 43.840 | 31 | 0.063 |
mu_log_beta[I(log(DosesAdm3/dref[3])),intercept] | 18.445 | 31 | 0.964 |
mu_log_beta[I(log(DosesAdm3/dref[3])),log_slope] | 32.269 | 31 | 0.404 |
tau_eta[1,I(DosesAdm1/dref[1] * DosesAdm2/dref[2] * DosesAdm3/dref[3])] | 20.390 | 31 | 0.927 |
tau_eta[1,I(DosesAdm1/dref[1] * DosesAdm2/dref[2])] | 19.328 | 31 | 0.949 |
tau_eta[1,I(DosesAdm1/dref[1] * DosesAdm3/dref[3])] | 27.053 | 31 | 0.670 |
tau_eta[1,I(DosesAdm2/dref[2] * DosesAdm3/dref[3])] | 34.323 | 31 | 0.311 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),intercept] | 27.802 | 31 | 0.631 |
tau_log_beta[1,I(log(DosesAdm1/dref[1])),log_slope] | 33.414 | 31 | 0.351 |
tau_log_beta[1,I(log(DosesAdm2/dref[2])),intercept] | 21.754 | 31 | 0.891 |
tau_log_beta[1,I(log(DosesAdm2/dref[2])),log_slope] | 20.294 | 31 | 0.929 |
tau_log_beta[1,I(log(DosesAdm3/dref[3])),intercept] | 21.318 | 31 | 0.903 |
tau_log_beta[1,I(log(DosesAdm3/dref[3])),log_slope] | 33.926 | 31 | 0.328 |
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.6 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] C
##
## attached base packages:
## [1] tools stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] mvtnorm_1.0-11 RBesT_1.4-0 tibble_2.1.3
## [4] rstan_2.19.2 StanHeaders_2.19.0 abind_1.4-5
## [7] Formula_1.2-3 checkmate_1.9.4 OncoBayes2_0.5-8
## [10] testthat_2.2.1 Rcpp_1.0.2 devtools_2.2.1
## [13] usethis_1.5.1 ggplot2_3.2.1 broom_0.5.2
## [16] tidyr_1.0.0 dplyr_0.8.3 assertthat_0.2.1
## [19] knitr_1.25 rmarkdown_1.16
##
## loaded via a namespace (and not attached):
## [1] lattice_0.20-38 prettyunits_1.0.2 ps_1.3.0
## [4] zeallot_0.1.0 rprojroot_1.3-2 digest_0.6.21
## [7] plyr_1.8.4 R6_2.4.0 ggridges_0.5.1
## [10] backports_1.1.5 stats4_3.6.1 evaluate_0.14
## [13] highr_0.8 pillar_1.4.2 rlang_0.4.0
## [16] lazyeval_0.2.2 rstudioapi_0.10 callr_3.3.2
## [19] labeling_0.3 desc_1.2.0 stringr_1.4.0
## [22] loo_2.1.0 munsell_0.5.0 compiler_3.6.1
## [25] xfun_0.10 pkgconfig_2.0.3 pkgbuild_1.0.6
## [28] rstantools_2.0.0 htmltools_0.4.0 tidyselect_0.2.5
## [31] gridExtra_2.3 codetools_0.2-16 matrixStats_0.55.0
## [34] crayon_1.3.4 withr_2.1.2 grid_3.6.1
## [37] nlme_3.1-141 gtable_0.3.0 lifecycle_0.1.0
## [40] magrittr_1.5 scales_1.0.0 cli_1.1.0
## [43] stringi_1.4.3 fs_1.3.1 remotes_2.1.0
## [46] ellipsis_0.3.0 generics_0.0.2 vctrs_0.2.0
## [49] glue_1.3.1 purrr_0.3.3 processx_3.4.1
## [52] pkgload_1.0.2 parallel_3.6.1 yaml_2.2.0
## [55] inline_0.3.15 colorspace_1.4-1 sessioninfo_1.1.1
## [58] bayesplot_1.7.0 memoise_1.1.0