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VERY PREMIMINARY

Abstract

Markov-switching GARCH models have become popular to model the structural break
in the conditional variance dynamics of financial time series. Under this approach, the
state follows a hidden Markov chain. In this paper, we describe the R package MS-
GARCH which implements Markov-switching GARCH-type models very efficiently by
using C++ object-oriented programming techniques. It allows the user to perform simu-
lations as well as Maximum Likelihood and Bayesian estimation of a very large class of
Markov-switching GARCH-type models. Risk management tools such as Value-at-Risk
and Expected-Shortfall calculations are available. An empirical illustration of the useful-
ness of the R package MSGARCH is presented.

Keywords: GARCH, MSGARCH, Markov-switching, conditional volatility, risk management,
R sofware.

1. Introduction

Modeling the volatility of financial markets is central in risk management. A seminal con-
tribution in this field was the development of the GARCH model by Bollerslev (1986) where
the volatility is a function of past asset returns. The GARCH model is today a widespread
tool in risk management. However, recent studies show that estimates of GARCH models can
be biased by structural breaks in the volatility dynamics (Bauwens et al. 2010, 2014). These
structural breaks typically occur during periods of financial turmoil. Estimating a GARCH
model on data displaying a structural break yields a non-stationary estimated model and im-
plies poor risk predictions. A way to cope with this problem is provided by Markov-switching
GARCH models (MSGARCH) whose parameters vary over time according to a latent discrete
Markov process. These models can quickly adapt to variations in the unconditional volatility
level, which improves risk predictions (Ardia 2008).
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Following the seminal work of Hamilton and Susmel (1994), different parametrizations have
been proposed to account for discrete changes in the GARCH parameters by Dueker (1997),
Gray (1996) and Klaassen (2002). However, these parametrizations for the conditional vari-
ance process lead to computational difficulties. Indeed, the evaluation of the likelihood func-
tion for a sample of length T in the case of K states requires the integration over all KT

possible paths, rendering the estimation infeasible.

In order to avoid any difficulties related to the past infinite history of the state variable, we
adopt the parametrization due to Haas et al. (2004b). In their model, the authors hypothesize
K separate GARCH(1,1) processes for the conditional variance of the MSGARCH process. In
addition to its appealing computational aspects, the MSGARCH model of Haas et al. (2004b)
has conceptual advantages. In effect, one reason for specifying Markov-switching models that
allow for different GARCH behavior in each regime is to capture the difference in the variance
dynamics in low- and high-volatility periods.

The R package MSGARCH aims to provide a comprehensive set of methods for the esti-
mation, the simulation and the forecasting of MSGARCH models. Also, methods for risk
management such as Value-at-Risk and Expected-Shortfall calculations are available. The R
package MSGARCH is available from the CRAN repository at https://cran.r-project.

org/package=MSGARCH.

In this vignette, we describe the models and the functions/methods available in the package.

2. Model specification

We provide in this section the steps to create GARCH and MSGARCH specifications using
the function create.spec. The R package MSGARCH supports single-regime models as they
are the building blocks for regime-switching models.

The simplest specification we can build is a GARCH model with a symmetric Normal condi-
tional distribution:

R> spec = create.spec(model = "sGARCH", distribution = "norm", do.skew = FALSE)

The natural regime-switching extension of this model is a two-state MSGARCH model with
a symmetric Normal conditional distribution in each regime:

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

Let us quickly discuss the arguments of the function create.spec. First, the argument
model takes one or more single-regime specifications describing each regime conditional vari-
ance process while the argument distribution contains each regime respective conditional
distribution. Valid models are "sGARCH", "eGARCH", "gjrGARCH", "tGARCH", and "GAS" (see
Section 2.1 for details). All single-regime conditional variance processes are one-lag processes
(e.g., GARCH(1,1)). One-lag conditional variance processes have proved to be an effective
specification to capture the volatility clustering observed in financial data. Moreover, it re-
duces the model’s complexity. Available conditional distributions are "norm", "std", and

https://cran.r-project.org/package=MSGARCH
https://cran.r-project.org/package=MSGARCH


David Ardia, Keven Bluteau, Kris Boudt, Denis-Alexandre Trottier 3

"ged" (see Section 2.3 for details). Each conditional distribution can be symmetric or skewed
as defined by the argument do.skew = TRUE (see Section 2.3.4 for details). The argument
do.mix allows the user to create a Mixture of GARCH processes (see Section 2.2.2) instead
of a MSGARCH process (see Section 2.2.1). Finally, the argument do.shape.ind allows us
for regime-independent shape parameters (see Section 2.2.3).

The user can technically create any MSGARCH specification by selecting single-regime scedas-
tic models and conditional distribution. Here is an example of a three-state MSGARCH
process:

R> spec = create.spec(model = c("sGARCH", "tGARCH", "eGARCH"),

distribution = c("norm", "std", "ged"),

do.skew = c(TRUE, FALSE, TRUE),

do.mix = FALSE, do.shape.ind = FALSE)

Note however that complex models are more difficult to estimate (see Section 3 for details).

The output of the function create.spec is a list of class MSGARCH_SPEC containing various
functions and variables. The relevant information is summarized with print or summary:

R> spec = create.spec()

R> print(spec)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0 alpha1 beta alpha0 alpha1 beta P P

[1,] 0.1 0.1 0.8 0.1 0.1 0.8 0.5 0.5

2.1. Single-regime specifications

As the building block of the regime-switching models are the single-regime specifications, we
quickly review the single-regime models available in the R package MSGARCH.

GARCH model

The GARCH model by Bollerslev (1986) can be written as:

yt = ηh
1/2
t

ht ≡ α0 + α1y
2
t−1 + βht−1 ,

(1)

where η ∼ i.i.d.D(0, 1, λ) with D a distribution with zero mean, unit variance, and shape
parameters λ. To ensure positivity, we require α0 > 0, α1 ≥ 0, β ≥ 0. Covariance-stationarity
is obtained by adding the condition α1+β < 1. To create a single-regime GARCH specification
we use model = "sGARCH" in the function create.spec.
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EGARCH model

The Exponential GARCH (EGARCH) of Nelson (1991) can be written as:

ln(ht) ≡ α0 + α1

(
|yt−1| − E[|yt−1|]

)
+ α2yt−1 + β ln(ht−1) , (2)

where the natural logarithm of conditional variance ln(ht) is modeled instead of ht. This
model takes into consideration the leverage effect where past negative returns have a larger
influence on the conditional volatility than past positive returns of the same magnitude (Black
1976; Christie 1982). The persistence of the models is captured by the coefficient β, and we
set β < 1 to ensure stationarity. The creation of a single-regime EGARCH specification is
done by using model = "eGARCH" in the function create.spec.

GJR model

The GJR model by Glosten et al. (1993) is also able to capture the asymmetry in the condi-
tional volatility process. It can be written as:

ht ≡ α0 + α1y
2
t−1 + α2y

2
t−1Iyt−1<0 + βht−1 , (3)

where Iyt≥0 ≡ 0 if yt ≥ 0 and Iyt<0 ≡ 1 otherwise. The parameter α2 controls the degree
of asymmetry. To ensure positivity, we set α0 > 0, α1 ≥ 0, α2 ≥ 0, β ≥ 0 (sufficient
condition). To ensure covariance-stationarity we make sure that α1 + α2E[η2Iη<0] + β < 1.
The single-regime GJR specification is created by using model = "gjrGARCH" in the function
create.spec:

TGARCH model

Zakoian (1994) introduces the TGARCH which has the conditional volatility as dependent
variable instead of the conditional variance:

h
1/2
t ≡ α0 + α1yt−1Iyt−1≥0 + α2yt−1Iyt−1<0 + βh

1/2
t−1 . (4)

For positivity we set α0 > 0, α1 ≥ 0, α2 ≥ 0 and β ≥ 0. To ensure covariance-stationarity,
we make sure that α2

1 + β2 − 2β(α1 + α2)E[ηIη<0]− (α2
1 − α

2
2)E[η2Iη<0] < 1 (see Francq and

Zakoian 2011, Section 10.2). The single-regime TGARCH specification is created by using
model = "tGARCH" in function create.spec:

GAS model

Generalized Autoregressive Score models were proposed in their full generality in Creal et al.
(2013). It provides a general framework for modeling time variation in parametric models.
The GAS model can be written as:

ht ≡ α0 + α1st−1 + βht−1, st−1 ≡ St−1∇t−1, ∇t−1 ≡
∂ ln f(yt−1|ht−1, λ)

∂ht−1
, (5)

where f(yt−1|ht−1, λ) is the likelihood of yt−1 given ht−1 and the distribution’s shape parame-
ters λ, st−1 is the score function, and St−1 is a scaling function for the score of the observation
log-density. The scaling function in this case is defined as:

St−1 ≡ E[∇t−1∇
′
t−1]−1 . (6)
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The single-regime GAS model is created by using model = "GAS" in the function create.spec.

2.2. Multiple-regime specifications

We present in this section the two multiple-regime specifications available in the R package
MSGARCH.

Markov-switching GARCH

Suppose ∆t is a Markov chain with a finite state space S ≡ {1, 2, ...,K} with an irreducible
and primitive K ×K transition matrix P defined as:

P ≡


p1,1 p2,1 . . . pK,1
p1,2 p2,2 . . . pK,2

...
...

. . .
...

p1,K p2,K . . . pK,K

 , (7)

where 0 ≤ pi,j ≤ 1 is the probability of switching from state ∆t−1 = i to state ∆t = j and∑K
j=1 pi,j = 1 (i = 1, . . . ,K).

Let the returns of a financial asset at time t be expressed as:

yt = η∆t
h

1/2
∆t,t

, (8)

where η∆t
∼ i.i.d.D∆t

(0, 1, λ∆t
), with D∆t

a distribution with zero mean, unit variance, and

shape parameters λ∆t
, and h

1/2
∆t,t

the conditional variance, in state ∆t at time t. For a the
single-regime specification in state k, we define θk as the parameters of the conditional variance
process, λk as the shape parameters of the conditional distribution Dk, and the T × 1 vector
hk ≡ (hk,1, hk,2, . . . , hk,T )′ as the resulting conditional variance vector from this specification.
The MSGARCH specification is constructed following the approach by Haas et al. (2004b),
which consists of many distinct single-regime specifications evolving in parallel. We define
Θ ≡ [θ1, θ2, ..., θK ], D ≡ [D1,D2, . . . ,DK ], Λ ≡ [λ1, λ2, ..., λK ] and H ≡ [h1,h2, ...,hK ].

As an example, let us use the R package MSGARCH to create a two-state MSGARCH model
for the log-returns of the S&P 500. We create a two-state MSGARCH model, K = 2, from
two single-regime GARCH processes each following a Normal distribution. We fit the model
to the sp500 dataset which consists of the S&P 500 index closing value log-returns ranging
from 1998-01-01 to 2015-12-31.

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0), itermax = 500,

do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)
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[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.1 0.1 0.8 0.1 0.1

beta_2 P P

[1,] 0.8 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.001601 0.02711 0.8913 0.03795 0.1177

beta_2 P P

[1,] 0.8778 3.212e-07 0.3704

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 3.212e-07 0.3704

t + 1 = 2 1.000e+00 0.6296

[1] "Stable probabilities:"

Stable probabilities

State 1 0.2703

State 2 0.7297

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.14 2.892

[1] "Log-kernel: -6506.63976020117"

[1] "AIC: 13235.894384861"

[1] "BIC: 13287.2404364094"

Model is fitted by Maximum likelihood with the function fit.mle (see Section 3.0.1). The
resulting parameters are collected in the vector theta where each parameter are labeled
according to the model and their state. The function transmat is an helper function that
builds the transition matrix from the fitted parameters for better readability.

Mixture of GARCH

Haas et al. (2004a) propose a general class of Mixture of GARCH models. They specify a
Mixture of Normal distributions where the variance process of each Normal component is a
GARCH process. They name this new class the MNGARCH models. A special case of this
specification named the Full and Diagonal MNGARCH is encountered when all covariances
between each component is constrained to be zero. This special case has a direct relation-
ship with the MSGARCH model. Indeed, we can constrain the transition matrix P of the
MSGARCH model to make the probability pi,j of switching from any state ∆t−1 = i to state
∆t = j the same. That is, P (∆t = j|∆t−1 = i) ≡ pj (i = 1, . . . ,K). The transition matrix
reduces then to a probability vector P ≡ [p1, p2, ..., pK ]. This constraint converts the Markov-
switching behavior to a Mixture behavior since the probabilities do not depend on the current
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state. For demonstration, lets repeat the experiment done previously, but with the argument
do.mix = TRUE.

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = TRUE, do.shape.ind = FALSE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0), itermax = 500,

do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)

[1] "Specification Type: Mixture"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.1 0.1 0.8 0.1 0.1

beta_2 P

[1,] 0.8 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.0003265 0.01765 0.9099 0.02865 0.1067

beta_2 P

[1,] 0.8886 0.199

[1] "Stable probabilities:"

Stable probabilities

State 1 0.199

State 2 0.801

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.06712 2.472

[1] "Log-kernel: -6518.18297178244"

[1] "AIC: 13188.2083263841"

[1] "BIC: 13233.136121489"

We can observe that we have less parameters label as P since a Mixture of GARCH will always
have less parameters than a Markov-Switching GARCH process. The transmat function, for
a Mixture of GARCH, will output a probability vector and not a probability matrix.

Regime-independent shape parameters
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Sometimes it is useful to have a regime-switching behavior only in the conditional variance
and keep the same conditional distribution across regimes. We call this regime-independent
shape parameters since all distributions Dk in D and λk in Λ are restricted to be the same
(i.e., they only differ via the conditional variance process of each regime). This can be done by
setting the parameter do.shape.ind = TRUE. We illustrate this with a two-state MSGARCH
model with two single-regime GARCH processes following the same Student-t distribution.

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("std", "std"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = TRUE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0), itermax = 500,

do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)

[1] "Specification Type: Markov-Switching with Regime-Independent distribution"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in distribution: 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.1 0.1 0.8 0.1 0.1

beta_2 nu_1 P P

[1,] 0.8 10 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.000298 0.02191 0.88 0.02331 0.1016

beta_2 nu_1 P P

[1,] 0.8938 15.73 4.918e-06 0.1838

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 4.918e-06 0.1838

t + 1 = 2 1.000e+00 0.8162

[1] "Stable probabilities:"

Stable probabilities

State 1 0.1553

State 2 0.8447

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.05512 2.232

[1] "Log-kernel: -6505.99800787707"

[1] "AIC: 13121.7705309498"

[1] "BIC: 13179.5348389418"
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As we can see, the output only contains one parameter nu with no regime indication instead
of two parameters nu_1 and nu_2.

2.3. Distributions

We present here the conditional distributions and their functionalities available in the R
package MSGARCH. There are two functions directly related to the conditional distribution:
pdf, the probability density function (PDF) and cdf, the cumulative density function (CDF).
We refer the reader to the documentation manual for further detail.

The Normal distribution

The PDF of the standardized Normal distribution can be written as:

fN (0,1)(z) ≡
1√
2π

e−
1
2
z
2

, (9)

where z ≡ x−µ
σ . The Normal distribution is completely described by its first two moments:

the mean and the variance. The distribution is symmetric. To create any specification with a
symmetric Normal distribution we use distribution = "norm" in the function create.spec.

The Student-t distribution

The PDF of the standardized Student-t distribution can be written as:

fS(0,1,ν)(z) ≡
√

ν

ν − 2

Γ
(
ν+1

2

)
√
νπ Γ

(
ν
2

) (1 +
z2

ν

)− ν+1
2

, (10)

where Γ is the Gamma function and ν > 2 is the shape parameter. It is completely described
by the shape parameter ν. The kurtosis of a Student-t distribution is higher for lower ν. For
ν =∞, the Student-t distribution is equivalent to the Normal distribution. The distribution
is symmetric. To create any specification with a symmetric Student-t distribution we use
distribution = "std" in the function create.spec.

The GED distribution

The PDF of the standardized GED distribution can be written as:

fGED(0,1,ν)(z) ≡
νe−

1
2
|z/λ|ν

λ2(1+1/ν)Γ(1/ν)
, (11)

where λ ≡ [2−2/νΓ(1/ν)/Γ(3/ν)]1/2. As in the Student-t distribution, the GED distribution
is described completely by the shape parameter ν. As ν decreases the density gets flatter.
Special cases are the Normal distribution when ν = 2 and the Laplace distribution when
ν = 1. The distribution is symmetric. The CDF of the standardized GED distribution can
be written as:

FGED(0,1,ν)(z) ≡

{
1
2 −

1
2FGAM(1,1/ν)

(
1
2

(
|z|
λ

)ν)
if z ≤ 0

1
2 + 1

2FGAM(1,1/ν)

(
1
2

(
z
λ

)ν)
if z ≥ 0 ,

(12)
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where FGAM(1,1/ν)(·) is the Gamma distribution CDF with parameter β = 1 and α = 1/ν. To
create any specification with a symmetric GED distribution we use distribution = "ged"

in the function create.spec.

Skewed distributions

Fernández and Steel (1998) provide a simple way to include skewness into a unimodal stan-
dardized distribution. Trottier and Ardia (2016) derive the moments of the standardized
Fernandez-Steel skewed distributions which are needed in the estimation of the GJR, EGARCH,
and TGARCH models. We refer the reader to Trottier and Ardia (2016) for details. Parame-
ter ξ (0 < ξ <∞) describes the degree of asymmetry. To create any specification with skewed
distribution we use the argument do.skew = TRUE in the function create.spec.

3. Estimation

In the R package MSGARCH, estimation of single-regime and Markov-switching GARCH
models can be either done by Maximum Likelihood (ML) or via Markov chain Monte Carlo
(MCMC) simulation. In both cases, the key is the function kernel which is the sum of the
likelihood and the prior. More precisely kernel(Θ) = L(y|Θ,Λ,P) + prior(Θ) + prior(Λ) +
prior(P) where L is the likelihood of y given the parameter Θ, Λ, and P. We follow Ardia
(2008) and use non-informative truncated Normal priors. Moreover, the prior ensures that
the Θ makes the conditional variance processes positive and stationary, that Λ respects the
parameters bounds of all the conditional distributions, and that the sum of columns of P
are equal to one in the case of a Markov-switching models. If any of these conditions is not
respected, the prior returns -1e10. For details on the ML or Bayesian estimation via MCMC
techniques, we refer the reader to Ardia (2008).

Maximum likelihood estimation

Obtaining the ML estimator of Markov-switching specifications using a standard optimization
technique can be a difficult task in practice. The R package MSGARCH allows the user to
find good starting values for the optimization with Differential Evolution (Price et al. 2006)
implemented in the R package DEoptim (Ardia et al. 2015). The resulting best member of the
final population is used as a starting value in fitted parameters as initialization in sequential
least-squares quadratic programming algorithm (Kraft 1988) implemented in the function
slsqp of the R package nloptr Johnson (2014).

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("std", "std"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0),

itermax = 500, do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)
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[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 1 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

[1,] 0.1 0.1 0.8 10 0.1

alpha1_2 beta_2 nu_2 P P

[1,] 0.1 0.8 10 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

[1,] 0.004169 0.05999 0.8968 3.351 0.02612

alpha1_2 beta_2 nu_2 P P

[1,] 0.1037 0.8917 25 2.884e-05 0.3958

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 2.884e-05 0.3958

t + 1 = 2 1.000e+00 0.6042

[1] "Stable probabilities:"

Stable probabilities

State 1 0.2836

State 2 0.7164

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.3106 2.383

[1] "Log-kernel: -6503.83678207374"

[1] "AIC: 13080.1083894088"

[1] "BIC: 13144.2909538444"

The argument do.init indicates if there is a pre-optimization with the R package DEoptim.
As shown in the example above, we allow the user to directly control some of the argu-
ment of DEoptim in the list ctr. The argument NP sets the number of vector of parameters
in the population while itermax sets the maximum number of iterations (number of pop-
ulations generated). Please refer to the DEoptim documentation for more details. Finally,
do.enhance.theta0 uses the volatilities of rolling windows of y and adjust the default pa-
rameters so that the unconditional volatility of each regime is set to different quantiles of the
volatilities obtained with rolling windows on y. In our experience, this provided good starting
values for the standard optimization.

Bayesian estimation

To perform Bayesian estimation we use the adaptive Metropolis-Hastings sampler described
in Vihola (2012) and available in the R package adaptMCMC (Andreas 2012).

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),
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distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

R> set.seed(123)

R> ctr.bay = list(N.burn = 20000, N.mcmc = 10000, N.thin = 10,

do.enhance.theta0 = TRUE)

R> fit.bay= MSGARCH::fit.bayes(spec = spec, y = sp500, ctr = ctr.bay)

R> tail(fit.bay$theta, 5)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 1 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

[1,] 0.1 0.1 0.8 10 0.1

alpha1_2 beta_2 nu_2 P P

[1,] 0.1 0.8 10 0.5 0.5

[1] "Bayesian posterior mean:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

0.01146 0.08429 0.90644 9.86376 0.55834

alpha1_2 beta_2 nu_2 P P

0.38338 0.49062 10.11514 0.97443 0.67645

[1] "Posterior variance-covariance matrix"

alpha0_1 alpha1_1 beta_1

alpha0_1 1.306e-05 2.052e-05 -2.920e-05

alpha1_1 2.052e-05 1.097e-04 -1.100e-04

beta_1 -2.920e-05 -1.100e-04 1.233e-04

nu_1 -5.745e-05 -5.996e-05 6.688e-05

nu_1 alpha0_2 alpha1_2

alpha0_1 -5.745e-05 7.725e-05 6.534e-05

alpha1_1 -5.996e-05 1.389e-04 1.365e-04

beta_1 6.688e-05 -1.002e-04 -1.218e-04

nu_1 1.716e-02 -3.352e-03 -6.777e-03

beta_2 nu_2 P

alpha0_1 -9.290e-05 -0.0000229 3.352e-05

alpha1_1 -3.238e-04 -0.0001215 5.504e-05

beta_1 2.584e-04 0.0001008 -6.261e-05

nu_1 1.597e-02 -0.0045914 3.114e-04

P

alpha0_1 6.665e-05

alpha1_1 2.033e-04

beta_1 -1.899e-04

nu_1 -1.810e-02

[ reached getOption("max.print") -- omitted 6 rows ]

[1] "Posterior mean transition matrix:"

t = 1 t = 2
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t + 1 = 1 0.97443 0.6764

t + 1 = 2 0.02557 0.3236

[1] "Posterior mean stable probabilities:"

Stable probabilities

State 1 0.96357

State 2 0.03643

[1] "Posterior mean unconditional volatility:"

State 1 State 2

[1,] 1.112 2.105

[1] "Acceptance rate: 0.986"

[1] "AIC: 13006.9565090122"

[1] "BIC: 13071.1390734477"

[1] "DIC: 13003.1027841308"

The function fit.bayes takes up to five controls arguments in ctr. The argument N.mcmc is
the number of draws to keep, N.burn is number of discarded draws, and N.thin is the thinning
factor. The main purpose of N.burn and N.thin is to diminishes the auto-correlation in the
MCMC chain. The argument N.burn also serves as pre-optimization step; this is why it is
set to a large value in the example. One alternative is to use a custom starting parameters
theta0 in the ctr argument or to set do.enhance.theta0 = TRUE. For example, we could
set theta0 as the ML estimator obtained with fit.mle. The total length of the chain is:
N.mcmc / N.thin. The chain is converted to a coda object meaning that all function for
MCMC analysis available in the R package coda (Plummer et al. 2006) are available.

4. Other functionalities

Many functionalities are available in the R package MSGARCH, which allow the user to
filter (functions ht and Pstate), to simulate (functions sim and simahead), to compute the
predictive density (function pred) and the probability integral transform (function pit), or to
compute risk measures such as the Value-at-Risk (VaR) or Expected-shortfall (ES) (function
risk). We refer the reader to the documentation manual for details.

In all cases, the object from the ML or Bayesian fit can be used as an input. In the case of the
MCMC estimation, the functions return the aggregated value over MCMC draws, hence the
true predictive distribution, and the VaR or ES which integrate the parameter uncertainty.

Finally, to perfom in-sample model selection, information criterions such as the Aikaike (AIC)
criterion (Akaike 1974), the Bayesian information criterion (BIC) (Schwarz et al. 1978), and
the deviance information criterion (DIC) (Gelman et al. 2014) are available. These are all
measures of the relative quality of statistical models for a given set of data, where lower values
are preferred.

5. Empirical illustration

We illustrate the package’s usage on daily log-returns of the Swiss market index for a period
ranging from November 12, 1990, to October 20, 2000. The data set is also used in Mullen
et al. (2011) in the case of a MSGARCH model estimated by ML. In our empirical stuy, we
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consider a single-regime GJR model with a skewed Student-t distribution and a two-state
Markov-switching GJR model with skewed Student-t distributions in each regime. Figure 1
displays the time series of log-returns.

[Insert Figure 1 about here.]

We first estimate both models by ML with the pre-optimization argument do.init = TRUE

and the argument do.enhance.theta0 = TRUE:

R> data("SMI")

R> plot(y, xlab = "Date", ylab = "Log-return")

R> SMI = as.matrix(y)

R> date = as.Date(rownames(SMI))

R> date = c(date, date[length(date)] + 1)

R> spec1 = create.spec(model = c("gjrGARCH"),

distribution = c("std"),

do.skew = c(TRUE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle1 = list(do.init = TRUE, NP = 10*length(spec1$theta0),

itermax = 500, do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle1 = MSGARCH::fit.mle(spec = spec1, y = SMI, ctr = ctr.mle1)

R> summary(fit.mle1)

[1] "Specification Type: Single-Regime"

[1] "Specification Name: gjrGARCH_student_skew"

[1] "Number of parameters in variance model: 4"

[1] "Number of parameters in distribution: 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1

[1,] 0.03933 0.04298 0.1143 0.8702 8.138

xi_1

[1,] 0.8554

[1] "Unconditional volatility:"

State 1

[1,] 1.285

[1] "Log-kernel: -3376.27190288128"

[1] "AIC: 6743.30840993793"

[1] "BIC: 6778.25268600307"

The results indicate a high level of volatility persistence in the conditional variance process
together with skewness and fat tails in the conditional distribution. A plot of the conditional
variance process can be generated using the following code:
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R> ht = MSGARCH::ht(fit.mle1)

R> plot(ht, date = date)

Results are displayed in Figure 2.

[Insert Figure 2 about here.]

Let us now perform the ML estimation of the Markov-swiching model. This is achieved with
the following code:

R> spec2 = create.spec(model = c("gjrGARCH", "gjrGARCH"),

distribution = c("std", "std"),

do.skew = c(TRUE, TRUE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle2 = list(do.init = TRUE, NP = 50*length(spec2$theta0),

itermax = 500, do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle2 = MSGARCH::fit.mle(spec = spec2, y = SMI, ctr = ctr.mle2)

R> summary(fit.mle2)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: gjrGARCH_student_skew gjrGARCH_student_skew"

[1] "Number of parameters in each variance model: 4 4"

[1] "Number of parameters in each distribution: 2 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

alpha0_2 alpha1_2 alpha2_2 beta_2 nu_2 xi_2

[1,] 0.1 0.05 0.1 0.8 10 1

P P

[1,] 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1

[1,] 0.2229 7.648e-06 0.2139 0.5404 5.945

xi_1 alpha0_2 alpha1_2 alpha2_2 beta_2

[1,] 0.8521 0.083 0.006211 0.1393 0.8774

nu_2 xi_2 P P

[1,] 20.01 0.8582 0.9981 0.00313

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 0.998052 0.00313

t + 1 = 2 0.001948 0.99687

[1] "Stable probabilities:"

Stable probabilities
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State 1 0.5464

State 2 0.4536

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.8101 1.423

[1] "Log-kernel: -3364.58904570219"

[1] "AIC: 6687.68084240918"

[1] "BIC: 6769.21748656117"

From the results, we first note that the first regime of the MSGARCH model exhibits less
persistence in the conditional variance. We also observe that parameter alpha2_1 is larger in
the first regime, implying a larger leverage effect in the less persistent state. The estimated
degrees of freedom suggests that the first regime is more fat-tailed than the second regime,
but the unconditional volatility of the first regime is much lower than that of the second
regime. Both conditional distributions are negatively skewed. The transtion matrix indicates
that the regime does not switch very often. This can be observed by computing the filtered
probabilities:

R> state = Pstate(fit.mle2)

R> plot(state, date = date)

Result is displayed in Figure 3.

[Insert Figure 3 about here.]

Bayesian estimation of the MSGARCH model can also be easily performed. We use here the
ML estimator as the starting values:

R> ctr.bay2 = list(N.burn = 5000, N.mcmc = 10000,

N.thin = 10, theta0 = fit.mle2$theta)

R> set.seed(123)

R> fit.bay2 = MSGARCH::fit.bayes(spec = spec2, y = SMI, ctr = ctr.bay2)

R> summary(fit.bay2)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: gjrGARCH_student_skew gjrGARCH_student_skew"

[1] "Number of parameters in each variance model: 4 4"

[1] "Number of parameters in each distribution: 2 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

alpha0_2 alpha1_2 alpha2_2 beta_2 nu_2 xi_2

[1,] 0.1 0.05 0.1 0.8 10 1

P P

[1,] 0.5 0.5

[1] "Bayesian posterior mean:"
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alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1

0.223706 0.006811 0.234363 0.535547 5.951993

xi_1 alpha0_2 alpha1_2 alpha2_2 beta_2

0.848133 0.084816 0.011409 0.155874 0.866230

nu_2 xi_2 P P

19.997764 0.862992 0.996872 0.004549

[1] "Posterior variance-covariance matrix"

alpha0_1 alpha1_1 alpha2_1

alpha0_1 8.391e-05 -4.415e-06 -1.010e-04

alpha1_1 -4.415e-06 2.955e-05 8.658e-05

beta_1 nu_1 xi_1

alpha0_1 2.623e-05 -2.188e-04 1.144e-04

alpha1_1 -7.793e-06 4.085e-05 -2.881e-05

alpha0_2 alpha1_2 alpha2_2

alpha0_1 -6.799e-05 6.192e-06 -1.172e-04

alpha1_1 3.302e-05 2.371e-06 7.230e-05

beta_2 nu_2 xi_2

alpha0_1 8.185e-05 8.469e-06 5.016e-05

alpha1_1 -4.671e-05 -6.221e-05 1.984e-05

P P

alpha0_1 -4.778e-07 -1.360e-06

alpha1_1 2.629e-07 8.527e-07

[ reached getOption("max.print") -- omitted 12 rows ]

[1] "Posterior mean transition matrix:"

t = 1 t = 2

t + 1 = 1 0.996872 0.004549

t + 1 = 2 0.003128 0.995451

[1] "Posterior mean stable probabilities:"

Stable probabilities

State 1 0.5497

State 2 0.4503

[1] "Posterior mean unconditional volatility:"

State 1 State 2

[1,] 0.8286 1.488

[1] "Acceptance rate: 0.984"

[1] "AIC: 6689.39263252908"

[1] "BIC: 6770.92927668107"

[1] "DIC: 6672.09065870322"

We can test the mixing properties of the chains as follows:

R> coda::traceplot(fit.bay2$theta)

R> pairs(x = as.matrix(fit.bay2$theta[,c(1,3,4,7,9,10)]),

pch = 20, cex = 0.8)

Results are displayed in Figure 4. We observe that the chain is mixing well. We can also
display the pairs plot of MCMC draws with the following code:
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R> pairs(x = as.matrix(fit.bay2$theta[,c(1,3,4,7,9,10)]),

pch = 20, cex = 0.8)

We can observe in Figure 5 that there is an high positive correlation between alpha2_1 and
alpha2_2, an high negative correlation between alpha2_1 and beta_2, and an high negative
correlation between alpha2_2 and beta_2.

[Insert Figure 4 and Figure 5 about here.]

Figure 6 displays the filtered probabilies in the Bayesian case, reported as a fan plot.

Finally, we can compute and compare the ML and Bayesian VaR at the 95% risk level for the
two model specifications:

R> risk.mle1 = MSGARCH::risk(fit.mle1, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> risk.mle2 = MSGARCH::risk(fit.mle2, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> risk.bay1 = MSGARCH::risk(fit.bay1, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> risk.bay2 = MSGARCH::risk(fit.bay2, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> par(oma = c(4, 1, 1, 1))

R> plot(zoo::zoo(risk, order.by = date),plot.type = "single",

col = tsRainbow, ylab = "VaR",xlab = "Date")

R> legend("bottomright",legend = colnames(risk),

lty = 3, col = tsRainbow, xpd = TRUE, horiz = TRUE,

R> inset = c(0,-0.5), bty = "n", pch = c(4, 2, 15, 19), cex = 1)

The Value-at-Risk at 5% for both MLE estimation of each model can be seen in Figure 7.
They look similar except that the MSGARCH model often shows bigger spikes than the
single-regime model when there is a large shift in volatility.

[Insert Figure 7 about here.]

6. Conclusion

This vignette introduced the R package MSGARCH which allows us to estimate, simulate
and forecast Markov-switching GARCH models in the R statistical sofware. We detailed
how to create various single-regime and regime-switching specifications with various scedastic
functions and conditional distributions. We documented how to perfom Maximum Likelihood
and Bayesian estimation of these models. In an empirical illustration to real financial data, we
showed how to fit and compare the in-sample performance of two complicated single-regime
and Markov-switching GARCH specifications.
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The R language has become an important vector for knowledge transfer in quantitative finance
over the last years. We hope the R package MSGARCH will provide risk managers and
regulators with new methodologies for improving risk forecasts of their portfolios.

Finally, if you use R or MSGARCH, please cite the software in publications.

Computational details

The results in this paper were obtained using R 3.2.3 (R Core Team 2016) with the packages:
MSGARCH (Bluteau et al. 2016), adaptMCMC (Andreas 2012), DEoptim (Ardia et al. 2015),
nloptr (Johnson 2014), Rcpp (Eddelbuettel et al. 2016a; Eddelbuettel and François 2011),
RcppArmadillo (Eddelbuettel et al. 2016b; Eddelbuettel and Sanderson 2014), Rsolnp (Gha-
lanos and Theussl 2016), and xts (Ryan and Ulrich 2015). R itself and all packages used are
available from CRAN at http://CRAN.R-project.org/. The package MSGARCH is under
development in GitHub at https://github.com/keblu/MSGARCH. Computations were per-
formed on a Genuine Intel® quad core CPU i7–3630QM 2.40Ghz processor. Code outputs
were obtained using options(digits = 4, max.print = 40, prompt = "R> ", width =

50).
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Figure 1: Log-returns of the Swiss Market Index. Data range from November 12, 1990, to
October 20, 2000.
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Figure 2: Conditional volatility of the single-regime GJR model with skewed Student-t inno-
vations estimated by ML.

19
92

19
94

19
96

19
98

20
00

1.01.52.02.53.03.5

D
at

e

Volatility

C
o

n
d

it
io

n
al

 v
o

la
ti

lit
y



David Ardia, Keven Bluteau, Kris Boudt, Denis-Alexandre Trottier 25

Figure 3: Filtered probabilities of the first regime obtain by ML for the two-state Markov-
switching GJR model with skewed Student-t innovations.
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Figure 4: Trace of MCMC samples for the the two-state Markov-switching GJR model with
skewed Student-t innovations.

0 200 400 600 800 1000

0.
20

0.
25

Iterations

Trace of alpha0_1

0 200 400 600 800 1000

0.
00

0
0.

03
5

Iterations

Trace of alpha1_1

0 200 400 600 800 1000

0.
20

Iterations

Trace of alpha2_1

0 200 400 600 800 1000

0.
51

5
0.

55
0

Iterations

Trace of beta_1

0 200 400 600 800 1000

5.
90

Iterations

Trace of nu_1

0 200 400 600 800 1000

0.
82

Iterations

Trace of xi_1

0 200 400 600 800 1000

0.
04

0.
12

Iterations

Trace of alpha0_2

0 200 400 600 800 1000

0.
00

0
0.

03
5

Iterations

Trace of alpha1_2

0 200 400 600 800 1000

0.
10

0.
22

Iterations

Trace of alpha2_2

0 200 400 600 800 1000

0.
82

0.
90

Iterations

Trace of beta_2

0 200 400 600 800 1000

19
.9

4
20

.0
4

Iterations

Trace of nu_2

0 200 400 600 800 1000

0.
84

0.
89

Iterations

Trace of xi_2

0 200 400 600 800 1000

0.
99

0
1.

00
0

Iterations

Trace of P

0 200 400 600 800 1000

0.
00

0
0.

01
4

Iterations

Trace of P



David Ardia, Keven Bluteau, Kris Boudt, Denis-Alexandre Trottier 27

Figure 5: Pairs plot of the MCMC draws for the two-state Markov-switching GJR model with
skewed Student-t innovations.
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Figure 6: Filtered probabilities of the first regime obtain by MCMC for the two-state Markov-
switching GJR model with skewed Student-t innovations. Blue line indicates the median.
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Figure 7: In-sample ML and Bayesian Value-at-Risk at the 95% risk leval for the single-regime
and regime-switching models.

19
92

19
94

19
96

19
98

20
00

−7−6−5−4−3−2−1

D
at

e

VaR

G
JR

 m
le

M
S

G
A

R
C

H
 G

JR
 m

le
G

JR
 b

ay
M

S
G

A
R

C
H

 G
JR

 b
ay



30 Markov-Switching GARCH Models in R: The MSGARCH Package

Affiliation:

David Ardia
Institute of Financial Analysis
University of Neuchâtel, Switzerland
&
Department of Finance, Insurance and Real Estate
Laval University, Canada
E-mail: david.ardia@unine.ch

Keven Bluteau (corresponding author)
Institute of Financial Analysis
Neuchatel University,Neuchatel, Switzerland
E-mail: keven.bluteau@unine.ch

Kris Boudt
Vrije Universiteit Brussel, Belgium
&
Vrije Universiteit Amsterdam, The Netherlands
E-mail: kris.boudt@vub.ac.be

Denis-Alexandre Trottier
Laval University, Canada
E-mail: denis-alexandre.trottier.1@ulaval.ca

mailto:david.ardia@unine.ch
mailto:keven.bluteau@unine.ch
mailto:kris.boudt@vub.ac.be
mailto:denis-alexandre.trottier.1@ulaval.ca

	Introduction
	Model specification
	Single-regime specifications
	GARCH model
	EGARCH model
	GJR model
	TGARCH model
	GAS model

	Multiple-regime specifications
	Markov-switching GARCH
	Mixture of GARCH
	Regime-independent shape parameters

	Distributions
	The Normal distribution
	The Student-t distribution
	The GED distribution
	Skewed distributions


	Estimation
	Maximum likelihood estimation
	Bayesian estimation


	Other functionalities
	Empirical illustration
	Conclusion

